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Abstract 20 
 21 
From the Hindu Kush Mountains to the Registan desert, Afghanistan is a diverse landscape where 22 
droughts, floods, conflict, and economic market accessibility pose challenges for agricultural 23 
livelihoods and food security. The ability to remotely monitor environmental conditions is critical to 24 
support decision making for humanitarian assistance. The Famine Early Warning Systems Network 25 
(FEWS NET) Land Data Assimilation System (FLDAS) global and Central Asia data streams 26 
provide information on hydrologic states for routine integrated food security analysis. While 27 
developed for a specific project, these data are publicly available and useful for other applications 28 
that require hydrologic estimates of the water and energy balance. These two data streams are 29 
unique because of their suitability for routine monitoring, as well as a historical record for 30 
computing relative indicators of water availability. The global stream is available at ~1 month 31 
latency, monthly average outputs on a 10-km grid from 1982-present. The second data stream, 32 
Central Asia (30-100 °E, 21-56 °N), at ~1 day latency, provides daily average outputs on a 1-km 33 
grid from 2000-present. This paper describes the configuration of the two FLDAS data streams, 34 
background on the software modeling framework, selected meteorological inputs and parameters, 35 
and results from previous evaluation studies. We also provide additional analysis of precipitation 36 
and snow cover over Afghanistan. We conclude with an example of how these data are used in 37 
integrated food security analysis. For use in new and innovative studies that will improve 38 
understanding of this region, these data are hosted by U.S. Geological Survey data portals and the 39 
National Aeronautics and Space Administration (NASA). The Central Asia data described in this 40 
manuscript can be accessed via the NASA repository at 10.5067/VQ4CD3Y9YC0R, the global data 41 
described in this manuscript can be accessed via the NASA repository at 10.5067/5NHC22T9375G.  42 

1 Introduction 43 

From the Hindu Kush Mountains to the Registan desert, Afghanistan is a diverse landscape where 44 
droughts, floods, conflict, and economic market accessibility pose challenges for agricultural 45 
livelihoods and food security. The ability to remotely monitor environmental conditions is critical to 46 
support decision making for economic development, humanitarian assistance, water resource 47 
management, agriculture and more. Environmental datasets can be combined with socio-economic 48 
variables and transformed into customized products to support decision making. This is the 49 
definition of a ‘climate service’ (Hewitt et al., 2012). 50 
 51 
Hydrologic and land surface datasets are particularly relevant for agriculture and water resources 52 
decision making. When these datasets are credible, updated routinely, and made publicly available, 53 
the influences of climate variability and climate change can be incorporated into specialized 54 
analyses by intermediary users1. One example of an intermediary user central to this data descriptor 55 
is the food security analysts of the Famine Early Warning Systems Network (FEWS NET). FEWS 56 

 
1 The WMO defines intermediate (intermediary) users as those who transform climate information into a climate service 
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NET analysts combine environmental information, largely from remote sensing and earth system 57 
models, with information on nutrition, livelihoods, markets, and trade to provide decision support to 58 
the U.S. Agency for International Development (USAID) Bureau of Humanitarian Assistance. 59 
Additional examples and discussion of the production of climate service inputs can be found in the 60 
literature (e.g., Vincent et al., 2018; McNally et al., 2019). 61 
 62 
While these data are tailored to specific needs, they are also applicable to other climate services and 63 
research e.g., desert locusts movement forecasting (Tabar et al., 2021). To that end, this paper 64 
describes the FEWS NET Land Data Assimilation System (FLDAS) global and Central Asia data 65 
streams. The inputs (e.g., precipitation) and resulting hydrologic estimates (a) provide a 40+ year 66 
historical record for contextualizing estimates in terms of departures from average (i.e., anomalies), 67 
(b) are low latency (< 1-month) for timely decision support, and (c) are familiar to the food and 68 
water security user-community. 69 
 70 
The purpose of this data descriptor is four-fold:  71 

•  to describe the development of the moderate resolution, low latency FLDAS hydrologic 72 
monitoring system for Central Asia, specifically Afghanistan 73 

•  to increase awareness of these data resources, which are intended to be a public good,  74 
•  to demonstrate how our methods inform critical investigations that ultimately improve 75 

general understanding of water resources in this important region of the world, and  76 
• to describe a ‘convergence of evidence’ approach to hydrologic monitoring in locations 77 

where all sources of information contain some level of uncertainty. 78 
 79 
An outline of this data descriptor is as follows. Section 1.1 provides background on Afghanistan 80 
Weather and Climate. Section 1.2 reviews previous studies that have conducted evaluations of the 81 
meteorological inputs and hydrologic outputs of Land Data Assimilation Systems in the Central 82 
Asia region. Section 2 (Methods) describes the hydrologic modeling system, parameters and 83 
meteorological inputs, and model outputs. Section 3 (Results) presents comparisons of precipitation 84 
inputs, and comparisons of modeled snow estimates to remotely sensed snow observations. Finally, 85 
Section 4 describes an application of these data to the Afghanistan drought of 2018. 86 

1.1 Afghanistan Weather and Climate 87 

Central Asia, a region that includes Afghanistan, is water-scarce, receiving roughly 75% of its 88 
annual precipitation during November–April (Oki and Kanae, 2006). In Afghanistan, rainfall is 89 
highest in the northeast Hindu Kush Mountains and decreases toward the arid southwest Registan 90 
Desert (Fig. 1a). Temperature follows a similar pattern with cooler temperatures in the high 91 
elevation, wetter northeast, and warmer temperatures in the south and southwest (Fig. 1b). Regional 92 
precipitation is strongly influenced by the El Niño-Southern Oscillation (ENSO). La Niña 93 
conditions are associated with below average precipitation (FEWS NET, 2020b) and El Niño 94 
conditions are associated with above average precipitation (Barlow et al., 2016; Hoell et al., 2017; 95 
Rana et al., 2018; Hoell et al., 2018, 2020; FEWS NET, 2020a). Other factors with an important 96 
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influence on precipitation include orography, storm tracks, and the Madden–Julian oscillation 97 
(Barlow et al., 2005; Nazemosadat and Ghaedamini, 2010; Hoell et al., 2018). The last several years 98 
have experienced several ENSO events, with recent La Niña events in 2016-17, 2017-18, and 2020-99 
2022 (NOAA CPC ENSO Cold & Warm Episodes by Season, 2021) that corresponded to droughts 100 
(FEWS NET, 2017b, 2018c, 2021). 101 
 102 

 103 
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Figure 1. (a) Average annual precipitation in Afghanistan from 1991-2020, with overlaid province 104 
boundaries. (b) Average maximum monthly temperature from (1986-2015), overlaid with province 105 
boundaries. Map source USGS Knowledge Base (USGS Knowledge Base, 2021). 106 
 107 
Despite Afghanistan’s semi-arid climate, agriculture is an important sector, contributing 23% of its 108 
gross domestic product and employing 44% of the national labor force (CIA World Factbook). High 109 
mountain snowpack and snowmelt runoff are important for agricultural water supply. According to 110 
FEWS NET (2018b) snowmelt runoff is responsible for “providing over 80% of irrigation water 111 
used. The timing and duration of the snowmelt is a key factor in determining the volume of 112 
irrigation water and the length of time that it is available, as well as its availability for use in 113 
marginal areas that experience [variable] rainfall.”  Therefore, routine hydrologic monitoring, with a 114 
particular emphasis on snow, is critical for tracking agricultural conditions and provides early 115 
warning for food insecurity.  116 

