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EXECUTIVE SUMMARY

The National Aeronautics and Space Administration (NASA) is investigating the occurrence of
per- and polyfluoroalkyl substances (PFAS) Center-wide at Kennedy Space Center (KSC),
Merritt Island, Florida (Figure 1-1) as Potential Release Location 237. AECOM Technical
Services, Inc. (AECOM) conducted investigation activities in 2020 and 2021 to develop a better
understanding of the fate and transport of PFAS in groundwater and surface water at KSC
center-wide using PRedictive Integrated Stratigraphic Modeling (PRISM). PRISM uses best
practices from the fields of geology, hydrology, and chemistry to acquire a holistic
understanding of the subsurface and more accurately predict contaminant migration pathways.
Based on the potential magnitude (frequency and areal distribution) of PFAS impacts at KSC,
the analyses described herein were designed to provide tools to address the unique behavior of
PFAS chemicals.

The activities included four primary tasks: a sequence stratigraphic analysis, groundwater and
surface water gauging and sampling, a stormwater pollutant modeling analysis, and a chemical
forensic analysis.

The sequence stratigraphic analysis included the following:

e Development of three regional geologic cross sections using publicly available geophysical
data combined with sequence stratigraphic techniques and an analysis of regional geology.

e Development of eight plume-scale cross sections that are focused on known PFAS release
locations. These cross sections include three in the Industrial Area (1A), two near the Vehicle
Assembly Building (VAB), two near the Shuttle Landing Facility (SLF), and one near
Launch Complex 39A.

e Installation of 13 new monitoring wells to support the development of the plume-scale cross
sections. Gamma logging was performed on these newly installed wells and 22 existing
wells.

The regional and plume-scale cross sections can be utilized to guide subsequent PFAS
investigation activities and assist in the interpretation of environmental monitoring data.

The groundwater and surface water gauging and sampling included the following:

e Manual gauging of 105 existing groundwater monitoring wells during two synoptic events;
one performed in a dry season (February 2021) and one performed in a wet season (October
2020).

o Installation of 15 datalogging multiparameter transducers within 12 groundwater monitoring
wells and 3 surface water locations. Each transducer measured/logged water level,
salinity/conductivity, and temperature on 15-minute intervals for 3 months. The transducers
were deployed during a transition period between the wet and dry seasons.
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These data were utilized to develop a high-resolution groundwater potentiometric surface map of
KSC. In combination with the geologic cross sections, these potentiometric surface maps can be
utilized to evaluate hydrogeologic connectivity between multiple source zones.

The stormwater pollutant modeling analysis included the following:

e Collection of site-specific and regional stormwater information related to KSC.

e Development and calibration of a stormwater pollutant model using publicly available and
site-specific data. This model identified the locations with high PFAS surface water
discharge.

e Sampling of 28 existing stormwater outfalls in wet and dry conditions for PFAS and
compounds indicative of municipal wastewater.

Stormwater modeling activities shows that the highest surface water loading of perfluorooctane
sulfonate (PFOS) discharges occurs to either Banana Creek or the Banana River, and the highest
discharge basins are associated with the SLF and the Industrial Area.

The chemical forensic analysis included the following:

e Statistical analysis of groundwater and surface water monitoring data to categorize common
PFAS ‘signatures’ in these media.

e Develop an understanding of areas containing PFAS signatures indicative of aqueous film
forming foam and/or municipal wastewater or other consumer sources.

The chemical forensic analysis identified several PFAS detection patterns in groundwater and
surface water.

The analyses presented herein yielded several site-specific observations related to PFAS fate and
transport that are important for consideration of future investigation activities. Key observations
include the following:

e The combination of the measured groundwater variable density flow and the estuarine clay
layer at the bottom of the surficial aquifer system (SAS) suggest that the predominant
groundwater discharge locations will be along narrow widths perpendicular to the shorelines
of the Indian River, Banana River and Banana Creek.

e Estimates of terrestrial submarine groundwater discharge and stormwater modeling results
show that greater than 96% of the mass flux to outlying surface water bodies is attributed to
surface water flow.

e Interbedded silt layers within the SAS further suggest that localized groundwater discharge
locations may occur at interior surface water features (e.g., stormwater ditches, ponds).

e Paired wet and dry weather sampling data demonstrate that groundwater discharge is a
predominant contributor to surface water PFAS concentrations.

e The vertical conductivity gradient, as observed from the transducer study, shows that higher
salinity water is present at the deeper intervals within the SAS. The solubility of PFAS is
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negatively correlated to conductivity. Therefore, it is possible that decreasing aqueous

concentrations of PFAS, and increasing solid phase concentrations, are present within these
deeper zones of the SAS.
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1. INTRODUCTION

1.1 OVERVIEW

The National Aeronautics and Space Administration (NASA) is investigating the occurrence of
per- and polyfluoroalkyl substances (PFAS) Center-wide at Kennedy Space Center (KSC),
Merritt Island, Florida (Figure 1-1) as Potential Release Location 237. AECOM Technical
Services, Inc. (AECOM) conducted investigation activities in 2020 and 2021 to develop a better
understanding of the fate and transport of PFAS in groundwater and surface water at KSC
center-wide using PRedictive Integrated Stratigraphic Modeling (PRISM). PRISM uses best
practices from the fields of geology, hydrology, and chemistry to acquire a holistic
understanding of the subsurface and more accurately predict contaminant migration pathways.
Based on the potential magnitude (frequency and areal distribution) of PFAS impacts at KSC,
the analyses described herein were designed to provide tools to address the unique behavior of
PFAS chemicals.

1.2 REPORT OBJECTIVE AND TASKS

The primary objective of the PRISM activities described herein is to adapt the conceptual site
model for KSC to develop a more comprehensive understanding of PFAS fate and transport in
groundwater and surface water. This report details four main tasks, which are briefly described
below:

e A sequence stratigraphic analysis was completed to develop both regional and plume-scale
cross sections. These cross sections were interpreted based on high-resolution geophysical
data and understanding of depositional processes involved in forming the geology beneath
KSC.

e Center-wide groundwater potentiometric surface maps were developed using surface water
gauging data. Potentiometric surface maps of KSC during dry and wet-season conditions
were created to illustrate groundwater flow patterns and allow for the interpretation of
groundwater interaction with surface water.

e A stormwater model was developed using existing models and upgraded with recent
topography, rainfall and surface water elevation data. Surface water sampling data were also
incorporated into this model to yield predictions of PFAS mass flux in stormwater.

e Statistical analysis of groundwater and surface water data to determine whether the
distribution of PFAS compounds can yield information regarding its primary source.

1.3 REPORT ORGANIZATION

This report is organized as follows:

Chapter 1: Introduction. Describes the purpose of the project, establishes the report objectives
and strategies, and presents this outline of report organization.
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Chapter 2: Sequence Stratigraphic Analysis. Describes the sequence stratigraphy analysis,
including a summary of the previously developed regional-scale stratigraphic cross sections and
currently developed plume-scale stratigraphic cross sections.

Chapter 3: Groundwater Flow Patterns. Provides information regarding methods utilized to
develop an understanding of Center-wide groundwater flow patterns.

Chapter 4: Stormwater Analysis. Describes data collection and modeling analysis used to
estimate PFAS mass flux in stormwater and estimate contribution of groundwater discharge to
surface water.

Chapter 5: Forensic Data Analysis. Presents the methodology and results of an advanced
mathematical analysis of PFAS data.

Chapter 6: Summary and Key Observations. Summarizes work performed and key observations
related to PFAS fate and transport derived from this scope of work.

Chapter 7: References. Provides a list of the references used to develop this document.
Appendix A: Field Notes.

Appendix B: Survey Information.

Appendix C: Well Gamma Logs and Well Construction Records.

Appendix D: Stormwater Modeling Files.

Appendix E: Submarine Groundwater Discharge Calculation.

Appendix F: June 2021 KSCRT Meeting Minutes.
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2. SEQUENCE STRATIGRAPHIC ANALYSIS

The sequence stratigraphic investigation was conducted to develop a high-resolution, geology-
focused understanding of subsurface groundwater flow paths at the site. The outcomes of this
analysis resulted in the following:

e A high-resolution three-dimensional geologic framework that defines subsurface
heterogeneity and potential geologic constraints to groundwater flow on regional (miles) and
local (thousands of feet) scales.

e Enhanced understanding of vertical geologic heterogeneity, and thus vertical groundwater
transport pathways, obtained by mapping small and large scale groundwater flow barriers.

e A preliminary understanding of geologic continuity between distinct PFAS source zones,
which can be utilized to guide future sampling efforts.

