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Introduction

* The lunar surface interacts directly with solar wind, cosmic rays, and
solar ultraviolet radiation.

* Knowledge of the complex electrical environment that this interaction
produces is essential from a scientific perspective as well as for
hazard mitigation for lunar human missions.

A full understanding of the lunar electrical environment requires
measurements in situ, so we have developed a sensor suite.



Lunar Electrostatic Environment:
Overview of Charging

e Conservation of electric charge: in equilibrium, lunar surface will
develop charge such that sum of current fluxes is zero [1][2][3]

* Measurements from electron reflectometer instrument on NASA
Lunar Prospector mission [2] showed majority of lunar surface
electrostatic charging is provided by just four currents [4]:

* Photoelectrons— ejected from surface by incident high energy photons

* Solar wind electrons — collect on surface from solar wind plasma

* Solar wind ions — collect on surface from solar wind plasma

* Secondary electrons — ejected from surface by incident primary electrons



Lunar Electrostatic Environment:
Photoelectron Charging
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Lunar Electrostatic Environment:

Solar Wind Charging

 Solar wind consists of
charged particles from Sun

e Some will collect on sunlit
lunar surface

* Many will carry on
undisturbed by Moon

Sun

o * Few will occupy lunar wake
and collect on nightside
* Sunlit regionis more
| positively and nightsideis
Solar Wind Net + more negatively charged

lons and Electrons

*not to scale



Lunar Electrostatic Environment:

Combined Effects of Charging

* Magnitude/sign of charge differs for sunlit and nightside of Moon. [5]

* On sunlit side, surface charges positively due to high energy solar photons.
* Photoelectronsforma sheath about 1 m above the lunar surface. [6]
* A small positive potential of 5 Vto 10 V balances the incoming currents. [7]

* On nightside, surface charges negatively due to solar wind electrons.
* Insolar wind wake, density of charged particles from solar wind is reduced.
* Electronsare more mobile than ions and become prevailing current.
* Alarger negative potential of =50 V to —200 V balances these currents. [8]
* This plasma forms a sheath that reaches about 1 km from the surface. [10][11]

* Similar phenomenon at smaller scale occurs in shadows around craters.



Lunar Electrostatic Environment:
Triboelectric Charging

* Triboelectriccharging develops when two surfaces make contact and
separate from each other, exchanging charge.

* Rover wheels or soles of astronaut boots will be triboelectrically charged as
they move along the lunar surface.

* The time it would take for this electrostatic charge to dissipate depends on
the surrounding plasma environment. [15][16]

* Arover is also exposed to all the current fluxes reaching the surface of the
Moon, developing a charge that balances out the net sum of the fluxes.

* |In the conductive photoelectron-dominated plasma region of the sunlit
surface of the Moon, the triboelectric-generated charge that would
develop on a rolling rover wheel should dissipate quickly. [17]



Mars Environmental Compatibility
Assessment (MECA) Electrometer

 Suite of triboelectric, ion current, and
electric field sensors developed by
JPL/KSC for mounting on robotic arm
scoop of Mars 2001 Surveyor Lander

* Triboelectric sensors use five different
insulator materials spanning triboelectric
series to contact the surface

* lon current sensor is a metal electrode
connected to a current to voltage amplifier

e Electric field sensor is a bare triboelectric
sensor with no insulator installed over top




Flight Instrument Characteristics

* MECA electrometer includes temperature sensor, ion current sensor,
electric field sensor, and five triboelectric sensors inside titanium case
* Total mass of 160 g with volume of 80 cm3

* Triboelectric/electric field sensors
* Full-scale potential detection capability of 7.3 kV with resolution of 3.5V
* Full-scale charge detection capability of 1.8 nC with resolution of 0.9 pC

* lon current sensor
* Full-scale ion current capability is 120 pA with resolution is 60 fA

* While this setup was originally planned for deployment on Mars,
application to lunar surface will be possible with minor modifications



Mars Environmental Compatibility
Assessment (MECA) Electrometer
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Triboelectric Sensor Detalil

"1

Electrode

Insulator

Granular Material

11



Triboelectric Sensor Detalil
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Triboelectric Sensor Detalil

* Charge, Q, deposited on an insulator surface induces an equal charge,

(), on a series reservoir capacitor, C;

[ O

C.
Q=G =Gh > h=Wi=7
Cr Cr V L L C
* Circular insulator of radius, 7, and thickness, t, 1"
. : nr?
has capacitance given by C; = &,.&; —
* (; is determined by permittivity of insulator
* C,is low leakage capacitor installed on board 2 -

* /. is measured via electrometer amplifier and is
directly proportional to accumulated charge, Q
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Triboelectric Sensor Data
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Triboelectric Sensor Data

* Each polymer acquires
different triboelectric

charge against sample
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Triboelectric Sensor Interpretation

* These electrostatic responses can be arranged in a triboelectric series
table according to the amount of charge transferred. [21]

* Measurements obtained by the instrument will place the lunar
regolith in these tables.

 Since other widely used polymer materials are classified in these
tables, the magnitude and sign of the charge that they may acquire if
they were to be placed in contact with the regolith can be predicted.

* This information will allow mission designers to predict if the
proposed material will accumulate dust.



Triboelectric Sensor Further Applications

* Several configurations of the triboelectric sensors included in original
MECA electrometer have been examined for different applications:

 Wheel Electrostatic Spectrometer (WES) [20][22]
* Electrostatic Regolith Interaction Experiment (ERIE)



Wheel Electrostatic Spectrometer (WES)

e Updated triboelectric sensors from
MECA electrometer installed along
perimeter of rover wheel proposed to
characterize triboelectric properties of
Martian regolith through contact with
surface as wheel rotates [20][22]
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COLLisions Into Dust Experiment (COLLIDE)

* Microgravity experiment to study
cratering events in granular beds
flown on Space Shuttle, parabolic
aircraft, and suborbital flights

* Retains granular material under
vacuum in tray behind metal door,
which then opens and releases
particles into larger open volume
when microgravity is achieved

* Electrostatic repulsion between grains in bed
was observed prior to collision with impactor
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* Improved triboelectricsensors from WES installed
inside COLLIDE dust retaining door

 Measures charge transferred between granular
material and insulators protruding through door

* |Insulator disks span triboelectricseries so each will
accumulate charge consistent with relative position
to grains within series as door slides open

* Sensors1/2 (—=) Teflon™ Polytetrafluoroethylene (PTFE)

e Sensors3/4( +) Garolite™ Fiberglass/Epoxy Composite

e Sensors5/6 (++) Lucite™ Polymethylmethacrylate (PMMA)
* Sensors7/8( -)Lexan™ Polycarbonate




Circuit Board

Insulator

S S N

22



Conclusions

* Vehicles moving over lunar regolith during
exploration activities will develop electrostatic
charges due to interaction with lunar soil and with
lunar plasma environment.

* This plasma environment will also determine how
charge developed on rover wheels will dissipate.

* Laboratory vacuumtestsindicate that charge that
will be developed on many polymer materials
placed on lunar surface can be predicted.

* Theinstrumentwill provide direct measurements
of the ion flux and electric field strength in vicinity
of triboelectric sensors, providing information on
electrostatic environment that will affect
dissipation of charge from these polymers.
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Questions?

James R. Phillips Il
NASA Kennedy Space Center
Electrostatics and Surface Physics Laboratory
james.r.phillips.iii@nasa.gov
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