1.2 Hydrologic Data Availability and Uncertainty 117 

Remote sensing and models are important inputs to climate services (Qamer et al., 2019). In the 118 
Central Asia region, and especially Afghanistan estimates of meteorological inputs, and model 119 
parameters have considerable uncertainty due to sparse in situ environmental observations. To 120 
address these challenges, the NASA High Mountain Asia project (https://www.himat.org/) has 121 
broadly aimed to explore the driving changes in hydrology as well as model validation and data 122 
assimilation, and water budget processes from the Himalayas in the south and east to the Hindu 123 
Kush in the west. These efforts and other studies of satellite derived rainfall informed the 124 
configuration and interpretation of the FLDAS Central Asia and global data streams. 125 
 126 
The primary challenge to producing and evaluating hydrologic estimates is that sparse in situ 127 
precipitation observations lead to uncertainty in gridded, satellite-based precipitation estimates. 128 
Precipitation station observations are used for (a) bias correction of satellite estimates and (b) 129 
validation of gridded products. In terms of gridded dataset development, Hoell et al. (2015) describe 130 
how lack of station observations and complex topography in Afghanistan, Iraq, and Pakistan makes 131 
this issue particularly problematic. Barlow et al. (2016) also highlight the station availability across 132 
the region and how that influences uncertainties in the Global Precipitation Climatology Center 133 
(GPCC) version 6 (Schneider et al., 2017) dataset over Central Asia (Fig. 2a) and specifically 134 
Afghanistan over time (Fig. 2b). 135 
 136 
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137 
Figure 2. (a) Station data availability underlying the GPCC version 6 dataset, for the 1950–2016 138 
period, on the 0.5°-resolution grid over Central Asia. (b) Fraction of gridcells with number of 139 
stations used as input to the GPCC rainfall dataset in Afghanistan from 1932-2016. 140 
 141 
In the absence of abundant in situ observations, one approach for remote sensing and model 142 
evaluation is to compare multiple input datasets and evaluate the water balance. Independent 143 
observations from the different components of the water balance (e.g., evapotranspiration, soil 144 
moisture, streamflow) help constrain estimates. We provide some background here and refer readers 145 
and data users to literature from the NASA High Mountain Asia project, specifically Yoon et al. 146 
(2019) and Ghatak et al. (2018), who explored similar configurations to the FLDAS system. This 147 
background allows the reader to appreciate the uncertainties in inputs, outputs and derived products 148 
and climate services over Afghanistan and the broader Central Asia region.  149 
 150 
Meteorological forcing is known to be the primary source of uncertainty in land surface model 151 
simulations (Kato and Rodell, 2007). Thus, its evaluation is important to understand the quality of 152 
model inputs and outputs. For this reason, Ghatak et al. (2018) compare four unique precipitation 153 
data sources: daily Climate Hazards center Infrared Precipitation with Stations (CHIRPS) (Funk et 154 
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al., 2015), NOAA’s Global Data Assimilation System (GDAS) (Derber et al., 1991), and two 155 
estimates from NASA’s Modern Era Reanalysis for Research and Applications version 2 (MERRA-156 
2) (Gelaro et al., 2017). They find that annual CHIRPS and GDAS precipitation estimates had 157 
similar bias and root mean squared error over Afghanistan with respect to APHRODITE (Asian 158 
Precipitation Highly Resolved Observational Data Integration Toward Evaluation) rain-gauge 159 
derived product (Yatagai et al., 2012). CHIRPS had a higher correlation with APHRODITE. Ghatak 160 
et al. (2018) further evaluated the quality of rainfall inputs based on the performance of 161 
evapotranspiration and other derived outputs. The authors caution that gridded precipitation 162 
estimates that have in situ inputs, like CHIRPS, may systematically underestimate precipitation in 163 
mountainous regions. We keep this consideration in mind when interpreting differences between 164 
FLDAS global and Central Asia data streams. 165 
 166 
Yoon et al. (2019) compare precipitation estimates from 10 different products including 167 
APHRODITE, CHIRPS, GDAS, and MERRA-2, across a broad region of High Asia, including a 168 
portion of Afghanistan. They find that all datasets generally capture the spatial pattern of rainfall 169 
and that the products tend to agree more at high elevations, where it is unlikely there are station 170 
observations. Like Ghatak et al. (2018), they found CHIRPS and APHRODITE to have a lower 171 
average precipitation than GDAS, attributable to the incorporation of sparse gauge data.  172 
 173 
In addition to precipitation, other meteorological inputs are important for accurate hydrologic 174 
estimates. Yoon et al. (2019) conducted an intercomparison of near surface air temperature 175 
estimates from three model analysis products (European Centre for Medium-Range Weather 176 
Forecasts (ECMWF; Molteni et al., 1996), GDAS, and MERRA-2). They noted a statistically 177 
significant upward trends in GDAS and ECMWF temperature, as well as consistently higher 178 
temperatures in MERRA-2. We see the same pattern when averaging across Afghanistan. Yoon et 179 
al. (2019) conclude that improvements in the meteorological boundary conditions would be needed 180 
to reduce the uncertainty in the terrestrial budget estimates. These sentiments are echoed in Qamer 181 
et al. (2019). 182 
 183 
Despite known uncertainties, Schiemann et al. (2008) find that gridded precipitation estimates can 184 
qualitatively identify large scale spatial distribution of precipitation, seasonal cycles, and interannual 185 
variability (i.e., wet and dry years) across Central Asia. Long-term estimates of rainfall from 186 
satellite derived products, as well as derived historical time series from hydrologic modeling, can be 187 
used as a baseline of “observations,” from which we can have a sense of relative conditions, i.e., 188 
anomalies and variability. When this historical record is harmonized with a routine monitoring 189 
system, current conditions can be placed in historical context. Anomaly-based representation of 190 
hydrologic extremes can provide confidence in modeled estimates that have the potential to 191 
influence agricultural, water resources and food security outcomes. For these reasons one of the 192 
requirements for FLDAS input is that there is a sufficiently long historical record for 193 
contextualizing estimates in terms of anomalies. 194 
 195 
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From a climate services perspective, the reliance on the representation of relatively wet and dry 196 
conditions, as well as a “convergence of evidence” approach, provide useable information despite 197 
the above-mentioned uncertainties. A convergence of evidence approach that draws on (quasi-) 198 
independent sources of information is useful to understand actual conditions. For convergence of 199 
Earth observations, hydrologic models can generate ensembles of historical, current, or future 200 
estimates of snow, streamflow, soil moisture, and evapotranspiration, which can then be compared 201 
to satellite derived estimates of surface water (e.g., McNally et al., 2019), soil moisture (e.g., 202 
McNally et al., 2016), vegetation conditions and evapotranspiration (e.g., Jung et al., 2019; Pervez 203 
et al., 2021), snow cover (e.g., Arsenault et al., 2014), in situ streamflow (e.g. Jung et al., 2017) and 204 
others. Hydrologic estimates can also be compared to outcomes in crop production (e.g., (e.g., 205 
McNally et al., 2015; Davenport et al., 2019; Shukla et al., 2020), and nutrition, health, and food 206 
security (e.g., Grace and Davenport, 2021) to provide a qualitative understanding of both hydrologic 207 
model performance and conditions on the ground. In this paper we provide an example for 2018 208 
where drought conditions were associated with crisis levels of acute food insecurity over most of 209 
Afghanistan (FEWS NET, 2018c). 210 
 211 
To summarize, our experience and the literature have characterized uncertainties in available 212 
meteorological forcing for the region. GDAS, CHIRPS, and MERRA-2 were chosen for the FLDAS 213 
system based on our project requirements of (a) a sufficiently long historical record for 214 
contextualizing estimates in terms of anomalies (b) low latency (< 1-month) for timely decision 215 
support, (c) familiar to the FEWS NET user-community, and (d) prior evaluation by our team and 216 
the broader community. We note here and describe in more detail later that the Integrated Multi-217 
satellite Retrievals for the Global Precipitation Mission (IMERG), a NASA precipitation product 218 
(Huffman et al., 2020) also meets these requirements, since version 6 which was released in 2019 219 
(after these studies and initial FLDAS configuration). We will a describe IMERG, GDAS, and 220 
MERRA-2 comparison in the Results (Section 3). 221 

2 Methods 222 

2.1 Land Surface Modeling System & Parameters 223 

A land surface model (LSM) can provide spatially and temporally continuous information about the 224 
water and energy budgets of the land surface. This information is useful for food and water security 225 
applications in places where in situ measurements of rainfall, soil moisture, snow and runoff are 226 
sparse. This is particularly relevant in mountainous places like Afghanistan where heterogeneous 227 
geography limits the representativeness of sparse in situ measurements. The FLDAS (McNally et 228 
al., 2017) utilizes the  NASA’s Land Information System Framework (LISF), which is composed of 229 
a pre-processor, the Land surface Data Toolkit (LDT) (Arsenault et al., 2018), the Land Information 230 
System (Kumar et al., 2006; Peters-Lidard et al., 2007), and the Land Verification Toolkit (Kumar 231 
et al., 2012). In this data descriptor we describe the two configurations of the FLDAS data streams 232 
used for Central Asia food and water security applications. It uses the Noah 3.6 LSM (Chen et al., 233 
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1996; Ek et al., 2003) for the  two data streams (Fig. 3 and Table 1). The first data stream is global, 234 
at ~1 month latency, and provides monthly average outputs on a 10-km grid from 1982-present. The 235 
second data stream centered on Central Asia, ~1 day latency, provides daily average outputs at 1-km 236 
from 2001-present. 237 
 238 
One important feature, added by the NASA LISF software development team, is the radiation 239 
correction described in Kumar et al. (2013), which improves the representation of snow dynamics 240 
with respect to slope and aspect corrections on the downward solar radiation field. Another 241 
noteworthy feature is the method of the Central Asia data stream restart (i.e., annual initialization 242 
based on climatology), which was developed to address an issue of excessive inter-annual snow 243 
accumulation found in the Noah LSM. First, a nine-year spin-up of the system was performed to 244 
produce stable snow and soil moisture conditions. Next, the resulting model states were compared 245 
with the Moderate Resolution Imaging Spectroradiometer (MODIS) Maximum Snow Extent data 246 
originally computed by NOAA National Operational Hydrologic Remote Sensing Center (Greg Fall, 247 
NOAA Operational Data Center, written communication., 2014). Then, the model-estimated 248 
conditions were adjusted to produce a climatological model state for 1 October that is used to 249 
initialize each year. This approach ensures that the ‘water year,’ beginning 1 October, is initialized 250 
with a reasonable initial amount of snowpack. While this method does effectively manage excessive 251 
inter-annual modeled snow accumulation, the user should be aware that using the climatological 252 
model state will persist for ~1-2 months in the water and energy balance of the LSM until they are 253 
superseded by “observed” meteorological inputs for the current water year. Preliminary work 254 
indicates that this issue will be resolved in future updates.  In contrast, the global data stream does 255 
not use this 1 October initialization procedure. 256 
Although the two data stream specifications are largely the same, there are some differences related 257 
to the input forcings, parameters and specifications (Table 1) and model spin-up procedures.  258 
 259 
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260 
Figure 3. The FEWS NET Land Data Assimilation System (FLDAS) domains for (a) the global data 261 
stream at 10-km spatial resolution and ~1 month latency for monthly averaged hydrologic estimates 262 
and (b) the Central Asia data stream at 1-km spatial resolution and ~1 day latency for daily averaged 263 
hydrologic estimates. Imagery 2021 TerraMetrics, Map data © Google. 264 
 265 
 266 
Table 1. FEWS NET Land Data Assimilation System (FLDAS) specifications for (A) global data 267 
stream, 10-km monthly with CHIRPS+MERRA-2; and (B) Central Asia data stream, 1-km, daily 268 
with GDAS.  269 

 Global  Central Asia 

Spatial Extent 

 
179.95°W- 179.95°E, 59.95°S- 
89.95°N 

 
30-100°E, 21-56°N 

Landmask 

Generated from MODIS using LISF-
LDT, with MOD44w mask applied 
post-processing. 

MOD44w (Carroll et al., 
2017) 

Landcover IGBP landcover IGBP landcover 

Elevation 
Shuttle Radar Topography Mission 
SRTM (NASA JPL, 2013) SRTM  
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Albedo 

National Centers for Environmental 
Prediction (NCEP) albedo (Csiszar 
and Gutman, 1999) & MODIS-based 
Max Snow Albedo (Barlage et al., 
2005)  

NCEP albedo & MODIS-
based Max Snow Albedo 

   

Vegetation Parameters 
NCEP greenness fraction (Gutman 
and Ignatov, 1998) NCEP greenness fraction 

Non-Precipitation 
Meteorological Inputs MERRA-2  GDAS  

Soil Texture 

Food and Agricultural Organization 
(FAO) soil texture & properties 
(Reynolds et al., 2000) FAO soil texture & properties 

Precipitation Inputs 
CHIRPS daily precipitation, 
downscaled to 6-hourly with LDT GDAS 3-hourly precipitation 

