
Remote Sensing of Environment 275 (2022) 112964

Available online 8 April 2022
0034-4257/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Forest aboveground biomass in the southwestern United States from a MISR 
multi-angle index, 2000–2015 

Mark Chopping a,*, Zhuosen Wang b,f, Crystal Schaaf c, Michael A. Bull d, Rocio R. Duchesne e 

a Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States 
b Earth System Science Interdisciplinary Center, University of Maryland College Park, College Park, MD 20740, United States 
c University of Massachusetts Boston, School for the Environment, Boston, MA 02125, United States 
d NASA Jet Propulsion Laboratory, Pasadena, CA 91109, United States 
e Department of Geography, Geology, and Environmental Science, University of Wisconsin-Whitewater, Whitewater, WI 51390, United States 
f Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, United States   

A R T I C L E  I N F O   

Editor: Jing M. Chen  

A B S T R A C T   

Multi-angle surface reflectance data from the NASA Jet Propulsion Laboratory Multi-angle Imaging Spectro- 
Radiometer (MISR) were used to map aboveground biomass density (AGB, Mg ha− 1) in the forests of the 
southwestern United States inter-annually from 2000 to 2015. The approach uses a multi-angle index that has a 
loge relationship with AGB estimates in the National Biomass and Carbon Dataset 2000 (NBCD 2000). MISR Level 
1B2 Terrain radiance data from May 15–June 15 of each year were converted to mapped surface bidirectional 
reflectance factors (BRFs) and leveraged to adjust the kernel weights of the RossThin-LiSparse-Reciprocal Bidi
rectional Reflectance Distribution Function (BRDF) model. The kernel weights with the lowest model-fitting 
RMSE were selected as the least likely to be cloud-contaminated and were used to generate synthetic MISR 
datasets. An optimal index calculated using BRFs modeled in the solar principal plane was found with respect to 
NBCD 2000 estimates for 19 sites near Mt. Lindsey, Colorado. These relationships were found in areas with AGB 
ranging from 20 to 190 Mg ha− 1, with the model yielding R2 

= 0.91 (RMSE: 15.4 Mg ha− 1). With spectral-nadir 
metrics, the R2 values obtained were 0.07, 0.32, and 0.37 for NIR band BRFs, NDVI, and red band BRFs, 
respectively. For regional application, a simplified single coefficient model was fitted to the NBCD 2000 data, to 
account for variations in forest type, soils, and topography. The resulting AGB maps were consistent with esti
mates from up-scaled 2005 ICESat GLAS data and 2013 NASA Carbon Monitoring System airborne lidar-derived 
estimates for the Rim Fire area in California; and with the 2005 GLAS-based map across the southwestern United 
States. Trajectories were stable through time and losses from fire and beetle disturbance matched historical data 
in published sources. MISR estimates were found to reliably capture ABG compared to radar- and lidar-derived 
estimates across the southwestern United States (N = 11,019,944), with an RMSE of 37.0 Mg ha− 1 and R2 = 0.9 
vs GLAS estimates.   

1. Introduction 

Regional maps of forest aboveground biomass (AGB) are required for 
a wide range of applications, including the assessment of the impacts of 
climate change – for example, losses from insect outbreaks, pathogens, 
wildfire, and drought; estimating fire fuel loading, growth, manage
ment, and the potential for particulate and carbon gas emissions to the 
atmosphere (Duncanson et al., 2019). Active sensing technologies – lidar 
and radar – are recognized as the most appropriate technologies for 
mapping forest AGB (Bergen et al., 2009; Xiao et al., 2019; Zhang et al., 

2014). However, their spatial and temporal coverage is limited (Herold 
et al., 2019). On the other hand, passive instruments capable of 
acquiring near-nadir spectral reflectance values regularly over large 
areas do not typically provide AGB, as their data are relatively insensi
tive to 3-D canopy structure (Wang et al., 2016). This study explores an 
innovative use of a multi-angle passive remote sensing technology that is 
sensitive to forest 3-D structure and provides an annual record from 
2000 onwards. The additional source of information provides a means to 
more fully investigate the development of forests in this region over a 
period of accelerating change. 
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Lidar and radar remote sensing technologies have been used to map 
forest AGB for many years. Airborne lidar surveys (ALS) provide limited 
spatial coverage and temporal sampling but have been extemely useful 
in demonstrating the technology and for focused sub-regional studies (e. 
g., NASA’s Land, Vegetation, and Ice Sensor (LVIS); Chopping et al., 
2012), but for larger areas, space-based missions are imperative. The 
first major effort used Shuttle Radar Topography Mission data to pro
duce the National Biomass and Carbon Dataset 2000 – NBCD 2000, a 
year 2000 forest AGB map covering the conterminous U.S. – for the 
North American Carbon Program (Kellndorfer et al., 2013). The NASA 
Geoscience Laser Altimeter System (GLAS) launched on ICESat in 2003 
provides a 6-year record, with ~65 m footprint lidar waveform data 
sampled at ~200 m intervals. This has been found to be very useful for 
mapping forest AGB (Lefsky et al., 2005; Saatchi et al., 2011). Both the 
NBCD 2000 and GLAS-derived AGB datasets are leveraged in this study. 
The ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) 
photon-counting lidar launched in September 2018 has shown it is 
capable of providing forest canopy height and AGB, even though it is 
optimized for ice sheet monitoring (Narine et al., 2020). However, 
NASA’s Global Ecosystem Dynamics Investigation (GEDI) is the first 
dedicated vegetation canopy lidar (VCL) in space. It was launched to the 
International Space Station in December 2018 and its multiple full 
waveform lidars provide canopy structure information for eight tran
sects at scales down to 25 m, and forest AGB for all land locations within 
±52◦ latitude (Dubayah et al., 2020). Each GEDI footprint is separated 
by 60 m along-track and 600 m across-track, with an across-track width 
of ~4.2 km. In the GEDI AGB density (AGBD) product, relationships 
between field plot estimates and simulated GEDI Level 2A waveform 
relative height metrics are captured in a parametric model and used to 
derive footprint AGBD (Dubayah et al., 2021). These instruments will be 
joined by the NASA-ISRO Synthetic Aperture Radar (NISAR) instrument 
and the European Space Agency’s P-band synthetic aperture radar 
Biomass mission, dedicated to forest AGB mapping and both slated for 
launch in 2023. 