2.1 GEOLOGICAL BACKGROUND

The surface of peninsular Florida is dominated by landforms of marine origin and coastal
features that have been sculpted by geomorphic processes during their intermittent subaerial
exposure during the late Cenozoic (Schmidt 1997). The geologic evolution of the KSC region
was affected by several processes, including global sea level changes (eustasy), sediment supply
(both from landward uplands and alongshore sources), and subsidence/karstification (Adams
2018; Burdette et al. 2010; Rink and Forrest 2005). The present-day Merritt Island-Cape
Canaveral Sedimentary Complex (MICCSC), which includes KSC, evolved during the
Pleistocene to Holocene (recent) time, as a result of delta progradation towards the Atlantic
Ocean via the ancestral St. Johns River, which was later subjected to intense wave reworking.
Studies indicate that between 130,000 to 80,000 years ago, the ancestral St. Johns River emptied
its sedimentary load along the central Florida coast, building a prominent fluvial delta that
eventually became Merritt Island (Adams 2018). Sometime prior to the mid-Holocene, karst-
driven isostatic uplift within the central Florida peninsula created a drainage reversal, halting
sediment delivery to the delta. This allowed ocean waves to erode the outer delta and transport
sediment southward (via longshore drift), thus building the Cape Canaveral promontory and the
eventual modern configuration of the MICCSC.

2.2 SUMMARY OF PREVIOUS WORK

As part of the Work Plan (AECOM 2020), three regional (several miles) geologic cross sections
were created using sequence stratigraphic methodology. These regional cross sections were
created to develop a broad understanding of the geologic layers beneath KSC and surrounding
areas. The following sections summarize the sequence stratigraphic analysis conducted as part of
the Work Plan.
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22.1 Stratigraphic Framework

The regional stratigraphic context was established using data from hydrogeological, geological,
and geophysical sources obtained through coordination with the NASA Remediation Project
Manager, and searches of KSC databases and public data repositories, as described below. A
previous sequence stratigraphic analysis of Cape Canaveral provided the general
geomorphological, stratigraphic, and hydrogeological framework for the MICCSC (AECOM
2015). Several documents such as Geology, Geohydrology and Soils of KSC: A Review (NASA
1990), the Environmental Setting Reference Manual (NASA 2003), and Environmental
Resources Document (NASA 2010) were also reviewed to develop an understanding of the
geology specific to KSC. Focused, site-specific data from historical investigations such as boring
logs, grain size data, water levels, plume maps of dissolved organic compounds, aerial
photographs, and high-resolution data (e.g., Hydraulic Profiling Tool) from various areas within
KSC were obtained from the Remediation Information System (RIS) database and reviewed.
Gamma log data for KSC were obtained from the Hydrogeologic Information System database
provided by the St. Johns River Water Management District (SJRWMD 2020); this data
provided a continuous vertical measurement of clay and sand content in siliciclastic and
carbonate depositional environments (Figure 2-1) and was primarily used for lithofacies
construction.

Figure 2-2 illustrates how the sequence stratigraphic framework of KSC was developed. The top
of a regional limestone strata (Ocala Limestone) was initially identified as a distinct increase
(positive kick) of the gamma value, shown in light blue and interpreted as a transgressive surface
(TS). This regional marker differentiates the limestone (low gamma response) units below from
shallow marine mud (high gamma response) above.

Secondly, a major regional erosive surface below the low-gamma sandstone units, following the
shallow marine strata, is identified as a Sequence Boundary (SB) and is denoted by a red
sinusoid. A significant Flooding Surface (FS), demarcated by a sharp positive kick in gamma,
subdivides the overlying sandy units into two parasequences (building blocks of sequences). This
marker parasequence boundary is shown by a dotted blue line on Figure 2-2.

Finally, the solid dark blue line (significant positive kick) represents the maximum landward
movement of the sea, known as the maximum flooding surface below which lies another sandy
package that extends to land surface.

2.2.2 Regional Cross Sections

Three regional stratigraphic cross sections were developed for the lines depicted on Figure 2-3
for KSC using the data indicated in Section 2.1. Cross section A-A’ represents a section parallel
to the paleo-shoreline, whereas cross sections B-B’ and C-C' are perpendicular to the paleo-
shoreline. The three cross sections (Figure 2-4 to Figure 2-6) and their fence diagram (Figure 2-
7) reveal the regional subsurface stratigraphy from the Eocene to the Holocene in the KSC



Conceptual Site Model Report
Center-Wide PFAS PRL 237
Revision: 0

November 2021

region. Eocene and Oligocene carbonates (Ocala Limestone) comprise a Paleogene erosional
surface that has undergone significant dissolution (Scott 1997).

The unconformably-overlying Hawthorn group is a siliciclastic cover in north and central
Florida. This group was deposited as sediments shed from the southern Appalachians encroached
onto the carbonate platform from the north during the Miocene (Scott 1988). Lithologically, the
Hawthorn Group is primarily composed of shallow marine phosphatic clay and marl, with local
siltstones and very fine sandstone. The Hawthorn group is overlain by wave dominated,
siliciclastic deltaic deposits and their associated muddy prodelta developed during the Miocene
to Pliocene epochs.

A conspicuous sea-level rise during the Pleistocene resulted in the drowning of the deltaic
system and the development of a muddy estuarine environment with sporadic tidal channel
sediments of very fine sand. Finally, with the reversal of the sea-level in the Holocene, a
depositional highstand ensued, resulting in progradation of wave-reworked beach ridges
composed of coarse sand and gravelly sand deposits. Note that although these ridges are
predominantly sandy, there are local muddy interlaminations due to ponding in the swales or
depressions between individual beach ridges, as well as between beach-ridge sets.

2.3 PLUME-SCALE CROSS SECTIONS

A total of 8 plume-scale cross section locations were selected based on the regional
understanding from previous stratigraphic work (regional cross sections in Phase-I) to better
evaluate subsurface stratigraphy in areas with known PFAS impacts (Figure 2-8). The new cross
sections were developed to:

e Improve understanding of plume-scale heterogeneity and
e Assess the potential effects of stratigraphy on subsurface PFAS occurrence and migration,
which can be utilized in subsequent investigations.

The plume-scale cross sections spatially cover zones containing known PFAS impacts, including
the Industrial Area (1A), Vehicle Assembly Building (VAB), Shuttle Landing Facility (SLF) area
and the Launch Complex (LC) 39A and 39B areas.

2.3.1 Well Installation

A total of 13 new monitoring wells were installed by AECOM throughout KSC to provide
additional stratigraphic data in areas without existing monitoring wells. New monitoring wells
were installed to a depth sufficient to penetrate the Pleistocene estuarine clay layer
(approximately 50 feet below land surface [bls]). New monitoring wells were installed and
developed in accordance with the Sampling and Analysis Plan (SAP) (NASA 2017) and Florida
Department of Environmental Protection (FDEP) standard operating procedures (FDEP 2018).
Field notes related to well installation are included in Appendix A.
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All subsurface disturbance locations were cleared of potential underground utilities by KSC
utility locators prior to commencement of fieldwork. During installation, each monitoring well
was logged by a geologist for soil type in accordance with the SAP (NASA 2017). In addition,
borehole information was converted into vertical grain-size logs, to visualize both grainsize and
texture by utilizing a scheme of color-coded boxes of corresponding width. Following
installation, new monitoring wells were subjected to downhole geophysical logging (gamma
logging) in accordance with the SAP (NASA 2017). New monitoring wells were also surveyed
for location and elevation (Appendix B).

2.3.2 Gamma Logging

Gamma logging was performed on 22 existing and 13 installed monitoring wells (Table 2-1 and
Figure 2-9). Existing wells and locations for new wells were selected to provide stratigraphic
data in high-interest areas (e.g., known or suspected PFAS source locations) or in areas devoid of
existing wells (new well construction). Accessibility and other logistical constraints such as
proximity to overhead/underground utilities were also considered during selection. Existing
wells were selected to provide vertical coverage to the Pleistocene estuarine clay layer at around
40 to 50 feet bls, when possible. Gamma logs and well construction records are included in
Appendix C.

2.4 KEY OBSERVATIONS

The following sections summarize the main stratigraphic observations for the individual cross
sections. In general, the observations discuss the relative prevalence of high mass flux/low
storage (e.g., sand) and low mass flux/high storage (e.g., silt, clay, mud) hydrostratigraphic units.
These observations, combined with review and analysis of the plume-scale cross sections, will be
utilized to guide PFAS investigation activities during subsequent phases and eventually begin
development of conceptual remedial approaches and/or expectations.

24.1 Shuttle Landing Facility

The northwest-southeast oriented section A-A’ (Figure 2-10A) shows sandy beach-ridges and
accompanying muddy swales from the surface down to a depth of approximately 40 feet bls. The
succession shows low heterogeneity, and a regional confining clay layer of estuarine deposits
occurs at 40 feet bls that dips towards the south. The thickness of the confining clay layer ranges
from 10 to 20 feet.

The north-south oriented section B-B’ (Figure 2-10B), parallel to the SLF runway, shows similar
sandy beach ridges and accompanying muddy swales from surface to approximately 40 feet bls.
The swales thicken towards the south, causing increased local heterogeneity.
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2.4.2 Launch Complex 39A

The east-west oriented section C-C’ (Figure 2-10C) shows sandy beach ridges and muddy
swales dipping toward the east along the regional stratigraphic dip. The swales indicate local
potential mass storage zones (e.g. PFAS-MWO0010). The confining clay of estuarine clay is
encountered at a range of 45 to 50 feet bls. The confining clay is about 10 feet thick on average,
but shows the presence of silty tidal bar deposits towards the east.