Specifications Noah 3.6.1 Noah 3.6.1 

Map Projection Geographic Latitude-Longitude 
Geographic Latitude-
Longitude  

Software Version 7.2 7.3 

Spatial Resolution 10-km 1-km 

Temporal Coverage 1982-01-01 to present 2000-10-01 to present 

Model Timestep 15-min timestep 30-min timestep 

Met. Forcing Heights 
2-m Air Temperature (Tair), 10-m 
Wind 2-m Tair, 10-m Wind 

Soil layers (meters) 0-0.1; 0.1-0.4; 0.4-1.0; 1-2 0-0.1; 0.1-0.4; 0.4-1.0; 1-2 

Features  radiation correction radiation correction 
 270 

The parameters and specifications listed in Table 1 are largely default settings defined by the Noah 271 
LSM community (NCAR Research Applications Library, 2021). Ongoing research aims to identify 272 
where model output performance can be improved with parameter updates. Evaluating parameter 273 
updates had similar challenges as evaluating input forcing described in Section 1.2: without reliable 274 
reference data it is difficult to determine a “best” input. For example, we have explored changing 275 
soil parameters from FAO to International Soil Reference and Information Centre (ISRIC) SoilGrids 276 
database (Hengl et al., 2017). This change did not result in improvements in streamflow statistics in 277 
southern Africa, nor in soil moisture anomalies’ ability to represent drought events. We expect 278 
similar results in Afghanistan where, e.g., streamflow will be sensitive to a change in soil 279 
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parameters and the lack of referenced data to evaluate if there is an improvement. Moreover, our 280 
model runs at 0.1 and 0.01 degrees may not fully exploit the added value of the 250m soil grids as 281 
noted in Ellenburg et al. (2021) for a LISF application in East Africa. 282 

Vegetation parameters are also potential sources of improvement whose importance to LDAS 283 
hydrologic estimates has been highlighted (e.g., Miller et al., 2006). We have found the NCEP 284 
estimates of green vegetation fraction (GVF) to be sufficient for this configuration of Noah 3.6. We 285 
found that a time series of GVF derived from the Normalized Difference Vegetation Index (NDVI) 286 
did not improve representation of droughts in eastern Africa. However, future FLDAS global and 287 
Central Asia versions can be run with Noah-Multi parameterization (Noah-MP) (Niu et al., 2011) 288 
which has multiple vegetation options and relies on either Leaf Area Index rather or GVF. This 289 
model update is expected to open possibilities for choice of datasets to meet our application needs 290 
and potentially improve representation of the water balance. 291 

2.2 Meteorological Forcing Inputs    292 

As previously discussed, precipitation is a critical input to land surface models. The lower-latency 293 
Central Asia data stream is a daily product, forced with GDAS (Derber et al., 1991) 3-hourly 294 
precipitation, which is available from 2001to present at <1-day latency. This dataset was chosen 295 
because of its latency. The global data stream is driven by the daily CHIRPS product (Funk et al., 296 
2015), which is available from 1981 to present at ~ 5-day latency for CHIRPS Preliminary and ~1.5-297 
month latency for CHIRPS Final. The CHIRPS products were chosen as inputs because of their 298 
proven performance in the literature, which has made it the “gold standard” for food and water 299 
security monitoring by organizations like FEWS NET, the World Food Program, and others who 300 
need up-to-date estimates and a 40+ year historical record. As mentioned earlier, lack of rainfall 301 
stations for bias correction of satellite-derived estimates and evaluation poses a major challenge. 302 
However, we find that the GDAS rainfall product and the CHIRPS rainfall product are adequate for 303 
routine monitoring and, along with additional sources of remote sensed information, are important 304 
for convergence of evidence when making a best estimate at land surface states and fluxes. 305 
 306 
Before the daily CHIRPS rainfall data can be used as input to the FLDAS models, the daily 307 
precipitation is pre-processed to a sub-daily timestep, using the LDT component of the LISF 308 
software. LDT temporally disaggregates the daily CHIRPS rainfall using an approach similar to the 309 
North American LDAS precipitation temporal downscaling (Cosgrove et al., 2003). For this 310 
approach, we use a finer timescale MERRA-2 precipitation timescale as a reference dataset to 311 
represent an accurate diurnal cycle. We note that this step in our methodology facilitates the solving 312 
of FLDAS water and energy balances at a sub-daily timestep. However, for Central Asia we do not 313 
have sufficient reference data available to assess the importance of sub-daily precipitation 314 
distribution, as was demonstrated by Sarmiento et al. (2021) for the United States where adequate 315 
reference data are available.  For spatial downscaling, coarser scale meteorological forcings are 316 
spatially disaggregated to the output resolution (0.01, and 0.1 degree for Central Asia and global, 317 
respectively) in the LISF using bilinear interpolation. 318 
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The FLDAS models require additional meteorological inputs, including air temperature, humidity, 319 
radiation, and wind. The lower-latency Central Asia data stream uses GDAS 3-hourly 320 
meteorological inputs available from 2001-present at <1-day latency. For a longer historical record, 321 
the global data stream uses MERRA-2 (Gelaro et al., 2017) (1979-present) 1-hourly products with a 322 
two-week latency. Over the Afghanistan domain GDAS temperature has an upward trend, whereas 323 
MERRA-2 is consistently warmer before 2010. We find that GDAS and MERRA-2 temperature 324 
estimates are of similar magnitude during 2011-2020. Similar results were noted by Yoon et al. 325 
(2019) who found an upward trend in GDAS temperature, as well as consistently higher 326 
temperatures in MERRA-2 across a broad High Asia domain. 327 

2.3 Model Evaluation Statistics and Comparison Data 328 

In addition to guidance from previous studies (Section 1.2), we assessed the quality of our modeling 329 
outputs by conducting comparisons between (1) FLDAS satellite rainfall inputs and other satellite 330 
precipitation estimates, and (2) model estimated snow cover fraction and satellite derived snow 331 
cover fraction estimates.  332 
 333 
For the precipitation analysis, we compare CHIRPS and GDAS inputs to the Integrated Multi-334 
satellite Retrievals for the Global Precipitation Mission (IMERG), a NASA precipitation product 335 
that integrates passive microwave and infrared satellite data with surface station observations 336 
(Huffman et al., 2020). The IMERG Final Run precipitation product, available at ~ 2-month latency 337 
(thus not suitable for our monitoring applications) has been used in numerous verification studies, 338 
including studies over Africa (Dezfuli et al., 2017), South America (Gadelha et al., 2019; Manz et 339 
al., 2017), and the mid-Atlantic region of the United States (Tan et al., 2016). These studies 340 
demonstrated that IMERG Final Run was able to capture large spatial patterns and seasonal and 341 
interannual patterns of rainfall. However, fewer studies have explored the performance of the lower 342 
latency IMERG Late Run (doi: 10.5067/GPM/IMERGDL/DAY/06) product that we use here. 343 
Kirshbaum et al. (2016) include a qualitative comparison for CHIRPS Final and IMERG Late Run 344 
for the Southern Africa start-of-season 2015. IMERG Late Run appears to perform similarly to the 345 
1.5-month latency CHIRPS Final and outperform the 1-day latency NOAA Rainfall Estimate 346 
version 2 (RFE2) product (Xie and Arkin, 1996). Differences in the daily rainfall distribution 347 
patterns between IMERG Final Run and CHIRPS Final have also been shown to affect the resulting 348 
hydrological modeled output in simulations done using the NASA LISF (Sarmiento et al., 2021). 349 
 350 
For the snow cover fraction (SCF) analysis, we compare the global and Central Asia data streams 351 
with the MODIS daily SCF product, MOD10A1 Collection 6 (Hall and Riggs, 2016). MOD10A1 352 
data are available at 500-m spatial resolution from February 2000 to the present. SCF is generated 353 
using the Normalized Difference Snow Index (NDSI) and additional filters to reduce error and flag 354 
uncertainty. Routine qualitative comparisons, which can be viewed on the NASA LISF FEWS NET 355 
project website, generally show agreement between the model and MODIS SCF, as well as 356 
occurrence of cloud cover (https://ldas.gsfc.nasa.gov/fldas/models/central-asia). Following 357 
Arsenault et al. (2014), we aggregated pixels to 0.01 degree to reduce error related to sensor viewing 358 
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angles and gridding artifacts. For this analysis, using MODIS SCF as “truth,” we determined True 359 
Positives (TP), True Negatives (TN), False Negatives (FN) and False Positives (FP). We then 360 
computed probability of detection (POD) where POD = (TP/(TP + FN)) and False Alarm Rate 361 
(FAR) where FAR = (FP/(FP + TN)).  We computed these for the total area of Afghanistan (60-76E, 362 
28-39N), as well as by basin (Fig. 4). This paper does not compare modeled snow water equivalent 363 
(SWE) to independent snow observations because, as noted by Yoon et al. (2019), direct evaluation 364 
of snow mass and SWE)is difficult over Central Asia due to poor coverage of accurate snow 365 
observations.  We follow the Yoon et al. (2019) recommendation to conduct quantitative SCF 366 
comparisons and provide qualitative SWE analysis in Applications, Section 4.  367 
 368 
In addition to rainfall and snow comparisons, we conducted monthly pixel-wise comparison of 369 
Central Asia and the global run’s estimates of evapotranspiration (ET) and soil moisture versus 370 
Operational Simplified Surface Energy Balance (SSEBop, (Senay et al., 2013)). ET and Soil 371 
Moisture Active Passive (SMAP) Level 3 (Entekhabi et al., 2010, 2016) using the Normalized 372 
Information Contribution (NIC) metric following Sarmiento et al., (2021). The analysis was 373 
performed for the period 2016-2021 to match the SMAP record. The NIC metric first computes 374 
anomaly correlations between the model runs and the reference dataset and then computes the 375 
difference between the performance of each model run using a scale of -1 to +1 to highlight if the 376 
global or Central Asia data stream performs better with respect to the reference. To make the 377 
comparisons, the reference datasets (SMAP and SSEBop) were re-gridded to match the grid spacing 378 
and locations of the experiment model outputs. 379 

3 Results 380 

3.1 Gridded Rainfall Comparison 381 

We have two data streams for Central Asia applications with different precipitation inputs: 1) the 382 
global data stream with CHIRPS precipitation at 10-km spatial resolution provides a long-term 383 
consistent data record; and 2) the Central Asia data stream with GDAS precipitation at 1-km 384 
provides near real time, finer spatial resolution updates. These two data streams have their 385 
respective errors and allow data users to apply a convergence of evidence approach for food and 386 
water security applications.  This section presents a comparison of the GDAS, and CHIRPS 387 
precipitation inputs used for the Central Asia and global data streams, respectively.  We also include 388 
IMERG Late Run for comparison as a high quality, low latency product. Future work may 389 
incorporate the IMERG Late Run precipitation inputs into FLDAS simulations. We also include 390 
MERRA-2 precipitation for comparison. Pair-wise correlations are shown in Table 2. CHIRPS 391 
Final, IMERG Late Run and GDAS (R ≥ 0.90) are well correlated in terms of average daily 392 
precipitation (mm/day) at the monthly and annual (i.e., water year) timestep. MERRA-2 correlations 393 
with these datasets are lower at the monthly (0.75 ≤ R ≤ 0.81) and water year (0.64 ≤ R ≤ 0.69) 394 
timesteps. Fig. 4 shows the time series of the precipitation products for their overlapping period of 395 
record (2001-2020), which illustrates how they vary in time, and shows some general patterns in 396 
terms of relative precipitation in mm: GDAS (blue) and IMERG Late Run (purple) tend to have the 397 
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highest precipitation totals, CHIRPS (green) has lower precipitation but is higher than MERRA-2 398 
(yellow) which tends to have the lowest precipitation, until 2019 when it is notably higher than the 399 
other products. 400 