While extant and upcoming orbiting lidar and radar instrument 
missions will improve the precision of AGB mapping and will also 
importantly extend the temporal and geographic coverage, the current 
record is limited. We would like to know the trajectories of AGB – 
accumulation from growth and losses from disturbance and human 
management – annually and across the southwestern U.S.. However, 
long forest AGB annual series are not currently available from active 
instruments and will not be available for at least another decade. The 
alternative is remote sensing from satellites that use passive solar 
wavelength sensors. These data have been used to map forest type, 
cover, and function at a range of scales, using surface spectral reflec
tance estimates and spectral vegetation indices as the primary metrics. 
However, none of these techniques are optimal for estimating AGB: the 
signal from measurements of reflected sunlight at medium (10–30 m) to 
moderate (100–1000 m) resolution is sensitive to plant condition and 
function; and to non-leaf components in the sensor field-of-view. In
formation on 3-D structure is thus confounded in the signal. 

For regular observation at sub-annual to annual intervals and with 
regional to global coverage, the long-term record from passive in
struments depends on three kinds of instruments: Those that have a large 
ground-projected instantaneous field-of-view (GIFOVs, i.e. moderate 
resolution) and wide swaths with varying observation geometries, e.g., 
MISR (~275 m), MODIS (~250 m); those that provide relatively limited 
angular information, e.g., ASTER on Terra (~15–30 m), ATSR-2 (~1 
km), AATSR (~1 km); or those that only provide close-to-nadir spectral 
measures at medium spatial resolution, e.g., the Landsat series (~30 m). 
Of these, the moderate resolution imagers have received the most 
attention. For example, Blackard et al. (2008) used U.S. Forest Service 

Forest Inventory and Analysis (FIA) program ground measured in
ventory data for the conterminous U.S., Alaska, and Puerto Rico with 
MODIS data to develop empirical models to relate field-measured 
response variables (including AGB) to plot attributes and scale these 
up. However, nadir-spectral and single view angle remote sensing 
measures do not capture AGB directly as they are relatively insensitive 
to the structural component of canopies: again, the signal from structure 
is confounded with that from greenness (Diner et al., 1999; Qiu and 
Zhang, 2020). 

In this study we pursue a multi-angle approach to mapping forest 
AGB that seeks to exploit the structural effects of canopies on observed 
radiation fields in the red wavelengths. This is achieved by exploiting 
the relationship between AGB and a suite of red band reflectance values 
simulated at different viewing angles, to develop a ratio-based index 
that is relatively insensitive to inter-annual changes in forest greenness 
from varying precipitation. Multi-angle bidirectional reflectance factor 
(BRF) data contain information about canopy structure because the 
proportions of sunlit and shaded tree crown and background in the in
strument ground-projected instantaneous field-of-view (GIFOV) vary 
(Chen et al., 2003, Heiskanen, 2006, Li and Strahler, 1985, Schull et al., 
2007, Wang et al., 2011). Observing in the solar direction there is an 
increasing proportion of shaded crown and background in the GIFOV 
with increasing zenith angle (i.e., illuminated elements are occluded), 
while the inverse is true when viewing in the antisolar, or backscat
tering, direction (i.e., shaded elements are occluded). Here, we first 
develop a multi-angle index to estimate forest AGB. This approach was 
developed because there are no physically-based remote sensing 
methods that provide wall-to-wall AGB mapping over this region, 
inter-annually, and from the year 2000. We then evaluate performance 
against lidar-based estimates from the NASA Carbon Monitoring System 
(CMS). Finally, we apply the method to the generation of AGB map se
ries that reflect the major disturbances impacting these forests, verify 
that these correspond to published data, and quantify changes for States 
and major wildfire events. 

2. Methods 

The region to be mapped in this study encompasses the southwestern 
United States (California, Arizona, New Mexico, Colorado, Nevada, 
Utah, and parts of Wyoming and West Texas; Fig. 1), some 3,035,346 
km2 in total, including upland forest, desert grassland with significant 
woody shrub encroachment, and riparian woodlands. The primary data 
are from the NASA, Jet Propulsion Laboratory’s Multi-angle Imaging 
Spectro-Radiometer (MISR) instrument flown on Terra, the first of 
NASA’s Earth Observing System satellites that was launched on 
December 18, 1999 (Diner et al., 1999, 2005). MISR has nine pushb
room cameras arranged to view in a 360 km swath along-track and thus 
acquires image data with nominal view zenith angles relative to the 
surface reference ellipsoid of 0.0◦, ±26.1◦, ±45.6◦, ±60.0◦, and ±70.5◦

(forward and aft of the along track of the Terra satellite) in four spectral 
bands (446, 558, 672, and 866 nm) at 1.1 km spatial resolution. The 672 
nm (red) band images are also acquired with a nominal maximum cross- 
track ground spatial resolution of 275 m in all nine cameras and all four 
bands are acquired at this resolution in the nadir camera (Diner et al., 
1999). The cameras are denoted DF, CF, BF, AF, An, AA, BA, CA, DA, 
from most extreme forward-viewing (DF) though nadir (An) to most 
extreme aft-looking (DA; the off-nadir cameras are sometimes written 
Df, Cf…, and so on). The swath is approximately 380 km and the repeat 
period is nine days at the equator and 2 days at the poles (see Diner et al., 
1999 for further specifics on the MISR sensor; animations of MISR’s 
viewing are available at https://visibleearth.nasa.gov/images/53628/ 
misr-scanning-swath). 
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2.1. MISR data set preparation – surface BRF calculation and resampling 

MISR Toolkit routines developed after suggestions by John Marton
chik (Jet Propulsion Laboratory, 2020a) were used to project 275 m 
MISR surface BRFs on a 250 m Albers Conical Equal Area grid centered 
on intervals of 250 m (i.e., coordinates end with 000, 250, 500, or 750). 
BRF is obtained in these routines by performing a linear regression of the 
red band 1.1 km MISR surface BRFs against the red band 1.1 km MISR 
top-of-atmosphere BRFs in the Land product. Top-of-atmosphere BRFs 
contaminated by sun glint over water surfaces are not used in the 
regression calculation. Smoothed regression coefficients are subse
quently applied to the red band 275 m top-of-atmosphere MISR BRFs to 
produce red band 275 m land surface BRFs for all cameras. The Toolkit 
procedures use the MISR Level-1B2 Terrain-projected Radiance product 
(MI1B2T), the MISR Level-1B2 Geometric Parameters product (MI1B2
GEOP), the MISR Level-2 Land Surface product (MIL2ASLS, surface BRFs 
at 1.1 km), and the Ancillary Geographic product (MIANCAGP). The 
MI1B2T product provides 275 m terrain-projected top-of-atmosphere 
radiance in all 4 spectral bands for the nadir view, and in the red band 
for off-nadir views. Sun and view angles from the MI1B2GEOP product 
are combined with a land/water mask from the MIANCAGP product to 
determine view angles and surfaces susceptible to sunglint. 