243 Vehicle Assembly Building

The north-south oriented section D-D’ (Figure 2-10D) shows a thick package of stacked sand
beach ridges with occasional muddy swales along the regional strike. The estuarine confining
clay unit is present at a depth of 50 to 60 feet bls. The thickness of the confining clay varies from
8 to 12 feet.

The east-west oriented section E-E' (Figure 2-10E) shows a sand dominated package of beach
ridges with minor muddy swales that is present at approximately 50 feet bls. The confining unit
of estuarine clay beneath it is present only in the western portion of the section. The eastern
portion at this depositional level consists of prodelta mud, rather than estuarine clay.

24.4 Industrial Area

The northeast to southwest oriented section F-F" (Figure 2-10F) represents a 40 to 45 feet thick
stack of beach ridges with a predominance of muddy swales toward the northeast. These thick
muddy intervals are potential mass storage zones within the beach ridges. The confining clay
layer estuarine origin at about 40 feet bls is about 10 feet thick.

The northeast to southwest section G-G’ (Figure 2-10G) is parallel to section F-F" and shows
similar features of sandy beach ridge deposits. Thick muddy swale deposits are encountered at
boreholes PFAS-MWO0002, PFAS- MWO0003 and GSRY-MWO0058. The estuarine confining clay
below the beach ridges was present at 40 feet bls. The confining clay layer is about 10 feet thick.

This northwest to southeast section H-H’ (Figure 2-10H) runs perpendicular to sections F-F' and
G-G'. The section shows stacked sandy beach ridges and their associated muddy swales from
surface to about 40 feet bls. The underlying estuarine clay unit is only present towards the
northwest. The strata towards the southeast at the same level consist of prodelta mud and
associated deltaic deposits.
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3. GROUNDWATER FLOW PATTERNS

The groundwater flow pattern assessment was conducted to develop high-resolution, Center-
wide potentiometric surface maps of the upper surficial aquifer system (SAS) underlying KSC.
These potentiometric surface maps were used to provide information regarding groundwater and
dissolved solute movement over a large area and infer its interaction with surface water bodies.
The SAS is the focus of the gauging activities as PFAS impacts occur predominantly within this
system (Geosyntec 2019). Groundwater gauging data collected during dry (October 2020) and
wet (February 2021) conditions were utilized to generate these maps (Figure 3-1). Additional
information such as topographic maps, location of surface water bodies and mapped waterways,
and geology were utilized during map preparation.

3.1 MERRITT ISLAND SURFICIAL AQUIFER SYSTEM

The SAS of KSC is the uppermost hydrologic unit and consists of unconsolidated sand, shelly
sand, silt, clay and calcareous clay as noted in Chapter 2. The bottom of the SAS is interpreted
to be the top of the laterally continuous estuarine clay (Chapter 2). The thickness of the SAS
varies, and is approximately 50 feet in the north and thickens to the south to a maximum
observed thickness of approximately 70 feet near the IA.

Groundwater flow patterns within the SAS are typical of an island aquifer system that is
surrounded by high salinity water (USGS 2000). These patterns are termed “variable density
flow” (VDF), and an idealized representation is illustrated on Figure 3-2. Localized high
groundwater elevations develop in more permeable sediments that are also at a relatively high
elevation. Both natural and man-made topographic highs can exhibit elevated groundwater
levels. Groundwater flows from these higher elevations in a sub-radial fashion and discharges to
intermediate streams and/or stormwater channels, eventually discharging to one of the larger
surface water bodies surrounding Merritt Island (Schmalzer and Hinkle 1990). Clark (1987)
reports that 12.5% of annual average rainfall discharges to surface water features (11% via
baseflow and 1.5% via direct runoff). The majority (87%) of the annual rainfall is lost to
evapotranspiration and only 0.5% KSC reaches the groundwater reservoir (Clark 1987).

Due to density differences between fresh water (i.e., infiltrating precipitation) and surrounding
brackish water, strong downward vertical gradients develop beneath the high elevation regions of
KSC. Fresh water is present at shallow depths, while the heavier brackish water is present at
lower depths. The relative depth of the fresh-brackish water interface changes depending on the
season. The interface occurs deeper during the rainy season and shallower during the dry season
(USGS 2000).

After its initial downward migration, fresh groundwater eventually migrates upward as it moves
laterally from high recharge areas, finally discharging into surrounding waters along the land-
water interface. The groundwater discharge via this mechanism is termed freshwater submarine
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groundwater discharge (SGD). Studies by Martin et al. (2007) estimated that the freshwater SGD
for Merritt Island ranged from 0.02 to 0.09 cubic meters per day per meter of shoreline. Figure
3-3 contains both generalized and site-specific conceptualizations of freshwater SGD at KSC.

3.2 METHODOLOGY

The initial step in developing the potentiometric surface maps was to select an appropriate
number of spatially distinct monitoring wells. The KSC RIS database, containing more than
8,000 entries for KSC wells, was reviewed to determine an appropriate number of representative
monitoring wells to utilize in this analysis. This selection process included various types of wells
including Geoprobe, temporary, drinking water, air-sparge/extraction and standard monitoring
wells. Well selection was focused on identifying monitoring wells that were still active, within
the shallow aquifer, and with well screens preferably no greater than 5 feet long and no deeper
than 40 feet bls — at or above the local confining unit. Additionally, a well that had been
surveyed and recently gauged (within the last 5 years) implied that it still existed. From the
database, 43 solid waste management units (SWMUSs) were identified with one or more
monitoring wells that met these criteria. One or two monitoring wells were selected from each
SWMU to limit bias towards SWMUs with many monitoring wells.

From this selection criteria, the wells were plotted on a quadrangle map to illustrate their spatial
distribution. The distribution figure allowed selection of wells that would provide the widest
areal coverage. One final consideration for monitoring well selection was whether the selected
location had an adjacent deeper well with well screens preferably no longer than 5-feet and
within the 40 to 60 feet bls range. Collecting gauging data from deeper well locations allowed
for an understanding of vertical gradient which was utilized to better develop the surficial aquifer
groundwater potentiometric surface. Where practicable, shallow and deep well pairs with the
greatest difference between screen intervals were selected.

From these selected locations, a subset of representative locations were chosen to be outfitted
with groundwater transducers to record long term variations in the groundwater elevation as well
as groundwater temperature, specific conductivity and actual conductivity. Seven transducers
were installed in shallow wells, five were installed in intermediate zone wells and three were
installed in deep wells. Three surface water outfalls were also outfitted with transducers to
provide data for the stormwater modeling analysis (Chapter 4). Transducers were deployed
between the transition of the wet and dry periods to observe seasonal changes.

3.2.1 Manual Gauging

Based on the selection rationale described in Section 3.2, a total of 111 wells were chosen for the
two manual gauging events. The location of these wells is illustrated on Figure 3-1 and listed in
tabular format in Table 3-1. There were 101 wells gauged during the October 6, 2020 event and
107 wells gauged during the February 1, 2021 event. Some wells were not gauged during an
event due to logistical issues, as noted in Table 3-1.
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Each gauging event was completed within an 8-hour working period. using four sampling teams
consisting of two people each. Before deployment to their target sampling area, each team
measured the depth to water (DTW) on the same monitoring well to ensure consistency between
level gauges. During gauging activities, the target well was opened and the DTW was measured,
to the nearest 0.01 foot with a level gauge, from a known measuring point on the well casing.
The DTW measurement was subtracted from the surveyed value for the known measuring point
to determine the groundwater elevation measurement for the specific well. The calculated values
for the shallow aquifer locations were then used to construct the October 2020 and February
2021 potentiometric surface maps. Field notes related to manual gauging activities are included
in Appendix A.

3.2.2 Transducer Deployment

Fifteen monitoring well locations and three stormwater outfall locations were outfitted with non-
vented pressure transducers (Aqua TROLL 200, In-Situ Inc.) to record transient changes in water
level. Prior to the transducer installations, the depth to water from known elevation measuring
points at each location were gauged using a water level meter, to allow for conversion to actual
elevation. The transducers were tethered and placed at specific depths below the water surface
and activated, recording readings on a fifteen-minute interval. The transducers also recorded
water temperature (degrees Celsius), specific conductivity (microsiemens per centimeter
[uS/cm]), and actual conductivity (uS/cm) during their deployment. Atmospheric pressure
readings were recorded by three barometric transducers (BaroTROLL, In-Situ Inc.) deployed
above ground during the same time interval. The barometric transducers were installed at the
Component Cleaning Facility, Kennedy Athletic Recreation and Social (KARS) Park | and
KARS Park Il. Three outfalls and two monitoring wells had transducers emplaced on September
16, 2020 while transducers were installed in the remaining thirteen monitoring wells on
September 17, 2020. Water elevations were determined by calculating the change in pressure as
recorded by the transducer deployed at the specific location with corrections made for changes in
barometric pressure as recorded by one of the two barometric transducers that were deployed.
All transducers were removed on February 1, 2021 except for the SLF outfall location which was
not removed until February 3, 2021.