 401 
 402 
Figure 4. Afghanistan water year precipitation for CHIRPS, GDAS, IMERG Late Run, and 403 
MERRA-2.  404 
 405 
Table 2. Afghanistan spatial average Spearman Rank Correlation (R) of monthly (water year) 406 
precipitation 2001-2020 407 

 GDAS CHIRPS Final IMERG Late Run 
GDAS x - - 
CHIRPS Final 0.91 (0.92) x - 
IMERG Late Run 0.91 (0.89) 0.92 (0.90) x 
MERRA-2 0.75 (0.64) 0.78 (0.68) 0.81(0.69) 

 408 

3.2 Remotely Sensed and Modeled Snow comparisons  409 

The estimation of snow is important for Afghanistan and Central Asia because it is a critical 410 
contributor to water resources and irrigated agriculture.  We compared average SCF (Fig. 6a), POD, 411 
and FAR statistics (Fig. 6b) relative to MODIS SCF over eight hydrologic basins in Afghanistan. 412 
 413 
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 414 
Figure 5. Hydrologic basins used in the analysis of categorical statistics for snow covered fraction. 415 
 416 



17 
 

 417 
Figure 6. (a) Mean snow cover fraction for the entire area and by hydrologic basin for MODIS 418 
Snow Cover Fraction (SCF), Central Asia (CA) and global (GL) data streams for water year 2020. 419 
(b) Probability of Detection (POD) of snow presence, and False Alarm Rate (FAR) for the Central 420 
Asia (CA) and global data streams relative to the MODIS SCF for water year 2020. 421 
 422 
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Overall, both model runs estimate greater average SCF than the MODIS SCF product. The Central 423 
Asia data stream has consistently higher average snow cover for all basins compared to MODIS 424 
SCF estimates and the global data stream. Perhaps not surprisingly that the Central Asia data stream 425 
performs consistently better in POD (by basin = ~80%) except for the Western Basin. Similarly, the 426 
FAR of the Central Asia data stream is higher where POD is higher except for the Northern Basin. 427 
The difference in statistics may be related to the different forcing inputs or the higher spatial 428 
resolution of the Central Asia data stream. Kumar et al. (2013) note that higher spatial resolution 429 
was important for snow dominated basins.  430 
 431 
In addition to precipitation and snow cover comparisons we conducted comparisons with remotely 432 
sensed soil moisture and ET (not shown). We found that in general, GDAS derived estimates of ET 433 
consistently performed better over Afghanistan in terms of pixel-wise anomaly correlation and NIC 434 
with SSEBop ET. Meanwhile, neither modeled estimate of soil moisture consistently outperformed 435 
the other with respect to SMAP. The ET results lend some support to the quality of the Central Asia 436 
data stream estimates. However, the lack of signal in the soil moisture comparisons suggests that 437 
more careful analysis of the model and remote sensing errors is required before drawing conclusions 438 
regarding which data stream is “best.” 439 

3.3 Discussion of results compared to previous studies 440 

Despite the lack of ground-based observations, our analysis shows that the remotely sensed 441 
estimates and the models have good correspondence with other sources of evidence in terms of 442 
seasonal timing and performance. This provides analysts with confidence when using the FLDAS 443 
snow estimates, in tandem with other sources, as an input to food security assessments. Our 444 
approach is supported by other studies that have explored the challenges of evaluating hydrologic 445 
estimates over the region (Immerzeel et al., 2015; Ghatak et al., 2018; Yoon et al., 2019; Qamer et 446 
al., 2019) . 447 
 448 
Yoon et al. (2019) show that their LSM ensembles of SCF have an average POD of 72% and FAR 449 
of 36%, which is within the range of our POD and FAR statistics (60-80% POD; 20-40% FAR) 450 
compared to MODIS SCF.  The categorical statistics indicate that Central Asia (GDAS) tends to 451 
have both a higher probability of detection and false alarm rate, indicating higher averages than 452 
MODIS SCF and global (CHIRPS).  453 
 454 
With respect to the soil moisture and ET comparisons, we found that the Central Asia data stream 455 
estimates of ET were better correlated with SSEBop ET, but neither data stream was consistently 456 
better correlated with SMAP. These differences could be a function of non-precipitation differences, 457 
or higher spatial resolution. Ghatak et al. (2018) also found that the choice of reference dataset (with 458 
its own characteristics and errors) was an important factor. 459 
 460 
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In general, given the lack of clarity on “best” FLDAS data stream, the convergence of evidence 461 
approach allows us to consult both data streams, leveraging the longer time series of CHIRPS and 462 
the lower latency of GDAS.  463 

3.4 Limitations and Future Developments 464 

Given the need for multiple data streams for convergence of evidence, we have summarized the pros 465 
and cons of the Central Asia and global data streams in Table 3. 466 
 467 
Table 3. Pros and cons of the two data streams 468 
 Central Asia: Noah 3.6 with GDAS 

(2000-present) 
Global: Noah 3.6 with 
CHIRPS+MERRA-2 (1982-present) 

Pros 
 

1-km less computationally intensive 

1-day latency, daily timestep longer time record 

Snow estimates available in USGS 
Early Warning eXplorer 
https://earlywarning.usgs.gov/fews/ew
x/ 

CHIRPS & MERRA-2 forcing spatial 
resolution does not change over time (stable 
climatology) 

 Water and Energy balance available in 
NASA GIOVANNI 
https://giovanni.gsfc.nasa.gov/giovanni/; 
Google Earth Engine 
https://developers.google.com/earth-
engine/datasets/tags/fldas; Climate Engine 
https://climateengine.com/ 

Cons more computationally intensive lower resolution (10-km) 

shorter time record ~30-day latency 

GDAS forcing resolution changes 
over time (unstable climatology) 
(NOAA NCEP 
https://www.emc.ncep.noaa.gov/gmb/
STATS/html/model_changes.html) 

not publicly available at daily timestep 

large data volume, difficult to move  

 469 

https://giovanni.gsfc.nasa.gov/giovanni/
https://developers.google.com/earth-engine/datasets/tags/fldas
https://developers.google.com/earth-engine/datasets/tags/fldas
https://www.emc.ncep.noaa.gov/gmb/STATS/html/model_changes.html
https://www.emc.ncep.noaa.gov/gmb/STATS/html/model_changes.html
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IMERG version 6 was released in 2019 and includes rainfall estimates processed back to 2000. Prior 470 
to this change we had found encouraging results when comparing the onset of rainy season using 471 
both IMERG Late Run and CHIRPS (Kirschbaum et al., 2016). However, at that time the period of 472 
record was a limitation for computing anomalies. We now have an adequate period of record, and 473 
IMERG Late Run is planned to be part of the upcoming FLDAS global and FLDAS Central Asia 474 
releases. We are also encouraged by the quality of IMERG at the daily timestep when compared to 475 
CHIRPS over the United States where accurate reference data are available (Sarmiento et al., 2021).  476 
 477 
In addition to IMERG other promising rainfall datasets are in development. Ma et al. (2020) have 478 
developed the AIMERG dataset that combines IMERG Final Run with the APHRODITE rain-gauge 479 
derived product (Yatagai et al., 2012).  Another promising dataset is CHIMES (Funk et al., 2022), a 480 
blend of CHIRPS and IMERG, whose developers have been exploring the strengths and limitations 481 
of these two datasets and their fusion to produce an optimal product. 482 
 483 
With respect to other FLDAS developments, FLDAS global and Central Asia are planned to be 484 
transition to Noah-MP. This will allow for improved representation of snowpack and groundwater. 485 
This will also necessitate the use of different parameters, e.g., leaf area index, as well as the 486 
potential to explore different parameter sets like ISRIC soils.  In the meantime, multi-forcing and 487 
multi-model ensembles, and convergence of evidence with other remotely sensed data and field 488 
reports, are a viable approach for providing hydrologic estimates for various applications. 489 

4 Applications 490 

These data from global and Central Asia data streams are routinely used in several FEWS NET 491 
information products listed in Table 4. NOAA’s Climate Prediction Center (CPC) International 492 
Desks provide a weekly briefing on the past week’s weather conditions and 1– 2-week forecasts for 493 
FEWS NET regions of interest, including Central Asia. There is also a monthly FEWS NET 494 
Seasonal Monitor and a monthly Seasonal Forecast Review for which these data provide 495 
information on the current state of the snowpack, soil moisture, and runoff. These “observed 496 
conditions'' can then be qualitatively combined with forecasts 1 week to many months in the future 497 
to assess potential hydro-meteorological hazards. To demonstrate the role of these data in the early 498 
warning process, at different points in the season, we provide an example of the 2017-2018 wet 499 
season in Afghanistan during a La Niña event that contributed to drought. 500 
 501 
Table 4. Routine Applications of FLDAS Central Asia’s Afghanistan hydrologic data. 502 

Routine application of 
these data 

Weblink to updates Notes 

FEWS NET Global 
Weather Hazards 

https://fews.net/global/global-weather-hazards/ 
 

shapefiles 
https://ftp.cpc.ncep.noaa.gov/
fews/weather_hazards/  

https://ftp.cpc.ncep.noaa.gov/fews/weather_hazards/
https://ftp.cpc.ncep.noaa.gov/fews/weather_hazards/
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Summary produced by 
NOAA CPC 

https://www.cpc.ncep.noaa.gov/products/internatio
nal/index.shtml 

Seasonal Monitor https://earlywarning.usgs.gov/fews/afghanistan/sea
sonal-monitor 

Updated near the middle of 
each month from October - 
May, the wet season. 