For May 15 – June 15 of each year, the An (nadir) camera BRFs in the 
446, 558, 672, and 866 nm (blue, green, red, and near-infrared (NIR)) 
bands, and the red band BRFs in all cameras were processed to provide 
surface BRF for paths 29–47 within the region and resampled to the 250 
m Albers grid. This was done using the v22b24–80 + 2 interim version of 
the 1.1 km Land Product, obtained using a revised 558 nm aerosol op
tical depth retrieval at 4.4 km resolution (Fig. 1). A smoothing algorithm 
was applied to the aerosol optical depth, reducing noise, and filling some 
gaps where aerosol retrievals are missing (Jet Propulsion Laboratory, 
2016). The input data are thus very close to those that would be 

obtained using the new v23 MISR aerosol algorithm (Jet Propulsion 
Laboratory, 2020b). The data extraction and processing had to be 
effected in sets of up to seven blocks as the HDF-EOS protocol imposes a 
memory constraint. The An camera BRFs and the BRDF model inversion 
outputs (see §2.2 below) were collated from these sets of blocks to paths 
and the latter were stacked. Temporal compositing was then performed 
on the stacked path data sets, using the minimum BRDF model-fitting 
Root Mean Square Error (RMSE) value as the criterion to select for 
each location the observation least likely to be contaminated with cloud. 
The May – June period was chosen because at this time of the year 
woody plants have leafed out but grasses, forbs and other understory 
plants are often still dormant. 

2.2. MISR data set preparation – BRDF model inversion and compositing 

The RossThin-LiSparse-Reciprocal BRDF model predicts BRF at any 
given combination of viewing and illumination angles on the basis of three 
parameters, or “kernel wrights”, that collectively describe surface 
reflectance anisotropy. It was adjusted against all available red band BRFs 
acquired May 15 – June 15 of each year from 2000 through 2015. Over the 
Rocky Mountains, the retrieval period was extended to the end of June in 
an attempt to compensate for persistent cloud obscuration and snow cover 
in forested areas with complex topography. This BRDF model was 
developed as one of the family of Ross-Li kernel-driven BRDF models by 
Wanner et al. (1995), based on the earlier ideas and model development 
work of Roujean et al. (1992), Li and Strahler (1985), and Walthall et al. 
(1985). The version with the RossThin kernel was selected as it is more 
appropriate for sparse canopies, with fewer negative kernel weights 
retrieved than with the RossThick kernel (Wanner et al., 1995). The 
model’s isotropic (iso), geometric (geo), and volume scattering (vol) kernel 
weights were obtained by adjustment against MISR red band BRFs in all 
cameras, with the objective the minimization of the absolute RMSE. 

Fig. 1. MISR and AGB input data (square boxes) and operations performed (rounded boxes) in order to produce AGB maps using the multi-angle index approach. The 
AGB model given here was derived for a test area. *New v22b24–80 + 2 Interim Land product using revised aerosol optical depth retrieval at 4.4 km resolution. 
**National Biomass and Carbon Dataset, or other source of AGB calibration data (e.g., lidar-based from airborne and space-based platforms). 
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Composited An (nadir) camera standard false color composites (RGB 
= NIR, Red, Green) show the extent of the available data (Fig. 2). There 
are clearly areas that do not have coverage in all years, notably parts of 
the Rocky Mountains in Colorado and southern Wyoming, as a result of 
persistent cloud and snow cover, as well as topographic obscuration. 
This is also shown in Fig. 3 for the year 2014, as an example. The earliest 
MISR data (for the year 2000) were used in calibrating an AGB predic
tion model by adjusting a coefficient against reference data. This model 
will be invalid for locations where MISR data for May 15 – June 15, 2000 
are missing; and this will be propagated through the predictions for all 
years. However, it was not necessary to deal with this issue immediately 
in this study because the areas with missing data for the year 2000 do 
not include forested lands. 

2.3. Creation of modeled MISR BRF datasets 

Multi-angle red band BRF ratios are sensitive to forest canopy 
structure (Fig. 4 (a) and relatively insensitive to vegetation canopy fo
liage greenness – that varies importantly from year to year in dry regions 
such as the southwestern U.S. – and thus might be used to estimate forest 
AGB. However, multi-angle ratios require observations in all cameras 
used but data from all nine MISR cameras are not always available, 

owing to cloud or topographic obscuration. This is overcome through 
BRF modeling, by using the temporally-composited kernel weights to 
drive the BRDF model. Forward modeling was thus performed for all 
locations in the composited data set using the RossThin-LiSparse- 
Reciprocal BRDF model and the retrieved kernel weights. Red band 
BRFs were modeled for three geometries: in the mean MISR geometry for 
the region at the mean solar zenith angle at the center of the region; and 
in a solar principal plane (SPP) geometry (the same viewing and solar 
zenith angles but with relative azimuth angles of 0 and 180 degrees for 
the back- and forward-scattering hemispheres, respectively, referred to 
as MISRspp); and in the SPP but with hot-spot and specular view zenith 
angles. 

There is inevitably some error from extrapolation to unobserved 
geometries but this is probably quite small as it is somewhat mitigated 
by the semi-physical nature of the BRDF model (Strahler et al., 1996; 
Lucht and Lewis, 2000; Chopping, 2001). Weights of determination 
(noise amplification factors) for Normalized BRDF-Adjusted Reflectance 
(NBAR) with a constant solar zenith angle of 45◦ for initial calibration 
sites are given in Table A1; the WoDs for the modeled BRFs are likely to 
be lower, since the solar zenith angle used in modeling is closer to the 
typical observed one. 