3.3 RESULTS

Groundwater elevation data are tabulated in Table 3-1 and displayed as potentiometric surface
maps on Figure 3-4 and Figure 3-5. Graphs illustrating the transducer data at each monitoring
well are presented on Figure 3-6 through Figure 3-19.

All submersible transducers operated normally during their deployment except for one location
(monitoring well HMFN-MWO0016) where the transducer was lost and no usable data were
collected. The tether at one location (CHP-MW0014) was compromised on December 21, 2020
between 0900 and 0915 hours, which resulted in the transducer sinking to the bottom of the well.
The transducer continued to collect data during the remainder of the deployment, however, and

11
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all data were usable. The groundwater elevation correction factor needed to be modified for data
collected following the tether compromise, but no other changes were required.

3.3.1 Potentiometric Surface Maps

Groundwater potentiometric surface maps illustrates that the highest groundwater elevations are
observed north of the 1A, extending in a north-northeasterly direction; under the LC39 Area
extending in a north south direction and aligned with the Kennedy North Parkway and in an east-
northeast to west-southwest direction somewhat aligned with the Crawlerway orientation; and
east of the SLF oriented in a northwest-southeast direction. Though there may not be gauging
points to confirm all of the “mounding” effects, it is interpreted that groundwater highs exist
beneath the Schwartz Road Landfill, under the SLF landing strip, at each of the LC Pads, and
other natural or artificially elevated areas.

Local groundwater divides are present and are typically oriented along the center of the
groundwater high. Adjacent to the SLF, the groundwater divide is oriented northwest to
southeast while a more south-southwest orientation is observed for the divide south of the LC39
Area and leading into the Industrial Area. Within the LC39 Area, the groundwater divide is
oriented in a north-south direction nearly directly above the Kennedy Parkway North but there is
also an east-northeast divide oriented above the Crawlerway causeway.

Seasonal groundwater elevation fluctuations (between October 2020 and February 2021) were
noted and, of the wells gauged, a water level change of between approximately 1.5 and 2 feet
was observed between events. In October, the maximum groundwater elevation for the shallow
wells gauged was recorded at 5.87 feet above mean sea level (amsl), while in February the
maximum was only 3.93 feet amsl. The October groundwater high values, in some areas, are
very close to the ground surface elevations. Areas where the groundwater elevations are at or
very near to the ground surface elevations would likely be identified as wetlands. The minimum
groundwater elevation gauged in the shallow wells in October was —1.80 feet amsl while in
February the minimum had dropped to —3.25 feet amsl.

3.3.2 Transducer Readings

The transducers recorded several observations that are consistent with the nature of VDF,
ongoing remedial activities and the overall potentiometric surface patterns measured during
manual gauging. Key observations derived from the transducer data include the following:

e Groundwater levels continually decreased during the observation period, consistent with the
manual gauging data and potentiometric surface maps. Groundwater elevations typically
responded to precipitation events in both shallow and deep well locations.

e Paired shallow and deep transducers demonstrated strong downward vertical gradients
(approximately 0.1 feet/feet) throughout the observation period. These were observed at the
Former Drum Storage Area (FDSA-MWO0021S2/FDSA-MW0036), the Contractors Road
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Heavy Equipment Area (CRHE-MWO0047/CRHE-IW0014D) and within the 1A (CHP-
MWO0014/POL-MWO0009D).

Tidal fluctuations did not significantly affect groundwater elevations (greater than 0.25 feet)
during the observation period. Conductivity measurements in some wells, however, either
responded to daily tidal fluctuations (CRHE-MWO0O047) or precipitation events (FDTL-
IW00041, WILC-MWO0087).

Remedial activities were observed to affect several transducers. Active air sparging at the
Component Cleaning Facility resulted in pronounced variability in both shallow and deep
wells (CCF-IW004, CCF-IW0039, CCF-MW0012D).

Intrusion of salt water (increasing conductivity) was observed during decreasing water
elevations at location FDTL-IWO0004I, consistent with the known mechanism of VDF.

The transducer deployed within CHP-MWO0014 fell to the bottom of the well during its
deployment. Interestingly, the conductivity readings of this transducer increased significantly
following this incident. This observation also suggests that a conductivity gradient exists
between shallow and deep groundwater, which further corroborates the presence of VDF
conditions.

Sporadic variations in conductivity were observed two several wells (FDSA-MWO0036,
LETF-MWO0006), which may be attributed to equipment malfunction.

13
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4. STORMWATER ANALYSIS

AECOM developed a stormwater pollutant loading model utilizing an existing stormwater flow
model, permits, stormwater facility data derived from NASA’s Geographic Information System
(GIS) utility maps, available reports on the Indian and Banana River basins, and surface water
sampling data. The stormwater pollutant loading model was developed to:

e Estimate the mass of perfluorooctane sulfonate (PFOS) discharging from KSC outfalls.
PFOS was modeled as it is the only PFAS compound present above an FDEP screening level
(FDEP 2020);

e Evaluate which stormwater basins and outfalls experience the most significant PFOS mass
loading;

e Develop an understanding of Center-wide stormwater flow patterns, which can be utilized to
track high mass discharge locations back to potential source areas.

Land basins were delineated in the model and associated with stormwater outfalls with PFOS
sample concentrations to better understand the PFOS loading in specific basins. This
methodology identified the basins that are contributing to higher than acceptable levels of PFOS
through specific outfalls at KSC.

4.1 DATA COLLECTION

41.1 Existing Stormwater Model

An existing stormwater model, developed as described in the KSC Stormwater Improvements
report (Jones Edmunds & Associates, Inc. 2011), was utilized as the initial basis of modeling
activities. The existing stormwater model was based on permitted structures active prior to 2011
and was created using the Interconnected Channel and Pond Routing Model (ICPR) Version 3
(Streamline Technologies, Inc., Winter Springs, Florida).

4.1.2 Stormwater Basin Inventory

AECOM updated the stormwater basin inventory contained within the existing stormwater flow
model (Jones Edmunds & Associates, Inc. 2011) to incorporate basins added since 2011. In
addition to basins within the existing model (Jones Edmunds & Associates, Inc. 2011), the
updated inventory included permits identified in the SIRWMD Regulatory Permit Database
(SJRWMD 2021), and aerial photographs. All KSC permits dated after 2011 for KSC were
evaluated to learn if whether they contained information on stormwater structure additions in the
system. Those that had structures related to the functionality of the stormwater conveyance
system were incorporated into the new model. This evaluation is discussed further in Section
4.2.
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4.1.3 Basin Definition

The KSC area was divided into specific areas, or basins, to analyze the stormwater flow more
closely with pollutant concentrations. Initial delineations were created for those areas that have
outfalls that discharge offsite: VAB South, SLF, Sub-Basin 11, and Region 1 (also referred to as
the I1A) (Figure 4-1).

41.4 Additional Data Collection

PFOS concentration samples were collected at 27 outfalls across the KSC stormwater system.
These samples were collected during wet and dry seasons (September/October 2020 and January
2021, respectively).

Further information, to better understand PFOS loading, was gathered from the following
reports:

e Nutrient and Dissolved Oxygen Total Maximum Daily Loads (TMDLSs) for the Indian River
Lagoon and Banana River Lagoon (Gao 2009)

e Basin Management Action Plan (BMAP) for the Implementation of Total Maximum Daily
Loads for Nutrients Adopted by the Florida Department of Environmental Protection in the
Indian River Lagoon Basin North Indian River Lagoon (North Indian River Lagoon
Stakeholders 2013)

e Basin Management Action Plan (BMAP) for the Implementation of Total Maximum Daily
Loads for Nutrients Adopted by the Florida Department of Environmental Protection in the
Indian River Lagoon Basin Banana River Lagoon (Banana River Lagoon Stakeholders 2013)

4.2 MODEL DEVELOPMENT

The following steps were performed to create a current stormwater pollutant transport model.

The 2011 model (Jones Edmunds & Associates, Inc. 2011) was in Version 3 of ICPR. Version 3
is no longer supported by Streamline Technologies. Due to this, the original ICPR Version 3
model was converted to ICPR Version 4. Once the ICPR Version 4 model was able to be
manipulated, it was converted into XPSWMM (Innovyze, Newbury, United Kingdom). The
conversion to XPSWMM was required because ICPR lacks the capability of modeling
pollutants, which XPSWMM can perform.

Once the model conversion from ICPR Version 4 to XPSWMM was complete, the applicable
permits that were issued after 2011 needed to be evaluated and added to the model. Permits that
were issued after 2011 did not always meet the criteria necessary to be included within the
model. Permits that noted changes to the functionality of the stormwater conveyance system
were incorporated into the model, specifically permits with the information such as percent
impervious assumptions, assumed curve number for pervious areas, time of concentration and
basin flow patterns.
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Permits that were classified as internal updates to a master permit, a permit extension, a permit
that did not modify surface water system, a permit transfer, or where there was no offsite
discharge or environmental project permit (mitigation, or water quality) were not included.