FEWS NET Food 
Security Outlook Brief 

https://fews.net/central-asia/afghanistan Information on snow or other 
hydrology included if 
applicable 

Crop Monitor for Early 
Warning 

https://cropmonitor.org/index.php/cmreports/early
warning-report/ 

Information on early warning 
and crop conditions 

 503 

 4.1 Snow Monitoring & Seasonal Outlooks  504 

As previously mentioned, and as shown in Fig. 7, Afghanistan and the broader region is strongly 505 
influenced by La Niña, which tends to increase the likelihood of below average precipitation. 506 
Depending on this and antecedent conditions there in an increased likelihood of below average 507 
snowpack, reduce springtime streamflow and flood risk, reduce summer irrigation water 508 
availability, and crop yield losses. 509 
 510 

 511 

https://fews.net/central-asia/afghanistan
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Figure 7. Timing of wet and dry conditions related to La Niña. Increased likelihood of dry 512 
conditions from November-May for Afghanistan during La Niña events. Image from FEWS NET 513 
(2020b). 514 
 515 
A La Niña Watch was issued by NOAA in September 2017 (NOAA, 2017). The FEWS NET 516 
October 2017 Food Security Outlook (FEWS NET, 2017a) stated that La Niña conditions were 517 
expected throughout the northern hemisphere fall and winter and that below-average precipitation 518 
was likely over much of Central Asia, including Afghanistan, during the 2017-2018 wet season. 519 
With the expectation of below average precipitation coupled with above average temperatures, 520 
FEWS NET anticipated that snowpack would most likely be below average. In the context of food 521 
security outcomes, it was assumed that areas planted with winter wheat were likely to be less than 522 
usual, reducing land preparation activities and associated demand for labor. Two provinces of 523 
particular concern were Daykundi and Wardak (Fig. 8a brown borders), both located in the 524 
Helmand River Basin (Fig. 8a; gray shading).  Precipitation deficits in these provinces would lead to 525 
poor rangeland resources and pasture availability and would likely result in decreased livestock 526 
productivity and milk production through May. However, given that October was the start of the wet 527 
season, there remained a large spread of possible outcomes: spatial and temporal rainfall 528 
distributions, and snowpack totals necessitating routine updates to assumptions. 529 
 530 
Monitoring continued during the wet season, tracking observations from remote sensing, models, 531 
and field reports as well as forecasts across timescales. This information was used to regularly 532 
update expectations of end of season outcomes. Using the FLDAS Central Asia data stream, a 533 
December 21, 2017, NOAA CPC Weather Hazards Brief reported that parts of northern and central 534 
Afghanistan remained atypically snow free, and north-eastern high elevation areas exhibited SWE 535 
deficits. SWE is a commonly used measurement of the amount of liquid water contained within the 536 
snowpack, and an indicator of the amount of water that will be released from the snowpack when it 537 
melts. By January 17, 2018, an abnormal dryness polygon was placed over northeastern Afghanistan 538 
and the central highlands, based on below-average SWE values from the FLDAS Central Asia 539 
estimates. Abnormal dryness is defined for an area that has registered cumulative 4-week 540 
precipitation and soil moisture ranking less than the 30th percentile, with a Standardized 541 
Precipitation Index (SPI) of 0.4 standard deviation below the average. In addition, it is required that 542 
forecasts indicate below-average precipitation (less than 80% of normal) for that area during the 1-543 
week outlook period. By late February 2018, precipitation deficits and related SWE (Fig. 9) 544 
increased and met the criteria for “drought” (Fig. 8b). Drought is defined as an area that has 545 
previously been defined as “Abnormal Dryness” and has continued to register seasonal precipitation 546 
and soil moisture deficits since the beginning of the rainfall season. Specifically, an eight-week 547 
cumulative precipitation, soil moisture, and runoff below the 20th percentile rank, and an SPI of 0.8 548 
standard deviation below the average are classification guidelines.  549 
 550 



23 
 

 551 
Figure 8. (a) Map showing hydrological basins, with Helmand Basin in darker gray and location of 552 
Daykundi and Wardak provinces (outlined in red) where food security conditions were of particular 553 
concern, (b) NOAA CPC Afghanistan Hazards Report for February 22-28, 2018 (CPC NOAA, 554 
2018) showing widespread abnormal dryness and drought, defined by 90-day precipitation deficits 555 
and extremely low snow water equivalent.  556 
 557 
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 558 
Figure 9.  FLDAS Central Asia snow water equivalent (SWE) estimates for February 22, 2018.  559 
SWE deficits of 300-mm were widespread at this time.   560 
 561 
The February 2018 Food Security Outlook (FEWS NET, 2018b) provided the following updates, 562 
based on the CPC Hazards Reports and Seasonal Monitors: “Snow accumulation and cumulative 563 
precipitation were well below average for the season through February 2018, with some basins at or 564 
near record low snowpack, with data since 2002….These factors will likely have an adverse impact 565 
on staple production in marginal irrigated areas and in many rainfed areas. [Moreover, with] 566 
forecasts for above-average temperatures during the spring and summer, rangeland conditions are 567 
expected to be poor during the period of analysis through September 2018. This could have an 568 
adverse impact on pastoralists and agro-pastoralists, particularly in areas where livestock 569 
movements are limited by conflict.” The Crop Monitor for Early Warning reports for February and 570 
March 2018 (GEOGLAM, 2018a, b) also cited reduced snowpack in Afghanistan and the negative 571 
impacts on winter wheat crops as well as irrigation water availability in the Spring. The story was 572 
also highlighted in NASA Earth Observatory March 2018 “Record Low Snowpack in Afghanistan” 573 
(NASA Earth Observatory, 2018).  574 
 575 
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The USGS Early Warning eXplorer (EWX) (Shukla et al., 2021) allows analysts to look at maps 576 
and time series for a variety of variables and specific provinces and river basins. Plots from EWX in 577 
Fig. 10 show below average precipitation for provinces in the Helmand Basin for January and 578 
February. CHIRPS cumulative rainfall for 2017-18 versus the 18-year average for Day Kundi (a.k.a. 579 
Daykundi) Province showed near average conditions until December. From January, cumulative 580 
rainfall remained below the 2000-2018 average throughout the rest of the season ending in May; the 581 
same pattern occurred in nearby Uruzgan Province. In neighboring Maydan Wardak (a.k.a Wardak) 582 
Province, below average conditions were experienced in January and February, but cumulative 583 
rainfall recovered in March to remain slightly above average. Day Kundi (Fig. 10b) and Wardak 584 
(Fig. 10c) are provinces located in the upper reaches of the Helmand Basin. Fig. 10c shows SWE 585 
averaged across the entire Helmand basin. The gray shading indicates the range of the minimum and 586 
maximum values, and the dashed blue line is the average. Initial snow conditions start above 587 
average until December, after which SWE deficits are near record low values through the beginning 588 
of February, and then persist at below-average levels.  589 

 590 
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Figure 10. (a) CHIRPS cumulative rainfall for 2017-18 versus average conditions for Daykundi 591 
Province. (b) CHIRPS cumulative rainfall for 2017-18 versus average conditions for Maydan 592 
Wardak Province (c) Helmand Basin SWE from the FLDAS Central Asia data stream. The grey 593 
shading indicates the range of the minimum and maximum values, dashed blue line is the average, 594 
and black line is 2017-18. Figures from USGS EWX (https://earlywarning.usgs.gov/fews/ewx/). 595 
 596 
By the end of the season in April 2018, FEWS NET (2018c) concluded that “below-average 597 
precipitation throughout most of the country during the October 2017 – May 2018 wet season has 598 
led to very low snowpack ...Low irrigation water availability is likely to have an adverse impact on 599 
yields for winter wheat and other ...barley, maize, and others.. particularly in downstream areas in 600 
regions with limited rainfall. ...The poor performance of the wet season and above average 601 
temperatures... exacerbated dry rangeland conditions in many areas, particularly in ...Sari Pul, [and 602 
surrounding] ...provinces. Pastoralists and agropastoralists in these areas will likely attempt to 603 
migrate to areas with better pasture and water availability or sell livestock at below-average prices.” 604 
At the same time, UNICEF (2018) reported in April 2018 that among “the [drought] affected 605 
provinces, Baghis, Bamyan, Daykundi, Ghor, Helmand, ... and Uruzgan are of critical priority for 606 
nutrition and water, sanitation and hygiene assistance.”   607 
 608 
Several months after a season has ended, and harvest is complete, more statistics become available 609 
for further verification of the drought outcomes. The FEWS NET October 2018 Food Security 610 
Outlook (2018a) reported that the 2017-18 drought had significant negative impacts on rainfed 611 
wheat production and livestock pasture and body conditions across the country. Reporting statistics 612 
from the Afghanistan Ministry of Agriculture, Irrigation, and Livestock, the total wheat production 613 
for the 2017-18 season was about 20% below average, where irrigated agriculture performed about 614 
average. However, rainfed agricultural production was only about 50% of average, most severely 615 
affecting households in Badakhshan, Badhis, and Daykundi provinces. In these locations dry 616 
conditions, conflict, poor incomes, and depleted assets were expected to continue to face emergency 617 
food insecurity through May 2019. 618 

5. Data Availability 619 

The Central Asia data described in this manuscript can be accessed at the NASA GES DISC 620 
repository under data doi 10.5067/VQ4CD3Y9YC0R. The data citation is the following: 621 
 622 
Jacob, Jossy and Slinski, Kimberly (NASA/GSFC/HSL) (2021), FLDAS Noah Land Surface Model 623 
L4 Central Asia Daily 0.01 x 0.01 degree, Greenbelt, MD, USA, Goddard Earth Sciences Data and 624 
Information Services Center (GES DISC) 10.5067/VQ4CD3Y9YC0R 625 
 626 
The global data described in this manuscript can be accessed at the NASA GES DISC repository 627 
under data doi 10.5067/5NHC22T9375G. The data citation is the following: 628 
 629 

https://doi.org/10.5067/VQ4CD3Y9YC0R
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McNally, Amy. NASA/GSFC/HSL (2018), FLDAS Noah Land Surface Model L4 Global Monthly 630 
0.1 x 0.1 degree (MERRA-2 and CHIRPS), Greenbelt, MD, USA, Goddard Earth Sciences Data and 631 
Information Services Center (GES DISC), 10.5067/5NHC22T9375G 632 
 633 
Currently the USGS EROS Center provides images from these data: 634 
https://earlywarning.usgs.gov/fews/search/Asia/Central%20Asia, as well as an interactive data 635 
viewer, the USGS EWX (https://earlywarning.usgs.gov/fews/ewx/).  636 

6. Code availability 637 

The NASA Land Information System Framework (LISF) is publicly available and an open-source 638 
software. The software and technical support are available at https://github.com/NASA-LIS/LISF. 639 
The version used for this paper was LISF-public-7.3.2 https://doi.org/10.5281/zenodo.6795120. 640 