Fig. 2. MISR An (nadir) camera RGB = NRG false color composites for 2000–2015, constructed using data from May 15 through June 15, except for paths/blocks 
over the Rockies that used all data to the end of June. The gaps in the data sets can be largely filled by extending the compositing period to end-June for all paths and 
blocks. The compositing criterion was min(RMSE), where RMSE is the error on RossThin-LiSparse-Reciprocal BRDF model fitting. 
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2.4. AGB prediction with a multi-angle index 

Examination of modeled BRFs for a forested landscape in the vicinity 
of Mount Lindsey, Colorado allowed the derivation of a multi-angle 
index that has a loge relationship with AGB. This area was selected 
because it covers a range of conditions and surface cover types (needle- 
leaf forest, broadleaf woodlands, grassland, irrigated crops, snow, 
exposed rock, desert, surface water); and because AGB is generally more 
difficult to estimate at the lower end of the domain: if an approach is 
able to estimate AGB accurately here it might provide better estimates 
across the domain. False color composites were generated using 
modeled red band BRFs for various angular combinations and subse
quently examined. An RGB = BA, AF, DA camera BRF (SPP) combination 
appears to reflect forest density (Fig. 4 (a), (b)). Plots were made of BRF 
values for locations with different forest AGB values (from NBCD 2000), 
as well as other cover types (Fig. 4 (c), the latter to determine whether 
MISR-based AGB estimates are unreasonable for crops, water, desert, 
and snow. Site details given in Table A1. These plots demonstrate that 
the shapes are dissimilar for different cover types, but also that there 
may be a relationship between AGB and BRF ratios. The BRFs cannot be 
used directly as predictors of AGB, since brightness variation is driven 
more by green vegetation cover than by tree density and height: this 
would inevitably lead to poor prediction potential (as shown in Fig. 7). 
Therefore, a number of red band BRF ratios and their relationships with 
NBCD 2000 AGB were explored, using a combination of backscattering- 
to forward-scattering BRFs. The ratios depend on canopy stem density 
and crown size that jointly determine the crown and background frac
tions in the instrument’s GIFOV. The ratio of a slope of a pair of aft 
camera BRFs to a high zenith angle forward camera BRF – such as (DA/ 
AA)/CF – provided a promising candidate (Fig. 5). 

Plots of the multi-angle index (MAI) using the (DA/AA)/CF BRFs and 
the corresponding NBCD 2000 AGB values for a set of 21 locations for 
which the AGB values cover the domain seen in this area show that there 
is a moderately weak loge relationship (R2 = 0.53, Fig. 6 (b)). The 

relationship is weakened by two outliers but on examination of these 
locations in high resolution imagery it was apparent that they have large 
proportions of exposed bright rock (Fig. 6 (c) and (d)). If outliers are 
removed, the relationship is stronger (R2 = 0.91, Fig. 6 (a)). Examining 
these relationships for three candidate indices generated with red band 
BRFs modeled at three geometries, (DA/AA)/CF was the best index and 
was selected for further study (Table 1). The MAI derivation is given in 
Eq. (1)., noting that this was initially generated for three geometries: 

MAI = (DA/AA)/CF (1) 

The utility of the relationship between a multi-angle index and NBCD 
2000 AGB is highlighted by attempts to just use spectral-nadir metrics 
for the same purpose for the 19 screened Mt. Lindsey forest sites. MAIs 
based on (DA/AA)/CF at any of the three geometries showed strong 
relationships with NBCD 2000 AGB (R2 = 0.90 to 0.91, RMSE = 17, 21, 
and 19 Mg ha− 1, respectively), while more common NDVI, red BRF, and 
NIR BRF all showed weak relationships (R2 = 0.32, 0.07, 0.37, respec
tively, RMSE = 119, 120, and 120 Mg ha− 1, respectively). It should 
perhaps not be surprising that the spectral-nadir metrics are not 
particularly closely related to forest canopy density in environments 
where soils are mineral-dominated with low organic matter content and 
thus as bright in the NIR region as green vegetation, reducing the utility 
of common spectral reflectance indices such as NDVI. 

The selected model is therefore 

AGB
(
Mg ha− 1) = 89.16× ln(MAI) − 210.75 (2)  

where the MAI is henceforth defined as in Eq. (1) with BRF modeling in 
the SPP. This was applied to all locations across the entire southwestern 
US and predictions for 1968 random points were extracted and 
compared with NBCD 2000 values (Fig. 8). This demonstrates that, 
unsurprisingly, a single unique model (or set of coefficients) is inade
quate for accurate AGB mapping, since there are variations in forest 
type, soils, and topography across the region. 

Fig. 3. MISR An (nadir) camera RGB color composite for May 15 – June 15, 2014. The red ellipse highlights missing data over the Rockies from cloud, snow, and 
obscuration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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2.5. Enabling region-wide mapping 

Since a unique model coefficient and intercept set are insufficient for 
the mapping of AGB for all locations across the southwestern United 
States, a method had to be derived to account for the effects caused by 
differences in terrain, forest type, and soils. The first step was to examine 
an area for which there are multiple CMS data sets: the Rim Fire area, in 
the Sierra Nevada of California. The data sets include two lidar-based 
AGB maps, one at 35 m from a 2013 airborne lidar survey (ALS) that 
used allometric equations based on lidar-derived heights at tree and plot 

levels (Xu et al. (2018a)); and one for 2005 for the entire western US at 
100 m, from ICESat Geoscience Laser Altimeter System (GLAS) data, 
trained with FIA data (Hagen et al., 2016; Harris et al., 2016; Sassan 
Saatchi, pers. comm). 

To account for the differences in terrain, forest type, and soils, the 
loge model can be fitted to the NBCD 2000 AGB data by adjusting the 
coefficient and intercept using numerical methods, i.e., minimizing the 
root of the average of squared differences with year 2000 MISR-derived 
AGB and NBCD AGB across all data, i.e., minimizing the objective given 
in Eq. (3): 

Fig. 4. (a) MISR color composite overview for Mt. Lindsey, CO, from SPP red BRFs with R, G, B = BA, AF, DA cameras, with dense forest appearing in deep purple. 
Locations of forest sites are numbered; other sites listed in (c) are color-coded (b) Google Earth pan-sharpened true color imagery for the same area (c) MISR SPP red 
BRFs for various land covers with NBCD 2000 AGB for forest sites. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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Fig. 5. MISR simulated red band BRF plot showing how a multi-angle index that predicts AGB can be calculated (example for four sites with very different AGB 
values). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. (a) Multi-angle index with sites #5 (NBCD = 145 Mg ha− 1) and #21 (NBCD = 118 Mg ha− 1) removed (b) the same plot including these sites, indicated with a 
red ellipse (c) and (d) Google Earth imagery for these sites, respectively. Imagery: Google Earth/Maxar. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑
(AGBMISR − AGBNBCD)