Land basins were delineated within the XPSWMM model interface and GIS to better understand
the PFOS loading in specific basins, and separate basins were delineated to reflect the relevant
permits after 2011. The finalized basins utilized are illustrated on Figure 4-2. Those denoted by
the red outline are the basins associated with the added permits. Basins added to the stormwater
model are summarized in Appendix D

Calibration of the model was performed by comparing the XPSWMM results to the transducer
data. Three transducers were installed on structures to measure the water elevations within a time
span ranging from September 15, 2020 to September 23, 2020. Water elevation, conductivity,
temperature, and rainfall data for each surface water transducer are presented on Figure 4-3
through Figure 4-5. The transducer deployment locations are illustrated on Figure 3-1.

XPSWMM was calibrated to transducer data using a rain event that occurred from September 15
to 23, 2020, which resulted in 3.61-inches of rainfall based on Next Generation Weather Radar
(NEXRAD) data (National Oceanic and Atmospheric Administration 2021). Graphs were
created for each transducer based on time and elevation. The node in the model that was closest
to the transducer was added to the graph as a comparison to analyze how closely the model and
the transducer data coordinated with each other.

The XPSWMM model was calibrated to represent what was being recorded by the transducers in
the field. The variables that were updated within the model to accomplish this task included the
time of concentration, initial stage elevations, starting tailwater elevations, pervious curve
number and percent impervious. Transducer data and model predictions are illustrated on Figure
4-6.

Using the model and GIS, 23 discharge points were identified. These discharge points were
connected to the waterbodies known as Banana Creek, Banana River Lagoon, and the Indian
River Lagoon. Each outfall was assigned a PFOS sample concentration, which were then
associated with each node within the model. These concentrations were then applied upstream of
the discharge site for the purpose of analysis. Buildup/wash off and land use information was
also added to the model to better understand pollutant movement. Figure 4-7 illustrates the
discharge points and surface water sample locations. Surface water samples were collected as
part of the center-wide assessment and will be described in a future report.

The XPSWMM model allowed a pollutant to be included in the model with the units of
milligrams per liter. The sample pollutant data collected was in micrograms per liter. Due the
values being too small for XPSWMM to recognize, the PFOS sample concentrations were
entered into the model as milligrams per liter (1 microgram per liter was entered as 1 milligram
per liter). Once the model was run, the final results were converted to appropriate units to
accurately reflect actual units.
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4.3 RESULTS

The XPSWMM model was utilized to simulate the PFOS discharge in surface water during a 7-
day storm event. A 7-day event is a standard simulation in this software package, and is similar
in duration to the 9-day rain event (September 15 to 23, 2020) utilized in the calibration process.
The predicted PFOS loading results are presented in Table 4-1. The PFOS load was calculated
using the closest measured PFOS surface water concentration times the average model-predicted
stormwater discharge rate during the modeled storm event. Table 4-1 is listed in order of highest
to lowest PFOS loading. Figure 4-8 illustrates a color-coded map of the predicted PFOS
discharge between stormwater basins. Model output data is included in Appendix D (electronic
copies only).

The surface water outfall sampling results are presented in Table 4-2. A comparison between dry
and wet weather for seven PFAS constituent concentrations was performed using this data, and is
illustrated on Figure 4-9. This comparison demonstrates that 61% of the sample results were
higher during dry season conditions. This observation suggests that groundwater baseflow into
these outfalls is a significant contributor to PFAS loading at outfalls.
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S. FORENSIC DATA ANALYSIS

PFAS are a class of several thousand chemicals that are present in a variety of industrial and
consumer use products (Interstate Technology Regulatory Council [ITRC] 2018). Different
varieties of specific PFAS compounds are utilized in industrial/consumer products, depending on
its original intended use. As common environmental analyses typically include the identification
of more than a dozen unique PFAS compounds, the observed levels of these compounds can
provide information regarding the source material. Source identification of PFAS is an important
concept in environmental analysis, as the presence of anthropogenic sources can confound
efforts at environmental investigation. Due to the dozens of unique PFAS that can be present in
one sample, analysis and interpretation of these source patterns requires a combination of
statistical data science and analytical chemistry techniques.

5.1 GOALS

The goal of applying forensic data analysis to the NASA PFAS data was to isolate and identify
common PFAS mixture signatures in surface water and groundwater data. Once these signatures
are developed, they can be utilized to better analyze PFAS sources, transport pathways and
attenuation mechanisms. This forensic evaluation also serves as a roadmap to perform these
analyses on future PFAS sample results at KSC.

5.2 METHODOLOGY

52.1 Overview

The statistical analyses were performed using R and python packages utilizing a combination of
principal component analysis (PCA) and hierarchical clustering to form an unsupervised pattern
recognition process. These methods can be used to categorize large, complex datasets into
groups that exhibit similar chemical attributes (e.g., presence of specific compound, relative ratio
of compounds, etc.). PCA has been utilized to identify environmental contamination sources
(Johnson et al. 2002) and PCA combined with hierarchical clustering has been utilized to
identify PFAS source patterns (Zhang et al. 2016). The output of PCA/hierarchical clustering is a
labeled dataset, where each sample is classified as part of a group (cluster) of similar PFAS
mixture signatures. The distinct signature represented by each cluster can then be used as a
forensic ‘fingerprint’. Based on the known composition of sources of PFAS, these fingerprints
can be utilized to identify and differentiate these sources. Source identification can be further
developed by the analysis of additional ‘indicator compounds’; chemicals that are uniquely
observed in specific sources. Sucralose was utilized as an indicator compound in surface water
samples in this work to indicate the presence of sanitary wastewater. This compound is an
artificial sweetener that can be utilized as a tracer for both large-scale wastewater treatment plant
effluent (Cantwell et al. 2019) and septic systems (Spoelstra et al. 2020).
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522 Data Preprocessing

Existing (Geosyntec 2018) and recently acquired (AECOM 2021) surface water and groundwater
PFAS data were analyzed during the analyses described herein. Prior to subjecting data to PCA
and hierarchical clustering, various forms of data preprocessing such as autoscaling, logarithmic
transformation, block scaling, sum of squares normalization, quartile normalization, and
compositional log ratios were explored. Ultimately, the most applicable pattern recognition
results were obtained by transforming the PFAS concentration data into compositional ratios
representing each analyte’s contribution to the total for each sample, and then transforming that
data into isometric log ratios (ILR) (Brereton 2009; Miller et al. 2018; Varmuza and Filzmoser
2009).

5.2.3 Pattern Recognition

Several pattern recognition methods were applied and assessed for their performance including
self-organizing maps, k-means clustering, and various forms of hierarchical clustering.
Hierarchical clustering was selected based on the average silhouette scores and overall
agreement with principal component visualizations (Brereton 2009; Miller et al. 2018; Varmuza
and Filzmoser 2009). The groundwater and surface water datasets were analyzed separately
using the same methodology of hierarchical clustering via Euclidean distance measurements and
Ward’s linkage method. To estimate the best number of clusters (k) for each dataset, the Elbow
Method with Inertia was used in conjunction with average silhouette scores and determined the
optimal k value to be 6 for groundwater and 4 for surface water (Patel 2019). Therefore, six
representative clusters of the groundwater compositional ILR data were created, and four
representative clusters of the surface water compositional ILR data were created. Characteristics
of the groundwater and surface water clusters are discussed in Sections 5.3.1 and 5.3.2,
respectively.

5.3 RESULTS

531 Groundwater

Six PFAS mixture signatures were identified in the groundwater data. The results of the
groundwater analysis are depicted graphically on Figure 5-1 to Figure 5-6. Each figure shows
the collective chemical profile and geographical distribution of the samples classified within
each cluster. The profiles include descriptive information about the associated samples, such as
the number of samples in each cluster, the location of each sample on a map, and aggregated
point data on hexagonal grids, known as hexbins, showing (1) the areas of the site that contained
the most samples of that cluster classification and (2) the areas of the site that contained the
highest total PFAS concentrations associated with each cluster. The PFAS chemical mixture
pattern identified by each cluster is represented on pie charts in the profiles showing the average
relative composition for each analyte and the relative composition of all perfluorocarboxylates
(PFCAs) and perfluoroalkyl sulfonates (PFSAS). As a whole, the chemical and geographical
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information in the profiles provide the essential diagnostic data needed to form high-level
forensic determinations.

The dominant PFAS signatures (5 of 6) at KSC are associated with aqueous film forming foam
(AFFF) as the source material. PFAS signatures indicative of AFFF typically have a high
percentage of PFOS, perfluorohexane sulfonate (PFHXS), perfluorohexanoic acid (PFHxA) and
perfluorooctanoic acid (PFOA), which matches the most observed four-compound PFAS mixture
at AFFF-impacted sites reported by East et al. (2020). These five signatures had the highest
magnitude of total PFAS concentrations and included the greatest number of samples. The
suspected AFFF signatures were represented by clusters G1, G2, G3, G4, and G6.