7. Conclusion 641 

This paper describes a comprehensive hydrologic analysis system for food security monitoring in 642 
Central Asia, with analysis focusing on Afghanistan. While these data are tailored to specific needs, 643 
they are also applicable to other climate services and research. Our intent is to provide the reader 644 
with information regarding the configuration and specification of both the current global and Central 645 
Asia data streams.  These data are publicly available and available at near-real time for food security 646 
decision support. Note that, as an on-going initiative, FLDAS model version and parameters are 647 
routinely updated, and the user should consult the version updates provided by the NASA Goddard 648 
Earth Science Data and Information Services Center (GES DISC) data provider and documentation 649 
on USGS Early Warning website. For example, efforts are currently underway to upgrade to the 650 
Noah-MP (Niu et al., 2011) land surface model, which requires some changes in parameters for 651 
snow, glaciers and groundwater. This, and future changes, can be informed by the strengths and 652 
weaknesses of the data stream configurations that we have discussed in this paper.  653 
 654 
This paper also provides model-model and model-remote sensing comparisons as well as a review 655 
of other research that highlights the challenges of quantitative evaluation of models and remote 656 
sensing in this region. A key challenge to hydrologic modeling is the considerable uncertainty in the 657 
meteorological forcing available for this region, particularly precipitation. Advancements in remote 658 
sensing and modeling should help reduce these uncertainties. In addition, the current land surface 659 
modeling reflects natural conditions, i.e., they do not include representation of anthropogenic effects 660 
such as human water abstractions (e.g., dams for flood control or irrigation, water diversions, 661 
groundwater pumping) or land application of abstracted water (i.e., irrigation). These factors affect 662 
estimates of runoff, soil moisture, evapotranspiration, and sensible heat flux (land surface 663 
temperatures) in irrigated areas. Therefore, it is important to be aware of the limitations and 664 
combine with other products (e.g., NDVI or Actual Evapotranspiration (ETa) in irrigated areas) 665 
when exploring water and energy balance. Even with improvements to meteorological forcing and 666 

https://earlywarning.usgs.gov/fews/search/Asia/Central%20Asia
https://github.com/NASA-LIS/LISF
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modeling parameterizations, errors will remain. Therefore, the ‘convergence of evidence’ approach 667 
is beneficial and would be important when assessing hydro-meteorological hazards and associated 668 
risks to food and water security. By making the data publicly available the broader food security and 669 
water resources communities will be able to provide insights that can lead to improvements in our 670 
understanding of the water and energy balance that can ultimately lead to improvements to food and 671 
water security decision support systems.  672 
 673 
8. Author contribution 674 
JJ runs the code, updates websites, and archives routinely. DS maintains LISF code used in paper, 675 
JJ, KA, DS, SP conducted model evaluation AM, KS, CPL, SK contributed to design of evaluation. 676 
JR, MB, SP manage the data for USGS distribution. AH, JV provide feedback on data quality and 677 
interpretation. AM prepared the manuscript with contributions from all co-authors. 678 

9. Acknowledgements 679 

The authors wish to acknowledge the original version of the Central Asia snow modeling with LIS6 680 
performed at NOAA National Operational Hydrologic Remote Sensing Center by Greg Fall and 681 
Logan Karsten.  USGS work was performed under U.S. Agency for International Development 682 
(USAID), Bureau of Humanitarian Assistance (BHA) PAPA AID-FFP-T-17-00003 and USGS 683 
contract 140G0119C0001. Any use of trade, firm, or product names is for descriptive purposes only 684 
and does not imply endorsement by the U.S. Government. KS, AH, DS, JJ, NASA work was 685 
performed under USAID BHA PAPA AID-FFP-T-17-00001. KS, AH acknowledge support from 686 
the NASA Harvest Consortium (NASA Applied Sciences Grant No. 80NSSC17K0625). Computing 687 
resources have been provided by NASA’s Center for Climate Simulation (NCCS). Distribution of 688 
data from the Goddard Earth Sciences Data and Information Services Center (GES DISC) is funded 689 
by NASA's Science Mission Directorate (SMD). We thank NOAA CPC International Desk for use 690 
of figures, and the NASA Land Information System Team for software support and development. 691 
The authors also thank the USGS reviewer for comments that improved the quality of the 692 
manuscript. 693 

10. References 694 

Arsenault, K. R., Houser, P. R., and De Lannoy, G. J. M.: Evaluation of the MODIS snow cover 695 
fraction product: Satellite-based snow cover fraction evaluation., Hydrol. Process., 28, 980–998, 696 
https://doi.org/10.1002/hyp.9636, 2014. 697 

Arsenault, K. R., Kumar, S. V., Geiger, J. V., Wang, S., Kemp, E., Mocko, D. M., Beaudoing, H. 698 
K., Getirana, A., Navari, M., Li, B., Jacob, J., Wegiel, J., and Peters-Lidard, C. D.: The Land 699 
Surface Data Toolkit (LDT v7.2) - A Data Fusion Environment for Land Data Assimilation 700 
Systems, Geosci. Model Dev., 11, https://doi.org/10.5194/gmd-11-3605-2018, 2018. 701 



29 
 

Barlage, M., Zeng, X., Wei, H., and Mitchell, K. E.: A global 0.05° maximum albedo dataset of 702 
snow-covered land based on MODIS observations: Maximum Albedo of Snow-covered, Geophys. 703 
Res. Lett., 32, https://doi.org/10.1029/2005GL022881, 2005. 704 

Barlow, M., Wheeler, M., Lyon, B., and Cullen, H.: Modulation of Daily Precipitation over 705 
Southwest Asia by the Madden–Julian Oscillation, Monthly Weather Review, 133, 3579–3594, 706 
https://doi.org/10.1175/MWR3026.1, 2005. 707 

Barlow, M., Zaitchik, B., Paz, S., Black, E., Evans, J., and Hoell, A.: A Review of Drought in the 708 
Middle East and Southwest Asia, Journal of Climate, 29, 8547–8574, https://doi.org/10.1175/JCLI-709 
D-13-00692.1, 2016. 710 

Carroll, M., DiMiceli, C., Wooten, M., Hubbard, A., Sohlberg, R., and Townshend, J.: MOD44W 711 
MODIS/Terra Land Water Mask Derived from MODIS and SRTM L3 Global 250m SIN Grid V006 712 
[Data set]. NASA EOSDIS Land Processes DAAC., 2017. 713 

Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H.-L., Koren, V., Duan, Q. Y., Ek, M., and Betts, 714 
A.: Modeling of land surface evaporation by four schemes and comparison with FIFE observations, 715 
J. Geophys. Res., 101, 7251–7268, https://doi.org/10.1029/95JD02165, 1996. 716 

CIA World Factbook: https://www.cia.gov/the-world-factbook/countries/afghanistan/#introduction. 717 

Cosgrove, B. A., Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, 718 
A., Marshall, C., Sheffield, J., Duan, Q., Luo, L., Higgins, R. W., Pinker, R. T., Tarpley, J. D., and 719 
Meng, J.: Real‐time and retrospective forcing in the North American Land Data Assimilation 720 
System (NLDAS) project, J. Geophys. Res., 108, 2002JD003118, 721 
https://doi.org/10.1029/2002JD003118, 2003. 722 

CPC NOAA: Weather Hazards Outlook of Afghanistan and Central Asia for the Period of February 723 
22 - 28, 2018, 2018. 724 

Csiszar, I. and Gutman, G.: Mapping global land surface albedo from NOAA AVHRR, 104, 6215–725 
6228, https://doi.org/10.1029/1998JD200090, 1999. 726 

Davenport, F. M., Harrison, L., Shukla, S., Husak, G., Funk, C., and McNally, A.: Using out-of-727 
sample yield forecast experiments to evaluate which earth observation products best indicate end of 728 
season maize yields, Environ. Res. Lett., 14, 124095, https://doi.org/10.1088/1748-9326/ab5ccd, 729 
2019. 730 

Derber, J. C., Parrish, D. F., and Lord, S. J.: The New Global Operational Analysis System at the 731 
National Meteorological Center, Weather and Forecasting, 6, 538–547, 732 
https://doi.org/10.1175/1520-0434(1991)006<0538:TNGOAS>2.0.CO;2, 1991. 733 



30 
 

Dezfuli, A. K., Ichoku, C. M., Huffman, G. J., Mohr, K. I., Selker, J. S., van de Giesen, N., 734 
Hochreutener, R., and Annor, F. O.: Validation of IMERG Precipitation in Africa, Journal of 735 
Hydrometeorology, 18, 2817–2825, https://doi.org/10.1175/JHM-D-17-0139.1, 2017. 736 

Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, J. 737 
D.: Implementation of Noah land surface model advances in the National Centers for Environmental 738 
Prediction operational mesoscale Eta model, JGR: Atmospheres, 108, 739 
https://doi.org/10.1029/2002JD003296, 2003. 740 

Ellenburg, W. L., Mishra, V., Roberts, J. B., Limaye, A. S., Case, J. L., Blankenship, C. B., and 741 
Cressman, K.: Detecting Desert Locust Breeding Grounds: A Satellite-Assisted Modeling 742 
Approach, Remote Sensing, 13, 1276, https://doi.org/10.3390/rs13071276, 2021. 743 

Entekhabi, D., Njoku, E. G., O’Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. 744 
K., Goodman, S. D., Jackson, T. J., Johnson, J., Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, 745 
N., McDonald, K. C., Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., 746 
Thurman, S. W., Tsang, L., and Zyl, J. V.: The Soil Moisture Active Passive (SMAP) Mission, 98, 747 
704–716, https://doi.org/10.1109/JPROC.2010.2043918, 2010. 748 

Entekhabi, D., Das, N., Njoku, E. G., Johnson, J., and Shi, J. C.: SMAP L3 Radar/Radiometer 749 
Global Daily 9 km EASE-Grid Soil Moisture, Version 3, NASA National Snow and Ice Data Center 750 
DAAC [preprint], https://doi.org/10.5067/7KKNQ5UURM2W, 2016. 751 

FEWS NET: Afghanistan Food Security Outlook October 2017-May 2018 Conflict, dry spells, and 752 
weak labor opportunities will lead to deterioration in outcomes during 2018 lean season, 2017a. 753 

FEWS NET: Update on performance of the October 2016 – May 2017 wet season, 2017b. 754 

FEWS NET: Afghanistan Food Security Outlook: Emergency assistance needs are atypically high 755 
through the lean season across the country, FEWS NET, 2018a. 756 

FEWS NET: Afghanistan Food Security Outlook February to September 2018: Low snow 757 
accumulation and dry soil conditions likely to impact 2018 staple production, 2018b. 758 

FEWS NET: Afghanistan Food Security Outlook Update April 2018: Poor rangeland conditions and 759 
below-average water availability will limit seasonal improvements, 2018c. 760 

FEWS NET: El Niño and Precipitation, FEWS NET, https://fews.net/el-ni%C3%B1o-and-761 
precipitation, 2020a. 762 

FEWS NET: La Niña and Precipitation, FEWS NET, https://fews.net/la-ni%C3%B1a-and-763 
precipitation, 2020b. 764 



31 
 

FEWS NET: Afghanistan Food Security Outlook February to September 2021: Below-average 765 
precipitation likely to drive below-average agricultural and livestock production in 2021, 2021. 766 