2

√

(3) 

However, with two unknowns there are many possible solutions, so 
the model in Eq. (2) must be reduced to Eq. (4): 

modeled AGB = a× loge(MAI) (4) 

Creating a coefficients map for the entire southwestern using 
extrapolation is not feasible because soil and understory conditions, 
topography, and forest types vary considerably across the region. 
Therefore, the commonly used Brent optimization approach (Brent, 

1973) was used with the model and year 2000 MISRspp data to obtain the 
a coefficient for every location on the 250 m grid by fitting the model to 
the NBCD 2000 estimate by minimizing the RMSE in Eq. (3). This was 
accomplished using the code provided in Burkardt (2019). The resulting 
map of coefficients was used to predict AGB using the MISRspp MAI for 
all locations and all years, 2000–2015. Clearly, where there are missing 
data in the year 2000 MISR data set, the a coefficients for those locations 
will be invalid, impacting the AGB predictions for all subsequent years. 
However, these locations are almost entirely outside forested areas, so 
there is very little impact on the results presented here. 

Table 1 
Performance of three multi-angle indices calculated with red BRFS in three different geometries: MISR-like, MISR-like but in the solar principal plane, and the latter but 
with viewing in the hot spot and specular directions. Based on 21 sites in the vicinity of Mount Lindsey, Colorado.  

Multi-Angle Index Geometry R2 (index vs AGB) R2 (predicted AGB) RMSE Predicted AGB Predicted AGB for Crop Circle Mg ha− 1 AGB Prediction Function  

MISR 0.79 0.86 19.4 51 102.29 x LN(index) - 230.51 
(DA/AA)/CF Solar PP 0.84 0.91 15.4 106 89.157 x LN(index) - 210.75  

SPP-HOTSPOT 0.80 0.89 17.1 39 63.596 x LN(index) - 132.88  
MISR 0.82 0.88 17.1 42 101.96 x LN(index) - 251.00 

(DA/BA)/CF Solar PP 0.82 0.91 15.3 95 89.012 x LN(index) - 225.48  
SPP-HOTSPOT 0.79 0.90 16.5 39 63.266 x LN(index) - 143.39  
MISR 0.82 0.87 17.8 34 110.86 x LN(index) - 291.96 

(DA/CA)/CF Solar PP 0.78 0.88 17.0 80 93.188 x LN(index) - 252.72  
SPP-HOTSPOT 0.87 0.89 16.0 32 66.935 x LN(index) - 169.69 

Note: AGB in the columns with R2 refers to the NBCD 2000 AGB values. 

Fig. 7. Relationships between NBCD 2000 AGB and (a) the (DA/AA)/CF multi-angle index, in MISR-like viewing directions (b) ditto, in the solar principal plane (c) 
ditto, with hot-spot and specular directions (d) NDVI calculated with the MISR An camera red and NIR BRFs (e) MISR An camera red BRFs (f) MISR An camera NIR 
BRFs. All data are for the year 2000. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. Rim Fire area forest AGB at 250 m spatial resolution (N = 12,577: 100 × 126 locations, minus 23 locations where MISR data were missing). (a) GLAS-derived 
(2005) vs NBCD 2000 AGB (b) MISR (2005) vs GLAS (2005) AGB (c) MISR (2014) vs post-fire airborne lidar (2013) AGB. The lidar data sets were up-scaled to the 
250 m grid using a zonal mean function. Solid (dotted) lines are trendlines (1:1). 

Fig. 8. Forest AGB Predictions for 1968 random points over the entire southwestern US with AGB = 89.157 × ln(MAI) - 210.75, where the MAI = (DA/AA)/CF from 
MISRspp BRFs. The dotted line = 1:1. 
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3. Results and discussion 

3.1. Assessment against NASA CMS datasets 

The relationships between the MISR-predicted AGB and the up- 
scaled CMS data sets for the Rim Fire area were reasonably strong, 
with coefficients of determination of 0.66–0.75; the correlation between 
the CMS GLAS (2005) and NBCD (2000) AGB was of similar magnitude 
(R2 = 0.75) (Fig. 9, Table 2). 

It is clear that the MAI-derived AGB has a slightly weaker and less 
consistent relationship with the AGB estimates based on the high reso
lution CMS ALS data, especially for higher biomass values. For the re
gion >300 Mg ha− 1 in the CMS data set, the MAI-derived AGB is 
underestimated with respect to the airborne lidar-based AGB. While it is 
known that large footprint lidar can overestimate tree heights in rough 
terrain as a result of ground displacement within the footprint (e.g., 
Breidenbach et al., 2008), plot-level estimates from small footprint lidar 
(e.g., ALS) have been shown to also underestimate AGB (Xu et al., 
2018b, Clark et al., 2004). It is therefore acknowledged that the GLAS 
and ALS data sets are not entirely equivalent. 

The spatial distributions of AGB in the NBCD (~2000), CMS- (2005), 
and 2003 MISR-derived maps are very similar, with no major discrep
ancies (Fig. 10). However, in earlier efforts to produce MISR-derived 
AGB map series using boosted regression tree models driven by BRDF 
model kernel weights, highly unrealistic trajectories were obtained, 

with AGB varying by large increments (e.g., ±100 Mg ha− 1) from year- 
to-year (Chopping et al., 2015, 2018, 2019). While one instance of this 
pattern might be interpreted as a single anomalous estimate, it was 
apparent that this kind of noise is persistent, with no straightforward 
correction method. 

In these new results, trajectories were plotted againt the CMS AGB 
data for 2005 and 2013 for a large number of locations and error sta
tistics were calculated for all valid Rim Fire data (N = 12,577: 100 × 126 
locations, minus 23 where MISR data were missing). The plots were 
visualized in an animation for the first 300 instances that is available at 
Vimeo (https://vimeo.com/480931672), showing that the trajectories 
are reasonably stable. The error in the MAI-derived AGB vs AGB from 
airborne and spaceborne lidar was normally distributed with a mean 
close to zero in both cases (standard deviations: 82.8 and 59.1, respec
tively; Fig. 11). 

For analysis of the regionwide AGB maps, additional operations were 
necessary. To mitigate the impact of missing data and assess wall-to-wall 
changes in AGB regionwide over the period, the maps for 2000 and 2001 
were combined, as were those for 2014 and 2015. Since missing data in 
the forest AGB maps were flagged with − 1, maximum-value compos
iting was used to preferentially select a valid AGB prediction value over 
a missing data value. For mapping the net change in AGB over the 
period, missing or invalid data in the composites was flagged with 
− 9999, since − 1 is a valid AGB loss value. 