Among the group of suspected AFFF signatures, there is a high-level distinction between groups
of AFFF mixtures dominated by PFOS and PFHXS, versus mixtures dominated by PFHXS with
relatively higher contributions of PFCAs such as PFHxA. This distinction is likely based on
differences in AFFF formulations used at KSC over time. Legacy formulations, most widely
used from the 1970s until the early 2000s, were based on long-chain PFAS molecules such as
PFOS and PFHXS (Annunziato et al. 2020). More recent formulations manufactured with
telomerization are based on six-carbon fluorotelomer moieties with a higher-degree of variation
in molecular structure and functional groups which degrade into PFHxS, PFHXA,
perfluoroheptanoic acid (PFHpA) and additional compounds that were not analyzed as part of
this study such as 6:2 fluorotelomer sulfonate (Bridger et al. 2021; Kibbey et al. 2020).

Clusters G4 and G6 displayed signatures that were, on average, dominated by PFOS, with
PFHXS as the second highest constituent. These mixture compositions were made up of a
majority PFSAs, with varying levels of PFOA but only low levels of other PFCAs such as
PFHxA and PFHpA. This is consistent with the most observed AFFF PFAS mixtures, as
described by East et al. (2020). Specifically, the common characteristics in the signatures of
these two clusters, such as the correlation of PFOS to PFHxS (Figure 5-7), are most
representative of legacy AFFF signatures at KSC (Annunziato et al. 2020). Within these two
clusters, the highest total PFAS concentrations were observed in hexbins that contained the
Hydrocarbon Burn Facility, Fire Station 1, Fire Station 2, Former Fire Station 2, and Fire Station
3. Clusters G1, G2, and G3 displayed signatures that consisted, on average, of the highest
combined PFHxS and PFHXA fractions out of all six PFAS signatures identified in the
groundwater data. Differences between the three signatures appear to be mostly due to varying
contributions of PFCAs and diminishing levels of PFOS, possibly indicating comingling with a
non-AFFF source of PFCAs or the presence of a different AFFF formulation contributing
oxidizable precursors. The G2 signature, with the lowest abundance of PFOS at 7% and highest
PFHXA at 30% seems to be the most indicative of modern fluorotelomer-based AFFF (Bridger et
al. 2021). In general, this signature has the highest average PFHXA fraction out of the six
signatures identified at the site and showed a strong correlation between PFHXA concentrations
and PFHXS concentrations, demonstrating that the two six-carbon PFAS compounds likely
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originated from the same source (Figure 5-8). These three clusters exhibited the highest total
PFAS concentrations in hexbins near the Hydrocarbon Burn Facility, Fire Station 2, Fire Station
3, the northern end of the runway, and the Former Residuals Application Area.

Unlike the collection of suspected AFFF signatures, cluster G5 formed a signature that was
roughly an even split between PFCAs and PFSAs. The average mixture was made up of mostly
PFOS (39%) and PFOA (29%) with minor constituents of PFHxS (12%) and PFHXA (10%).
This mixture of PFAS is more consistent with what is observed in wastewater treatment plant
(WWTP) effluent (Weston & Sampson 2020) and landfill leachate (Gallen et al. 2017) than any
AFFF formulations that have been analyzed or any studies of AFFF-impacted media. This
supports the notion that sewage and landfill material at KSC contains PFAS, also implying that
impacts from septic systems could show signatures that fall within this group. With only 17
samples, it is uncertain if characteristics of this signature are inclusive of all non-AFFF impacts
at KSC, especially as WWTP PFAS profiles seem to be site specific and vary based on chemical
conditions. The highest total PFAS concentrations in cluster G5 were observed in hexbins that
contained the Ransom Road Landfill, Former Sewage Treatment Plant 4, Fire Station 3, Former
Fire Station 2, Former Sewage Treatment Plant 7, and the Schwartz Road Landfill.

5.3.2 Surface Water

Four signatures were observed in surface water samples. These results are depicted graphically
on Figure 5-9 to Figure 5-12. The surface water signatures are presented using visualizations of
the same type and layout as the groundwater data for each surface water cluster’s unique profile.
Of the four surface water PFAS signatures identified, the most prevalent was cluster S1, which
contains the largest share of samples and the highest total PFAS magnitude. The S1 signature
was similar to the legacy AFFF groundwater signatures, with a PFOS-dominant composition and
a PFHxS component that was approximately 50% that of the PFOS fraction.

Cluster S2 had a unique signature at the site, made up of 85% PFCAs and only two samples. The
samples were located immediately adjacent to another in the pond in KARS Park 1l. Both
samples had nearly identical signatures and similar total PFAS concentrations (226 nanograms
per liter [ng/L] and 338 ng/L). The associated source for this signature is unknown, but appears
to be localized to the KARS Park Il area. There are many potential sources that could be
associated with this composition, including fluorinated coatings on consumer products that may
have been used or disposed of in the area. Similar PFHxA, PFHpA, PFOA signatures have also
been observed in wastewater and landfill leachate.

Clusters S3 and S4 exhibited signatures similar to S1, but with lower total PFAS concentrations
and higher contributions from PFCAs. The signature of cluster S4 showed the most similarity to
S1, and most likely represents the diluted form of a similar AFFF source that possibly mixed
with a source of PFCAs such as sanitary wastewater. Similarly, the signature of S3 shows even
higher levels of PFCAs but similar overall concentration magnitude. The samples with the S3
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signature are located primarily in the Banana River and Indian River, with the highest
concentrations in the Banana River, while the other two signatures are contained within Merritt
Island.

Alternative explanations for the relative prevalence of PFCAs could be attributed to PFAS
attenuation mechanisms. High molecular weight PFAS constituents (precursors) can be
transformed into lower molecular weight PFCASs via oxidative processes. Also, PFSAs
preferentially sorb to solids compared to PFCAs. Therefore, a combination of these PFAS fate
and transport mechanisms may be captured in the progression from signature S1, to S4, to S3.
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6. SUMMARY AND KEY OBSERVATIONS

The presence of PFAS in the environment poses significant challenges for practitioners seeking
to monitor and address the health and ecological risks associated with these chemicals. These
chemicals are highly recalcitrant, water soluble, and ubiquitous in many industrial and consumer
products (ITRC 2018). Based on these characteristics, environmental impacts attributed to PFAS
can often span a significant area, ranging from dozens to hundreds of square miles (Krueger
2018). Based on the potential magnitude (frequency and areal distribution) of PFAS impacts at
KSC, the analyses described herein were designed to provide tools to address this unique
behavior of PFAS chemicals.

6.1 HIGH-RESOLUTION CROSS SECTIONS AND POTENTIOMETRIC SURFACE MAPS

The regional and plume-scale cross sections can be utilized to guide subsequent PFAS
investigation activities and assist in the interpretation of environmental monitoring data.
Specifically, the high-resolution cross sections can be utilized as a basis to develop the
subsurface flow architecture for groundwater fate and transport models. In combination with the
center-wide potentiometric surface maps, these cross sections can also be utilized to evaluate
hydrogeologic connectivity between multiple source zones.

6.2 STORMWATER MODELING RESULTS

Stormwater modeling activities shows that the highest surface water loading of PFOS discharges
occurs to either Banana Creek or the Banana River, and the highest discharge basins are
associated with the SLF and the 1A. Stormwater drainage basins with relatively higher PFOS
surface water discharges were identified, which can allow for the prioritization of future
investigation and remedial activities.

6.3 CHEMICAL FORENSIC ANALYSIS

The chemical forensic analysis identified several PFAS detection patterns in groundwater and
surface water. These results can be utilized to discern between AFFF and consumer-related
sources of PFAS. Future monitoring data can also be analyzed to observe these patterns.

In addition, the analyses presented herein yielded several site-specific observations related to
PFAS fate and transport that are important for consideration of future investigation activities.
Key observations include the following:

e The combination of the measured groundwater VDF and the estuarine clay layer at the
bottom of the SAS suggest that the predominant groundwater discharge locations will be
along narrow widths perpendicular to the shorelines of the Indian River, Banana River and
Banana Creek. Estimates of terrestrial submarine groundwater discharge and stormwater
modeling results show that greater than 96% of the PFOS mass flux to outlying surface water
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bodies is attributed to surface water flow. An example calculation is presented in Appendix
E.

o Interbedded silt layers within the SAS further suggest that localized groundwater discharge
locations may occur at interior surface water features (e.g., stormwater ditches, ponds).
Paired wet and dry weather sampling data (Chapter 4) demonstrate that groundwater
discharge is a predominant contributor to surface water PFAS concentrations.

e The vertical conductivity gradient, as observed from the transducer study, shows that higher
salinity water is present at the deeper intervals within the SAS. The solubility of PFAS is
negatively correlated to conductivity (Jeon et al. 2011). Therefore, it is possible that
decreasing aqueous concentrations of PFAS, and increasing solid phase concentrations, are
present within these deeper zones of the SAS.