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., 767 
Harrison, L., Hoell, A., and Michaelsen, J.: The climate hazards infrared precipitation with stations--768 
a new environmental record for monitoring extremes., The climate hazards infrared precipitation 769 
with stations—a new environmental record for monitoring extremes, Sci Data, 2, 2, 150066–770 
150066, https://doi.org/10.1038/sdata.2015.66, 10.1038/sdata.2015.66, 2015. 771 

Funk, C. C., Peterson, P., Huffman, G. J., Landsfeld, M. F., Peters-Lidard, C., Davenport, F., 772 
Shukla, S., Peterson, S., Pedreros, D. H., Ruane, A. C., Mutter, C., Turner, W., Harrison, L., 773 
Sonnier, A., Way-Henthorne, J., and Husak, G. J.: Introducing and Evaluating the Climate Hazards 774 
Center IMERG with Stations (CHIMES): Timely Station-Enhanced Integrated Multisatellite 775 
Retrievals for Global Precipitation Measurement, 103, E429–E454, https://doi.org/10.1175/BAMS-776 
D-20-0245.1, 2022. 777 

Gadelha, A. N., Coelho, V. H. R., Xavier, A. C., Barbosa, L. R., Melo, D. C. D., Xuan, Y., 778 
Huffman, G. J., Petersen, W. A., and Almeida, C. das N.: Grid box-level evaluation of IMERG over 779 
Brazil at various space and time scales, Atmospheric Research, 218, 231–244, 780 
https://doi.org/10.1016/j.atmosres.2018.12.001, 2019. 781 

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., 782 
Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., 783 
Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., 784 
Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., 785 
Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and 786 
Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-787 
16-0758.1, 2017. 788 

GEOGLAM: Early Warning Crop Monitor February 2018, 789 
https://cropmonitor.org/documents/EWCM/reports/EarlyWarning_CropMonitor_201802.pdf, 790 
2018a. 791 

GEOGLAM: Early Warning Crop Monitor March 2018, 792 
https://cropmonitor.org/documents/EWCM/reports/EarlyWarning_CropMonitor_201802.pdf, 793 
2018b. 794 

Ghatak, D., Zaitchik, B., Kumar, S., Matin, M. A., Bajracharya, B., Hain, C., and Anderson, M.: 795 
Influence of Precipitation Forcing Uncertainty on Hydrological Simulations with the NASA South 796 
Asia Land Data Assimilation System, Hydrology, 5, 57, https://doi.org/10.3390/hydrology5040057, 797 
2018. 798 



32 
 

Grace, K. and Davenport, F.: Climate variability and health in extremely vulnerable communities: 799 
investigating variations in surface water conditions and food security in the West African Sahel, 800 
Population & Environment, 42, 553–577, https://doi.org/10.1007/s11111-021-00375-9, 2021. 801 

Gutman, G. and Ignatov, A.: The derivation of the green vegetation fraction from NOAA/AVHRR 802 
data for use in numerical weather prediction models, International Journal of Remote Sensing, 19, 803 
1533–1543, https://doi.org/10.1080/014311698215333, 1998. 804 

Hall, D. and Riggs, G.: MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid version 6, 805 
https://doi.org/10.5067/MODIS/MOD10A1.006, 2016. 806 

Hengl, T., Jesus, J. M. de, Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., 807 
Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., 808 
MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and 809 
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine learning, PLOS 810 
ONE, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017. 811 

Hewitt, C., Mason, S., and Walland, D.: The Global Framework for Climate Services, Nature Clim 812 
Change, 2, 831–832, https://doi.org/10.1038/nclimate1745, 2012. 813 

Hoell, A., Funk, C., and Barlow, M.: The Forcing of Southwestern Asia Teleconnections by Low-814 
Frequency Sea Surface Temperature Variability during Boreal Winter, J. Climate, 28, 1511–1526, 815 
https://doi.org/10.1175/JCLI-D-14-00344.1, 2015. 816 

Hoell, A., Barlow, M., Cannon, F., and Xu, T.: Oceanic Origins of Historical Southwest Asia 817 
Precipitation During the Boreal Cold Season, J. Climate, 30, 2885–2903, 818 
https://doi.org/10.1175/JCLI-D-16-0519.1, 2017. 819 

Hoell, A., Cannon, F., and Barlow, M.: Middle East and Southwest Asia Daily Precipitation 820 
Characteristics Associated with the Madden–Julian Oscillation during Boreal Winter, J. Climate, 31, 821 
8843–8860, https://doi.org/10.1175/JCLI-D-18-0059.1, 2018. 822 

Hoell, A., Eischeid, J., Barlow, M., and McNally, A.: Characteristics, precursors, and potential 823 
predictability of Amu Darya Drought in an Earth system model large ensemble, Clim Dyn, 55, 824 
2185–2206, https://doi.org/10.1007/s00382-020-05381-5, 2020. 825 

Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K.-L., Joyce, R. J., Kidd, C., Nelkin, E. J., 826 
Sorooshian, S., Stocker, E. F., Tan, J., Wolff, D. B., and Xie, P.: Integrated Multi-satellite Retrievals 827 
for the Global Precipitation Measurement (GPM) Mission (IMERG), in: Satellite Precipitation 828 
Measurement: Volume 1, edited by: Levizzani, V., Kidd, C., Kirschbaum, D. B., Kummerow, C. D., 829 
Nakamura, K., and Turk, F. J., Springer International Publishing, Cham, 343–353, 830 
https://doi.org/10.1007/978-3-030-24568-9_19, 2020. 831 



33 
 

Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M., and Bierkens, M. F. P.: Reconciling high-832 
altitude precipitation in the upper Indus basin with glacier mass balances and runoff, Hydrol. Earth 833 
Syst. Sci., 19, 4673–4687, https://doi.org/10.5194/hess-19-4673-2015, 2015. 834 

Jacob, J. and Slinski, K.: GES DISC Dataset: FLDAS Noah Land Surface Model L4 Central Asia 835 
Daily 0.01 x 0.01 degree (FLDAS_NOAH001_G_CA_D 001), 836 
https://doi.org/10.5067/VQ4CD3Y9YC0R, 2021. 837 

Jung, H. C., Getirana, A., Policelli, F., McNally, A., Arsenault, K. R., Kumar, S., Tadesse, T., and 838 
Peters-Lidard, C. D.: Upper Blue Nile basin water budget from a multi-model perspective, Journal 839 
of Hydrology, 555, 535–546, https://doi.org/10.1016/j.jhydrol.2017.10.040, 2017. 840 

Jung, H. C., Getirana, A., Arsenault, K. R., Holmes, T. R. H., and McNally, A.: Uncertainties in 841 
Evapotranspiration Estimates over West Africa, Remote Sensing, 11, 892, 842 
https://doi.org/10.3390/rs11080892, 2019. 843 

Kato, H. and Rodell, M.: Sensitivity of Land Surface Simulations to Model Physics, Land 844 
Characteristics, and Forcings, at Four CEOP Sites, Journal of the Meteorological Society of Japan. 845 
Ser. II, Volume 85A, 187–204, https://doi.org/10.2151/jmsj.85A.187, 2007. 846 

Kirschbaum, D. B., Huffman, G. J., Adler, R. F., Braun, S., Garrett, K., Jones, E., McNally, A., 847 
Skofronick-Jackson, G., Stocker, E., Wu, H., and Zaitchik, B. F.: NASA’s Remotely Sensed 848 
Precipitation: A Reservoir for Applications Users, Bull. Amer. Meteor. Soc., 98, 1169–1184, 849 
https://doi.org/10.1175/BAMS-D-15-00296.1, 2016. 850 

Kumar, S. V., Peters-Lidard, C. D., Tian, Y., Houser, P. R., Geiger, J., Olden, S., Lighty, L., 851 
Eastman, J. L., Doty, B., Dirmeyer, P., Adams, J., Mitchell, K., Wood, E. F., and Sheffield, J.: Land 852 
information system: An interoperable framework for high resolution land surface modeling, 853 
Environmental Modelling & Software, 21, 1402–1415, 854 
https://doi.org/10.1016/j.envsoft.2005.07.004, 2006. 855 

Kumar, S. V., Peters-Lidard, C. D., Santanello, J., Harrison, K., Liu, Y., and Shaw, M.: Land 856 
surface Verification Toolkit (LVT) – a generalized framework for land surface model evaluation, 857 
Geosci. Model Dev., 5, 869–886, https://doi.org/10.5194/gmd-5-869-2012, 2012. 858 

Kumar, S. V., Peters-Lidard, C. D., Mocko, D., and Tian, Y.: Multiscale Evaluation of the 859 
Improvements in Surface Snow Simulation through Terrain Adjustments to Radiation, Journal of 860 
Hydrometeorology, 14, 220–232, https://doi.org/10.1175/JHM-D-12-046.1, 2013. 861 

Ma, Z., Xu, J., Zhu, S., Yang, J., Tang, G., Yang, Y., Shi, Z., and Hong, Y.: AIMERG: a new Asian 862 
precipitation dataset (0.1°/half-hourly, 2000–2015) by calibrating the GPM-era IMERG at a daily 863 
scale using APHRODITE, Earth Syst. Sci. Data, 12, 1525–1544, https://doi.org/10.5194/essd-12-864 
1525-2020, 2020. 865 



34 
 

Manz, B., Páez-Bimos, S., Horna, N., Buytaert, W., Ochoa-Tocachi, B., Lavado-Casimiro, W., and 866 
Willems, B.: Comparative Ground Validation of IMERG and TMPA at Variable Spatiotemporal 867 
Scales in the Tropical Andes, Journal of Hydrometeorology, 18, 2469–2489, 868 
https://doi.org/10.1175/JHM-D-16-0277.1, 2017. 869 

McNally, A.: GES DISC Dataset: FLDAS Noah Land Surface Model L4 Global Monthly 0.1 x 0.1 870 
degree (MERRA-2 and CHIRPS) (FLDAS_NOAH01_C_GL_M 001), 2018. 871 

McNally, A., Husak, G. J., Brown, M., Carroll, M., Funk, C., Yatheendradas, S., Arsenault, K., 872 
Peters-Lidard, C., and Verdin, J. P.: Calculating Crop Water Requirement Satisfaction in the West 873 
Africa Sahel with Remotely Sensed Soil Moisture, J. Hydrometeor., 16, 295–305, 874 
https://doi.org/10.1175/JHM-D-14-0049.1, 2015. 875 