3.2. Assessment of regionwide mapping 

Forest AGB maps spanning the southwestern U.S. from NBCD (2000), 
CMS (2005), and MISR (2005) show a similar spatial structure (Fig. 12). 
At this scale, discrepancies are hard to perceive, though there are some 
notable differences. For example, the MISR and CMS-GLAS maps show 
more extensive low AGB than the NBCD 2000 map, with the MISR es
timates lying between CMS-GLAS and NBCD 2000 maps. Another dif
ference is that the MISR-based map is missing data for some upland 
locations, for example, the Lincoln National Forest on the Sacramento 
Mountains of New Mexico, likely owing to cloud cover. For annual 
mapping this could be addressed in future efforts by extending the 
compositing period to the end of June for all locations – this had an 
important impact on the coverage over the Rocky Mountains in 

Fig. 10. Forest AGB density maps for the ALS Rim Fire area (red) (a) NBCD 2000 (b) MISR, 2003 (c) CMS GLAS, 2005 (d) CMS Xu ALS, 2013 (post-fire), black outside 
the boundary indicates “no data”. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
RIM fire area AGB comparisons: coefficient of determination and RMSE.  

Data Sets Years R2 RMSE 

NBCD vs. GLAS 2000 vs. 2005 0.75 58.9 
NBCD vs. ALS 2000 vs. 2013 0.61 88.7 
GLAS vs. ALS 2005 vs. 2013 0.53 99.1 
MISR vs. GLAS 2005 vs. 2005 0.75 59.2 
MISR vs. ALS 2013 vs. 2013 0.61 92.8 
MISR vs. ALS 2014 vs. 2013 0.66 82.8 

Note: There is no point comparing the year 2000 MISR-derived AGB to NBCD 
2000, since the latter was used to adjust the model’s a coefficient for each 
location. 
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Colorado and southern Wyoming – but for change assessment over the 
longer term, the estimates for the first two and the last two years can be 
combined, as described above. 

The RMSE between the 2005 MAI-derived AGB vs estimates for the 
same year from ICESat GLAS trained with FIA data (N = 11,019,944, 
excluding missing and invalid flagged data) was 37 Mg ha− 1, with an R2 

of 0.9 The distribution of residuals (MISR minus GLAS estimates) was 
centered close to zero (Fig. 13), with Mode = 0.99; Median = 1.95; 
Mean = − 3.63; and St. Deviation = 36.9. 

3.3. Changes evidenced by the series 

The net change in forest AGB calculated using the 2000/01 and 
2014/15 composites shows that many areas have witnessed marked 
forest loss from wildfire and mountain pine beetle over the period, 
including the Uinta-Wasatch-Cache, Manti-La Sal, and Ashley National 
Forests in N. Utah; most of the forests of the Colorado Rockies; parts of 
the Sierra Nevada and Los Padros National Forest, Sespe Condor Sanc
tuary, and Angeles National Forest in S. California; the Arizona/New 

Fig. 12. Three AGB maps for the southwestern United States (a) NBCD 2000 (b) MISR 2005 (c) CMS GLAS-FIA 2005. Note that “zero” values indicate zero forest 
AGB, not zero woody plant AGB. 

Fig. 11. Distribution of residuals for the MISRspp MAI-derived AGB vs AGB from (a) spaceborne and (b) airborne lidar. N = 12,577; standard deviations = 59.1 and 
82.8, respectively. 

M. Chopping et al.                                                                                                                                                                                                                              



Remote Sensing of Environment 275 (2022) 112964

12

Mexico Mountains ecoregion, and the S. part of the Sangre de Cristo 
Mountains in N. New Mexico. (Fig. 14). 

Where disturbance has not been severe, the change map shows 
modest increases in forest AGB for many areas, with the largest in Kla
math National Forest in N. California and Jackson State Forest in coastal 
California. Lesser increases are seen in the W. part of the Fort Apache 
Reservation in Arizona, the E. part of the Uncompahgre National Forest 
in S. Colorado, and throughout the Sierra Nevada range, from the Sierra 

National Forest in the south to the Tahoe, Plumas, Lassen, and Shasta- 
Trinity National Forests in the north. 

Areas of important forest loss in the MISR-derived change map 
correspond well with fire and beetle loss perimeters from the GeoMAC 
Historic Wildland Fire Perimeters data set for the years 2001–2013 
(Walters et al., 2011) and 2003–2012 (Berner et al., 2017a, 2017b), 
respectively (Fig. 15). The MISR-derived forest AGB net change map also 
shows areas affected by losses that do not appear in the wildfire 
perimeter or beetle loss maps; this is potentially because the losses 
occurred after 2012; but they may also reflect real changes (e.g. from 
forest harvest, thinning, or drought) that are not included in either of the 
disturbance map data sets (e.g., parts of Arizona’s Galiuro Mountains, 
Fig. 15(b)). 

Estimates of net forest AGB changes by state are given in Table 3, 
considering only locations for which there is valid data for both early 
and late AGB composites. Colorado saw the largest net loss in absolute 
terms, with forest AGB reduced by 10.1 Tg (− 1.7%), while the largest 
relative loss (and second-highest absolute net loss) was sustained by 
New Mexico (− 3.3%). California saw the largest net increase: 22.1 Tg 
(+1.2%), while Nevada saw almost no net change. 

3.4. Forest biomass changes from MISR: wildfires 

Estimates of net AGB losses for large contiguous forest fires delin
eated by GeoMAC fire perimeters are given in Table 4. The majority 
occurred after 2010, with only the Rodeo-Chediski (2002), Moonlight 
(2007), and Hayman (2002) fires occurring earlier. This is consistent 
with studies finding that wildfire has increased importantly in these 

Fig. 14. Net changes in MISR-derived AGB density over the period (2014/15 minus 2000/2001) for the southwestern United States. Note that some forested areas 
are not included owing to missing data in either the earlier or later AGB composites. Fire perimeters are from the GeoMAC Historic Wildland Fire Perimeters data set 
for the years 2001–2013 (Walters et al., 2011), filtered to include only fires larger than 100 km2 (25,000 acres) for clarity; fire perimeters on non-forest land were 
removed. Beetle loss areas for 2003–2012 are from Berner et al. (2017a), filtered to include only areas larger than 50 km2 (12,355 acres). 