The data and findings provided in this report were presented to the Kennedy Space Center

Remediation Team (KSCRT) on June 22, 2021. KSCRT meeting minutes are provided in
Appendix F.
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Monitoring Well Construction Details

Table 2-1

Center-Wide PFAS Investigation, PRL 237

TOC
Well Borehole Ll i e Well Manhole |Elevation Ground Top of | Bottom of el Easting Northing
Well ID Installation | Diameter Depth Diameter | Diameter (ft Elevation [Screen Screen Depth (m) (m)

Date (in) & (in) @(n) | NAVDSS) (ft) (ttbls) | (ftbls) i
PFAS-MW0001 9/25/2020 2 50 2 8 4.98 5.34 36 46 46 231811.0861 | 464389.1311
PFAS-MW0002 10/19/2020 2 50 2 8 4.2 4.29 38 48 48 232416.0776 | 462749.5279
PFAS-MW0003 9/30/2020 2 50 2 8 9.46 9.74 38 48 48 233280.719 462903.5913
PFAS-MW0004 9/23/2020 2 50 2 8 7.09 7.30 40 50 50 234338.3491 | 463895.0975
PFAS-MWO0005 9/29/2020 2 40 2 8 4.72 4.97 10 20 30 233616.59 468656.625
PFAS-MWO0006 10/1/2020 2 50 2 8 4.95 5.09 38 48 48 234689.6621 | 471359.6796
PFAS-MWO0007 10/1/2020 2 50 2 8 2.99 3.18 37 47 47 236564.4009 | 472034.5818
PFAS-MWO0008 9/25/2020 2 50 2 8 4.38 4.51 36 46 46 229730.9849 | 475727.8755
PFAS-MWO0009 9/28/2020 2 50 2 8 6.17 6.38 40 50 50 231358.392 474330918
PFAS-MWO0010 9/24/2020 2 50 2 8 4.08 4.25 38 48 48 237113.8519 473647.813
PFAS-MWO0011 9/24/2020 2 50 2 8 4.84 4.90 38 48 48 237673.0746 474043.924
PFAS-MWO0012 9/30/2020 2 40 2 8 4.09 4.34 25 35 35 234640.8529 | 463222.7875
PFAS-MWO0013 9/29/2020 2 50 2 8 3.21 3.40 37 47 47 231427.729 472627.099

Notes:

1. ft bls indicates "feet below land surface"

2. TOC indicates "top of casing"

3. NAVDS88 indicates North American Vertical Datum of 1988
4. PFAS indicates Per- and Polyfluoralkyl Substances

5. PRL indicates Potential Release Location

6. m indicates metres
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Table 3-1
Groundwater Elevation Gauging Results
Center-wide PFAS Investigation, PRL 237

SHALLOW WELL ID: 39A-MWO0011 39A-MWO0043 CSES-MWO0012I C5SES-MWO0017S CCF-IW0062
Launch Complex 39A Launch Complex 39A C-5 Electrical Substation | C-5 Electrical Substation Comp onen.t Cleanmg
Area Facility
Screened Interval (ft bls): 5to 15 20 to 30 20 to 25 7t012 15 to 25
TOC Elevation (ft NAVDS88): NA 4.23 3.32 4.50 8.77
Depth to Water Depth to Water Depth to Water Depth to Water Depth to Water
Water Elevation Water Elevation Water Elevation Water Elevation Water Elevation
Date: (ft BTOC) |(ftNAVDS88)| (ft BTOC) [(ft NAVDS88)| (ft BTOC) [(ft NAVD88)| (ft BTOC) |(ft NAVD88)| (ft BTOC) |(ft NAVDS8S)
10/6/2020 2.81 2.62 1.61 0.57 2.75 2.3 2.20 5.61 3.16
2/1/2021 3.81 3.98 0.25 2.15 1.17 3.34 1.16 7.38 1.39
SHALLOW WELL ID: CGO-MWO0006 CGO-MW0023 CRCA-MWO0005A CRHE-MWO0047 DAST-MWO0003
Components Digital Air Surveillance
Citgo Service Station Citgo Service Station Refurbishemnt and Contractor's Road Heavy
Area Chemical Analysis Equipment Area Radar Tower
Screened Interval (ft bls): 22.51027.5 22.51t027.5 5to 10 21 to 25 5.5t0 15.5
TOC Elevation (ft NAVDS88): 8.7 6.75 6.55 4.09 12.45
Depth to Water Depth to Water Depth to Water Depth to Water Depth to Water
Water Elevation Water Elevation Water Elevation Water Elevation Water Elevation
Date: (ft BTOC) |(ftNAVDS88)| (ft BTOC) |[(ft NAVDS88)| (ft BTOC) [(ft NAVD88)| (ft BTOC) |(ft NAVD88)| (ft BTOC) |(ft NAVDS8S)
10/6/2020 3.87 4.83 1.75 5.00 2.21 4.34 1.93 2.16 7.61 4.84
2/1/2021 5.68 3.02 3.76 2.99 5.03 1.52 3.77 0.32 abandoned
SHALLOW WELL ID: EHF-MWO0001 EHF-MWO0005 FCDC-MW0001 FCDC-MW0002 FDSA-MWO0014S2
Environmental Health Environmental Health False Cape Data Colletion | False Cape Data Colletion
o o Former Drum Storage Area
Area Facility Facility Annex Annex
Screened Interval (ft bls): 2to 12 15to 25 7to17 6to0 16 2to0 12
TOC Elevation (ft NAVDS88): 8.77 5.31 12.17 11.55 2.85
Depth to Water Depth to Water Depth to Water Depth to Water Depth to Water
Water Elevation Water Elevation Water Elevation Water Elevation Water Elevation
Date: (ft BTOC) |(ftNAVDS88)| (ft BTOC) [(ft NAVDS88)| (ft BTOC) [(ft NAVD88)| (ft BTOC) |(ft NAVD88)| (ft BTOC) |(ft NAVDS8S)
10/6/2020 3.79 4.98 CNL CNL 7.35 4.82 6.75 4.8 2.07 0.78
2/1/2021 4.58 4.19 1.57 3.74 9.00 3.17 8.34 3.21 3.15 -0.3
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Table 3-1
Groundwater Elevation Gauging Results
Center-wide PFAS Investigation, PRL 237

SHALLOW WELL ID: FDSA-MWO0015S2 FDSA-MWO0021S2 FDTL-IW00041 FDTL-IWO00111 FS6-MWO0001
Former Drum Storage Area | Former Drum Storage Area Former De\{elopment and | Former DeYelop ment and Fire Station #6
Area Testing Lab Testing Lab
Screened Interval (ft bls): 1toll 8to 18 15 to 25 10 to 20 25 to 35
TOC Elevation (ft NAVDS8): 2.88 6.79 4.72 4.13 1.12
Depth to Water Depth to Water Depth to Water Depth to Water Depth to Water
Water Elevation Water Elevation Water Elevation Water Elevation Water Elevation
Date: (ft BTOC) |(ft NAVDS8)[ (ft BTOC) |(ft NAVDS®)| (ft BTOC) |(ft NAVDS88)| (ft BTOC) |(ft NAVDS88)| (ft BTOC) [(ft NAVDSS)
10/6/2020 2.05 0.83 5.21 1.58 4.46 0.26 Covered in Brush Under Water
2/1/2021 3.32 -0.44 6.61 0.18 5.84 -1.12 5.33 | -1.2 Under Water
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Center-Wide PFAS Investigation, PRL 237

Table 4-1
Stormwater Model Pollutant Loading Predictions

. Drainage PFOS Peak PFOS
Basin Number sy | (mel) Runoff Load
(cfs) (grams)
N-0001A 3439.55 49.7 729.03 23.24
890 535.54 176 79.84 11.44
470 983.12 82.6 133.14 9.37
410 936.92 82.6 31.87 8.71
490 870.19 82.6 49.46 8.16
480 853.18 82.6 136.71 8.13
870 102.6 18.1 14.91 4.84
850 282.37 130 35.81 4.22
910 25.86 18.1 6.46 4.09
260 384.59 81 43.78 4.07
A-010 19 176 10.25 2.68
2380 68.55 82.6 14.41 2.6
A-008 21.16 176 13.53 2.44
60 185.38 79.7 23.24 2.22
A-005 14.12 176 6.67 1.69
210 84.95 81 7.74 1.54
2370 271.77 7.4 47.77 1.49
A-015 39.5 7.4 13.72 1.43
A-013 8.04 7.4 3.95 1.39
810 781.07 13.1 44.5 1.19
2002 107.2 16 26.18 1.1
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Table 4-2
Stormwater Outfall Seasonal Monitoring Results
Center-Wide PFAS Investigation, PRL 237