McNally, A., Shukla, S., Arsenault, K. R., Wang, S., Peters-Lidard, C. D., and Verdin, J. P.: 876 
Evaluating ESA CCI soil moisture in East Africa, International Journal of Applied Earth 877 
Observation and Geoinformation, 48, 96–109, https://doi.org/10.1016/j.jag.2016.01.001, 2016. 878 

McNally, A., Arsenault, K., Kumar, S., Shukla, S., Peterson, P., Wang, S., Funk, C., Peters-lidard, 879 
C. D., and Verdin, J. P.: A land data assimilation system for sub-Saharan Africa food and water 880 
security applications, Scientific Data, 4, 170012, http://dx.doi.org/10.1038/sdata.2017.12, 2017. 881 

McNally, A., McCartney, S., Ruane, A. C., Mladenova, I. E., Whitcraft, A. K., Becker-Reshef, I., 882 
Bolten, J. D., Peters-Lidard, C. D., Rosenzweig, C., and Uz, S. S.: Hydrologic and Agricultural 883 
Earth Observations and Modeling for the Water-Food Nexus, Front. Environ. Sci., 7, 884 
https://doi.org/10.3389/fenvs.2019.00023, 2019. 885 

Miller, J., Barlage, M., Zeng, X., Wei, H., Mitchell, K., and Tarpley, D.: Sensitivity of the 886 
NCEP/Noah land surface model to the MODIS green vegetation fraction data set, Geophys. Res. 887 
Lett., 33, https://doi.org/10.1029/2006GL026636, 2006. 888 

Molteni, F., Buizza, R., Palmer, T. N., and Petroliagis, T.: The ECMWF Ensemble Prediction 889 
System: Methodology and validation, Q J R Meteorol Soc, 122, 73–119, 890 
https://doi.org/10.1002/qj.49712252905, 1996. 891 

NASA Earth Observatory: Record Low Snowpack in Afghanistan, NASA Earth Observatory, 2018. 892 

NASA JPL: NASA Shuttle Radar Topography Mission Global 30 arc second [Data set]. NASA 893 
EOSDIS Land Processes DAAC, NASA EOSDIS Land Processes DAAC, NASA EOSDIS Land 894 
Processes DAAC., 2013. 895 

Nazemosadat, M. J. and Ghaedamini, H.: On the Relationships between the Madden–Julian 896 
Oscillation and Precipitation Variability in Southern Iran and the Arabian Peninsula: Atmospheric 897 
Circulation Analysis, 23, 887–904, https://doi.org/10.1175/2009JCLI2141.1, 2010. 898 



35 
 

NCAR Research Applications Library: https://ral.ucar.edu/solutions/products/unified-noah-lsm, last 899 
access: 12 November 2021. 900 

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., 901 
Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah land surface model with 902 
multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale 903 
measurements, JGR: Atmospheres, 116, https://doi.org/10.1029/2010JD015139, 2011. 904 

NOAA: https://www.climate.gov/news-features/blogs/enso/september-enso-update-la-ni%C3%B1a-905 
watch, last access: 12 September 2017. 906 

NOAA CPC ENSO Cold & Warm Episodes by Season: 907 
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php, last access: 908 
29 July 2021. 909 

Oki, T. and Kanae, S.: Global Hydrological Cycles and World Water Resources, Science, 313, 910 
1068–1072, https://doi.org/10.1126/science.1128845, 2006. 911 

Pervez, S., McNally, A., Arsenault, K., Budde, M., and Rowland, J.: Vegetation Monitoring 912 
Optimization With Normalized Difference Vegetation Index and Evapotranspiration Using Remote 913 
Sensing Measurements and Land Surface Models Over East Africa, Frontiers in Climate, 3, 1, 914 
https://doi.org/10.3389/fclim.2021.589981, 2021. 915 

Peters-Lidard, C. D., Houser, P. R., Tian, Y., Kumar, S. V., Geiger, J., Olden, S., Lighty, L., Doty, 916 
B., Dirmeyer, P., Adams, J., Mitchell, K., Wood, E. F., and Sheffield, J.: High-performance Earth 917 
system modeling with NASA/GSFC’s Land Information System, Innovations Syst Softw Eng, 3, 918 
157–165, https://doi.org/10.1007/s11334-007-0028-x, 2007. 919 

Qamer, F. M., Tadesse, T., Matin, M., Ellenburg, W. L., and Zaitchik, B.: Earth Observation and 920 
Climate Services for Food Security and Agricultural Decision Making in South and Southeast Asia, 921 
Bull Am Meteorol Soc, 100, ES171–ES174, https://doi.org/10.1175/BAMS-D-18-0342.1, 2019. 922 

Rana, S., Renwick, J., McGregor, J., and Singh, A.: Seasonal Prediction of Winter Precipitation 923 
Anomalies over Central Southwest Asia: A Canonical Correlation Analysis Approach, J. Climate, 924 
31, 727–741, https://doi.org/10.1175/JCLI-D-17-0131.1, 2018. 925 

Reynolds, C. A., Jackson, T. J., and Rawls, W. J.: Estimating soil water-holding capacities by 926 
linking the Food and Agriculture Organization Soil map of the world with global pedon databases 927 
and continuous pedotransfer functions, Water Resources Research, 36, 3653–3662, 928 
https://doi.org/10.1029/2000WR900130, 2000. 929 



36 
 

Sarmiento, D. P., Slinski, K., McNally, A., Funk, C., Peterson, P., and Peters-Lidard, C. D.: Daily 930 
precipitation frequency distributions impacts on land-surface simulations of CONUS, Front. Water, 931 
0, https://doi.org/10.3389/frwa.2021.640736, 2021. 932 

Schiemann, R., Lüthi, D., Vidale, P. L., and Schär, C.: The precipitation climate of Central Asia—933 
intercomparison of observational and numerical data sources in a remote semiarid region, Royal 934 
Meteorological Society, 28, 295–314, https://doi.org/10.1002/joc.1532, 2008. 935 

Schneider, U., Finger, P., Meyer-Christoffer, A., Rustemeier, E., Ziese, M., and Becker, A.: 936 
Evaluating the Hydrological Cycle over Land Using the Newly-Corrected Precipitation Climatology 937 
from the Global Precipitation Climatology Centre (GPCC), 8, 52, 938 
https://doi.org/10.3390/atmos8030052, 2017. 939 

Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., and Verdin, J. P.: 940 
Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New 941 
Parameterization for the SSEB Approach, J Am Water Resour Assoc, 49, 577–591, 942 
https://doi.org/10.1111/jawr.12057, 2013. 943 

Shukla, S., Arsenault, K. R., Hazra, A., Peters-Lidard, C., Koster, R. D., Davenport, F., Magadzire, 944 
T., Funk, C., Kumar, S., McNally, A., Getirana, A., Husak, G., Zaitchik, B., Verdin, J., Nsadisa, F. 945 
D., and Becker-Reshef, I.: Improving early warning of drought-driven food insecurity in southern 946 
Africa using operational hydrological monitoring and forecasting products, Nat. Hazards Earth Syst. 947 
Sci., 20, 1187–1201, https://doi.org/10.5194/nhess-20-1187-2020, 2020. 948 

Shukla, S., Landsfeld, M., Anthony, M., Budde, M., Husak, G. J., Rowland, J., and Funk, C.: 949 
Enhancing the Application of Earth Observations for Improved Environmental Decision-Making 950 
Using the Early Warning eXplorer (EWX), Frontiers in Climate, 2, 34, 951 
https://doi.org/10.3389/fclim.2020.583509, 2021. 952 

Tabar, M., Gluck, J., Goyal, A., Jiang, F., Morr, D., Kehs, A., Lee, D., Hughes, D. P., and Yadav, 953 
A.: A PLAN for Tackling the Locust Crisis in East Africa: Harnessing Spatiotemporal Deep Models 954 
for Locust Movement Forecasting, in: Proceedings of the 27th ACM SIGKDD Conference on 955 
Knowledge Discovery & Data Mining, New York, NY, USA, 3595–3604, 956 
https://doi.org/10.1145/3447548.3467184, 2021. 957 

Tan, J., Petersen, W. A., and Tokay, A.: A Novel Approach to Identify Sources of Errors in IMERG 958 
for GPM Ground Validation, Journal of Hydrometeorology, 17, 2477–2491, 959 
https://doi.org/10.1175/JHM-D-16-0079.1, 2016. 960 

UNICEF: 500,000 children affected by drought in Afghanistan – UNICEF, 961 
https://www.unicef.org/press-releases/500000-children-affected-drought-afghanistan-unicef, 2018. 962 



37 
 

USGS Knowledge Base: 963 
https://earlywarning.usgs.gov/fews/searchkb/Asia/Central%20Asia/Afghanistan, last access: 12 964 
November 2021. 965 

Vincent, K., Daly, M., Scannell, C., and Leathes, B.: What can climate services learn from theory 966 
and practice of co-production?, Climate Services, 12, 48–58, 967 
https://doi.org/10.1016/j.cliser.2018.11.001, 2018. 968 

Xie, P. and Arkin, P. A.: Analyses of Global Monthly Precipitation Using Gauge Observations, 969 
Satellite Estimates, and Numerical Model Predictions, Journal of Climate, 9, 840–858, 970 
https://doi.org/10.1175/1520-0442(1996)009<0840:AOGMPU>2.0.CO;2, 1996. 971 

Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A.: APHRODITE: 972 
Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network 973 
of Rain Gauges, Bull Am Meteorol Soc, 93, 1401–1415, https://doi.org/10.1175/BAMS-D-11-974 
00122.1, 2012. 975 

Yoon, Y., Kumar, S. V., Forman, B. A., Zaitchik, B. F., Kwon, Y., Qian, Y., Rupper, S., Maggioni, 976 
V., Houser, P., Kirschbaum, D., Richey, A., Arendt, A., Mocko, D., Jacob, J., Bhanja, S., and 977 
Mukherjee, A.: Evaluating the Uncertainty of Terrestrial Water Budget Components Over High 978 
Mountain Asia, Frontiers in Earth Science, 7, 120, https://doi.org/10.3389/feart.2019.00120, 2019. 979 

 980 


	1 Introduction
	1.1 Afghanistan Weather and Climate
	1.2 Hydrologic Data Availability and Uncertainty

	2 Methods
	2.1 Land Surface Modeling System & Parameters
	2.2 Meteorological Forcing Inputs
	2.3 Model Evaluation Statistics and Comparison Data
	3 Results
	3.1 Gridded Rainfall Comparison
	3.2 Remotely Sensed and Modeled Snow comparisons
	3.3 Discussion of results compared to previous studies
	3.4 Limitations and Future Developments

	4 Applications
	4.1 Snow Monitoring & Seasonal Outlooks

	5. Data Availability
	6. Code availability
	7. Conclusion
	9. Acknowledgements
	10. References