Fig. 13. Distribution of residuals (MISR minus GLAS) for the 2005 MISRspp 
MAI-derived AGB vs estimates for the same year from 2005 ICESat GLAS 
trained with FIA data, excluding missing and invalid flagged data. 
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forests since the 1980s, with climate-related factors (such as warmer 
temperatures, drier summers, below-average winter precipitation, and 
earlier spring snowmelt) resulting in increased fire frequency, size, and 
severity (Dennison et al., 2014; Westerling, 2016; Abatzoglou and Wil
liams, 2016; Williams et al., 2019). Fire events are clearly reflected in 
AGB trajectories for locations inside historical fire perimeters, with some 
of the largest happening later in the period (Fig. 16). 

3.5. Forest biomass changes from MISR: beetle 

Mountain pine beetle has resulted in large forest losses through tree 
mortality in many areas from the Sierra Nevada to N. Utah and parts of 
New Mexico and Arizona but is especially evident in Colorado and S. 
Wyoming (Fig. 17). MISR-derived AGB losses for affected contiguous 
areas identified in Berner et al. (2017a) are considerable at 16.6 Tg, with 
a single extensive area of 13,262 km2 in the E. Rockies (#1 in the figure) 
accounting for almost 60% of the total, followed by a much less exten
sive but more severely affected area in Grand Mesa National Forest (#2). 

Fig. 15. Change in MISR-derived AGB density over the period (2014/15 composite minus 2000/2001 composite, units: Mg ha− 1. Detail for (a) E. Arizona (b) S.E. 
Arizona but with smaller fires also shown, (c) N. Colorado and parts of Utah and Wyoming, and (d) N. California (Lime Complex and Shu Lightning Complex on the W 
and E sides). 

Table 3 
Estimated forest AGB loss in 2014/15 over 2000/01, by state.  

State AGB 2000/01 (Tg) AGB 2014/15 (Tg) Net Change (Tg) % Change % Missing Data 

Colorado  603.9  593.8  − 10.1  − 1.7  0.9 
New Mexico  255.1  246.6  − 8.5  − 3.3  2.2 
Arizona  267.4  261.4  − 6.0  − 2.2  0.0 
Utah  266.4  261.2  − 5.2  − 2.0  0.3 
Nevada  108.7  109.4  0.8  0.7  0.5 
California  1872.8  1895.0  22.1  1.2  0.3  
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Table 4 
Estimated forest AGB loss in 2014/15 over 2000/01 for large contiguous fires in the southwestern united states, by size of loss.  

Fire Year, State and ID# Fire Name Forest fraction1 AGB Loss (Mg) Map Subset  

2011-AZ-ASF-F4CX Wallow 0.87 1,998,253 

2013-CA-STF-HV2F Rim 0.66 1,714,897 

2002-AZ-FTA-251 Rodeo - Chediski 0.92 1,457,791 

2013-NM-GNF-HJ20 Silver 0.94 1,251,173 

2012-NM-GNF-GU3S Whitewater Baldy Complex 0.90 1,132,166 

2012-CA-PNF-G32E Chips 0.79 873,880 

2011-AZ-CNF-F3KV Horseshoe 2 0.72 826,778 

2007-CA-PNF-DZC7 Moonlight 0.90 812,002 

2002-CO-PSF-404 Hayman 0.85 702,088 

2011-NM-N6S-F5PS Las Conchas2 0.70 662,816 

Notes: 1. 2001 forest fraction was determined with respect to the National Land Cover Database (NLCD) 2016 product (Dewitz, 2019). 2. Some data for the NW part of 
this fire were missing. 
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Fig. 16. AGB trajectories for selected locations within large forest fires. Locations: Rodeo-Chediski 110:37:29.55 W 34:18:24.87 N; Rim 120:00:33.78 W 37:59:13.57 
N; Klamath Theatre 123:47:49.75 W 41:34:12.63 N; King 120:34:05.65 W 38:50:15.92 N; Wallow 109:20:36.49 W 33:40:21.21 N; Silver 107:46:19.16 W 32:52:50.28 
N; Chips 121:10:21.14 W 40:05:54.92 N; and Moonlight 120:44:06.63 W 40:16:02.25 N. 

Fig. 17. Change in MISR-derived AGB over the period (2014/15 composite minus 2000/2001 composite) for pine beetle loss areas for 2003 to 2012. Areas from 
Berner et al. (2017a), filtered to include only those larger than 50 km2 (12,355 acres). 
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4. Conclusions 

This study has demonstrated the application of multi-angle 672 nm 
(red) band reflectance data for mapping forest aboveground biomass 
over large areas – the entire southwestern United States – and inter
annually from 2000 to 2015. It shows that it is possible to leverage the 
surface structural information captured in the multi-angle reflectance 
data in an approach that does not require reflectance model inversion 
depending on estimation of the under-canopy background BRDF for 
each location a priori, which can be challenging and difficult to validate. 
The main conclusions from this study are:  

1. A multi-angle index derived from MISR red band BRFs modeled at 
MISR view zenith angles in the SPP predicted forest AGB with 
reasonably good precision with respect to NBCD 2000 radar-based, 
CMS GLAS-derived, and CMS airborne lidar-derived AGB estimates 
(R2 of 0.75 and 0.66 and RMSE of 59.2 and 82.8 for the last two, 
respectively, with respect to the MISR AGB for the Rim Fire area). 

2. The 2005 MISR MAI-derived forest AGB map for the entire south
western United States was spatially consistent with the 2005 ICESat 
GLAS AGB map trained with FIA data map (N = 11,019,944 250 m2 

locations, excluding missing and invalid data), yielding an R2 of 0.90 
and an RMSE of 37 Mg ha− 1.  

3. Forest AGB trajectories from the MISR multi-angle index were more 
stable through time than those predicted using BRFs or BRDF model 
kernel weights and tracked the CMS 2005 and 2013 lidar-derived 
estimates well.  

4. This method does not have sufficient sensitivity to vegetation 
structure to allow the mapping of woody plants of short stature (i.e., 
shrubs). There is reduced sensitivity compared to canopy reflectance 
model inversion (an approach that has its own limitations: too many 
unknowns), or the leveraging of BRDF model kernel weights plus 
nadir-spectral BRFs (e.g., Duchesne et al., 2018).  

5. MISR-derived forest biomass loss corresponds well with published 
wildfire and beetle perimeters. The forest AGB net change map also 
shows areas that may be affected by forest harvest, thinning, or 
drought. 

The forest AGB maps derived here using this multi-angle index 
approach are being made available at the Oak Ridge National Labora
tory (ORNL) Distributed Active Archive Center (DAAC) at doi:https:// 
doi.org/10.3334/ORNLDAAC/1978, together with metadata documen
tation and quality assurance layers: flags for all estimates that indicate 
missing NBCD 2000 or year 2000 MISR data, and for all subsequent 
years and locations: BRDF model fitting >0.008 that indicates snow as 
well as cloud cover, estimates greater than the NBCD 2000 estimate 
+100, and missing MISR data, e.g., locations where there were too few 
BRFs to invert the BRDF model. These raster maps are preliminary, 
research-level outputs and not intended as polished, final products, as 
there are some gaps and anomalies from missing data, as well as 
compositing artefacts. Further evaluations of the maps generated by this 
study as well as those for other regions can leverage other CMS lidar- 
based AGB data sets, as well as forest canopy analysis using high reso
lution imagery + allometry – e.g., from CANAPI (Chopping, 2011; 
Chopping et al., 2014; Duchesne et al., 2015) – and AGB estimates 
derived from GEDI waveforms in the L4A and L4B products that cover 
larger areas with greater consistency and precision (Dubayah et al., 
2020). 

Using NBCD 2000 or CMS GLAS estimates to retrieve maps of model 
coefficients across the conterminous U.S. could enable generation of 
MISR-derived forest AGB map series for all years from 2000 on. MISR 
data simulated using the Rahman-Pinty-Verstraete (RPV) model (Rah
man et al., 1993) – whose coefficients are readily available at 1.1 km 

spatial resolution as part of the MISR Level 2 Land Surface Product 
(MIL2ASLS_3) – could also be utilized. Although the MISR MAI approach 
predicts forest AGB quite well for a region that is characterized by bright 
soils and sparse understories, a more flexible approach may be required 
for broader areas with different soils, forest canopies, and vegetation 
associations (e.g., modern machine learning approaches such as Keras/ 
TensorFlow deep neural networks; further research is required to 
determine the relative merits of different approaches. 

The MISR-developed MAI approach might also be explored using 
other BRDF data and over other regions, perhaps using other BRDF 
models (e.g., RPV, Roujean (Roujean et al., 1992), or Walthall (Walthall 
et al., 1985), or the RossThickLiSparse-Reciprocal (Schaaf et al., 2002). 
Although the lifetime of the MISR instrument is necessarily limited to 
December 2025 by the lack of fuel required to sustain the Terra satellite 
in orbit, its record already provides a two-decade record; furthermore, 
NASA and other multi-angle imagers are in the planning stages (e.g., 
MAIA, HARP2 and SPEXone on PACE). The significance of this work 
potentially goes beyond this region and the particular sensor used: since 
the multi-angle index is obtained using a modeled red band BRF dataset, 
any BRDF dataset or product could be used to generate it, e.g., BRDF 
products from MODIS (on Terra and Aqua), VIIRS (on board Suomi NPP 
launched in 2011, NOAA-20 launched in 2017, and JPSS-2, scheduled to 
be launched in 2022), or Sentinel-3A and –3B (launched in 2016 and 
2018, respectively; León-Tavares et al., 2020). 
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Appendix A  

Table A1 
Sites selected in the Mt. Lindsey, Colorado study area.  

Site Latitude (DMS) Longitude W (DMS) MISR MAI (DA/AA)/CF AGB, Mg ha− 1 NBCD 2000 Forest NDVI Forest WoD* for NBAR45 

Forest 1 37 38 26 105 27 17.1 80.9 186 0.59 1.7 
Forest 7 37 38 16 105 27 14.0 75.3 173 0.56 1.9 
Forest 2 37 38 56 105 21 10.1 58.8 146 0.67 1.9 
Forest 5, on Rock 37 35 58 105 28 22.7 13.6 145 0.39 1.9 
Forest 3 37 33 43 105 26 35.5 44.4 141 0.59 2.8 
Forest 6 37 32 13 105 23 54.8 17.6 50 0.49 1.9 
Forest 4 37 31 18 105 30 55.5 14.8 33 0.36 1.9 
Forest 8 37 38 16 105 16 58.5 40.2 143 0.64 1.9 
Forest 9 37 35 15 105 23 34.9 36.2 101 0.69 1.9 
Forest10 37 38 47 105 29 42.0 45.3 138 0.53 1.9 
Forest11 37 39 1 105 22 7.49 75.0 160 0.71 4.0 
Forest12 37 29 55 105 13 58.9 28.8 89 0.61 3.3 
Forest13 37 23 59 105 13 11.0 57.7 149 0.64 4.1 
Forest14 37 25 28 105 13 58.0 29.7 57 0.59 1.9 
Forest15 37 24 17 105 17 8.33 39.4 116 0.60 1.9 
Forest16 37 30 32 105 15 34.3 22.3 40 0.47 1.9 
Forest17 37 20 38 105 17 26.6 29.5 106 0.54 3.3 
Forest18 37 22 56 105 23 35.3 14.2 21 0.34 3.2 
Forest19 37 34 17 105 33 0.26 24.6 99 0.50 1.9 
Forest20 37 39 24 105 15 23.5 49.0 135 0.63 1.9 
Forest21, on Rock 37 37 13 105 28 9.85 13.9 118 0.43 1.9 
Crop Circle 1 37 23 36 105 25 43.3 24.4 N/A N/A N/A 
Crop Circle 2 37 23 10 105 25 31.1 34.7 N/A N/A N/A 
Crop Circle 3 37 25 28 105 29 10.4 16.9 N/A N/A N/A 
Lake 37 23 42 105 23 11.6 66.4 N/A N/A N/A 
Desert 1 37 27 40 105 23 4.10 10.1 N/A N/A N/A 
Desert 2 37 28 35 105 23 0.30 8.1 N/A N/A N/A 
N.Stream 37 30 3 105 23 47.3 15.0 N/A N/A N/A 
S.Stream 37 27 35 105 25 23.4 11.5 N/A N/A N/A 
Snow_bright 37 34 59 105 28 54.7 3.5 N/A N/A N/A 

Note: * WoD = Weight of Determination, a noise amplification factor, see Lucht and Lewis, 2000. NBAR is Normalized, BRDF-Adjusted Reflectance, see Schaaf et al., 
2002. 
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