Perfluoro-|Perfluoro-|Perfluoro-
Perfluoro- Perfluoro- Perfluoro- Perfluoro- Perﬂuorf)- Perfluoro- Perfluoro- Perﬂum:o- undecanoi|dodecanoi | tridecanoi Perfluoro-
. . . . . heptanoic . . decanoic tetradeca | MeFOSA
Location ID Sample Date butanesulfonic [ hexanesulfonic | octanesulfonic hexanoic Acid octanoic nonanoic Acid c c c noic Acid A EtFOSAA
Acid (PFBS) | Acid (PFHXS)| Acid (PFOS) |Acid (PFHXA) (PFHPA) Acid (PFOA) | Acid (PFNA) (PFDA) Acid Acid Acid (PFTEA)
(PFUNA) [ (PFDOA) | (PFTRIA)
PFAS-SWO0077 10/1/2020 11.5 43.8 49.7 13.1 5.5 331 21U 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0078 9/23/2020 8.9 27.1 42.6 12.5 7.8 8.2 23U 23U 23U 23U 23U 23U 45U 45U
PFAS-SW0079 9/25/2020 10.7 15.7 79.7 5.2 351 5.4 1.9U 19U 19U 19U 19U 19U 38U 38U
PFAS-SW0080 9/23/2020 291 10.3 34.2 5.1 4.1 4.9 19U 19U 19U 1.9U 19U 19U 38U 38U
PFAS-SW0081 9/24/2020 8.2 324 81.0 11.2 7.4 8.8 21U 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0082 9/25/2020 3.71 7.6 20.2 6.3 321 4.2 19U 19U 19U 19U 1.9U 1.9U 38U 38U
PFAS-SW0083 10/1/2020 351 21U 411 251 21U 21U 21U 21U 210 21U 21U 21U 420 420
PFAS-SW0084 9/30/2020 15.4 112 178 34.6 18.7 14.8 221 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0085 9/30/2020 6.2 20.9 15.2 5.2 3.01 7.8 21U 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0086 9/30/2020 16.9 23.8 65.7 7.4 9.6 19.3 4.6 19U 19U 19U 19U 19U 3.8U 3.8U
PFAS-SW0087 9/30/2020 4.6 6.4 19.5 211 2.71 4.2 19U 19U 19U 19U 19U 19U 38U 38U
PFAS-SW0088 9/29/2020 7.1 15.4 47.4 7.6 5.8 7.0 19U 19U 19U 19U 19U 19U 38U 38U
PFAS-SW0089 9/29/2020 191 221 10.6 19U 19U 19U 19U 19U 19U 1.9U 19U 19U 38U 38U
PFAS-SW0090 9/23/2020 7.2 17.4 20.5 6.4 361 3.61 19U 19U 19U 19U 19U 19U 38U 38U
PFAS-SW0091 9/23/2020 4.6 14.4 25.4 6.8 4.8 5.2 1.9U 1.9U 1.9U 1.9U 1.9U 1.9U 38U 38U
PFAS-SW0092 9/23/2020 8.4 30.4 102 10.4 6.7 9.0 201 19U 1.9U 19U 19U 1.9U 38U 38U
PFAS-SW0093 9/24/2020 7.3 33.7 87.0 11.3 7.5 8.5 19U 19U 19U 19U 19U 19U 38U 38U
PFAS-SW0094 9/29/2020 3.61 241 8.7 19U 19U 19U 19U 19U 19U 19U 19U 19U 38U 38U
PFAS-SW0095 9/29/2020 6.3 20.3 82.6 6.5 4.5 7.0 2.01 20U 20U 20U 20U 20U 4.0U 4.0U
PFAS-SW0096 9/29/2020 23U 311 7.4 23U 23U 23U 23U 23U 23U 23U 23U 23U 45U 45U
PFAS-SW0097 9/30/2020 15.7 21.3 16.0 7.1 391 6.0 21U 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0098 10/1/2020 21U 221 4.3 21U 2.1U0 21U 21U 21U 21U 21U 21U 21U 42U 420U
PFAS-SW0099 9/21/2020 291 5.8 13.1 5.7 371 381 21U 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0100 9/21/2020 6.9 8.3 18.1 7.8 4.6 5.1 21U 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0101 9/21/2020 291 21U 8.9 21U 4.8 21U 21U 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0102 9/21/2020 21U 21U 4.3 2.1U0 21U 21U 21U 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0103 9/21/2020 9.9 10.9 11.0 21U 21U 21U 21U 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0104 9/21/2020 221 29.3 42.1 251 21U 21U 21U 21U 21U 21U 21U 21U 42U 42U
PFAS-SWO0077 1/28/2021 10.3 50.9 59.2 13.8 5.9 391 21U 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0078 1/27/2021 7.8 29.8 33.1 11.5 8.0 9.1 2.1U0 2.1U0 21U 21U 21U 10U 42U 42U
PFAS-SW0079 1/28/2021 10.1 92.0 361 12.8 4.9 11.1 21U 21U 21U 21U 21U 21U 420 420U
PFAS-SW0080 1/28/2021 231 12.1 22.4 4.4 391 3.71 21U 21U 21U 21U 21U 21U 42U 420U
PFAS-SW0081 1/28/2021 13.6 76.1 98.0 20.3 12.2 10.8 21U 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0082 1/28/2021 4.5 20.0 38.0 8.2 5.2 6.7 21U 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0083 1/26/2021 311 291 2.81 381 251 2,61 20U 20U 20U 20U 20U 20U 4.0U 4.0U
PFAS-SW0084 1/27/2021 15.0 125 155 43.4 22.9 19.2 241 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0085 1/25/2021 6.2 22.3 12.2 6.7 351 8.8 23U 23U 23U 23U 23U 23U 45U 45U
PFAS-SW0086 1/25/2021 4.8 23.1 19.1 8.0 10.1 18.8 291 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0087 1/25/2021 381 17.8 110 4.2 301 9.1 281 2.0U 2.0U 2.0U 2.0U 20U 40U 40U
PFAS-SW0088 1/25/2021 5.4 19.6 34.9 8.7 6.9 7.0 20U 20U 20U 20U 20U 20U 40U 40U
PFAS-SW0089 1/25/2021 2.8U 2.8U 6.3 2.8U 2.8U 2.8U 2.8U 2.8U 2.8U 2.8U 2.8U 2.8U 5.6U 5.6 U
PFAS-SW0090 1/28/2021 5.2 114 27.5 4.3 2.81 331 21U 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0091 1/28/2021 5.4 13.3 22.5 4.3 3.01 4.2 211 21U 21U 21U 21U 21U 42U 42U
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Table 4-2
Stormwater Outfall Seasonal Monitoring Results
Center-Wide PFAS Investigation, PRL 237

Perfluoro-|Perfluoro-|Perfluoro-
Perfluoro- Perfluoro- Perfluoro- Perfluoro- Perﬂuorf)- Perfluoro- Perfluoro- Perﬂum:o- undecanoi|dodecanoi | tridecanoi Perfluoro-
. . . . . heptanoic . . decanoic tetradeca | MeFOSA
Location ID Sample Date butanesulfonic [ hexanesulfonic | octanesulfonic hexanoic Acid octanoic nonanoic Acid c c c noic Acid A EtFOSAA
Acid (PFBS) | Acid (PFHXS)| Acid (PFOS) |Acid (PFHXA) (PFHPA) Acid (PFOA) | Acid (PFNA) (PFDA) Acid Acid Acid (PFTEA)
(PFUNA) [ (PFDOA) | (PFTRIA)
PFAS-SW0092 1/28/2021 5.8 29.4 28.4 10.6 8.5 7.9 20U 20U 20U 20U 20U 20U 40U 40U
PFAS-SW0093 1/28/2021 15.3 128 307 33.4 18.1 19.4 291 21U 21U 21U 21U 21U 42U 42U
PFAS-SW0094 1/26/2021 2.61 5.1 6.1 4.9 4.5 341 20U 20U 20U 20U 20U 20U 4.0U 4.0U
PFAS-SW0095 1/26/2021 2.01 13.4 65.1 4.2 311 5.5 20U 20U 20U 20U 20U 20U 4.0U 4.0U
PFAS-SW0096 1/26/2021 4.1 24.0 64.5 381 221 311 20U 20U 2.0U 2.0U 2.0U 2.0U 4.0U 4.0U
PFAS-SW0097 1/27/2021 5.2 23.4 87.5 8.2 7.1 10.4 221 2.1U0 21U 2.1U0 2.1U0 10U 42U 42U
PFAS-SW0098 1/26/2021 4.2 2,61 3,61 221 2.0U 20U 20U 20U 20U 20U 20U 20U 40U 40U
PFAS-SW0099 1/25/2021 331 10.6 18.2 9.7 6.6 6.4 20U 20U 20U 20U 20U 20U 40U 40U
PFAS-SW0100 1/25/2021 4.3 10.5 18.9 10.6 7.4 7.3 20U 20U 20U 20U 20U 20U 40U 40U
PFAS-SW0101 1/26/2021 4.2 2,61 331 20U 20U 2.0U 20U 20U 20U 20U 20U 20U 40U 40U
PFAS-SW0102 1/25/2021 2,61 12.5 12.8 20U 20U 20U 20U 20U 20U 20U 20U 20U 4.0U 4.0U
PFAS-SW0103 1/25/2021 10.7 12.7 8.9 23U 23U 23U 23U 23U 23U 23U 23U 23U 45U 45U

Notes:

Bolded results indicate the presence of an analyte at the specified concentration
Results are presented in nanogram per liter (ng/L)
I = analytical result was greater than or equal to the method detection limit, but less than the practical quantitation limit
MDL = Method Detection Limit
PFAS = per- and polyfluoroalkyl substances

SW = surface water

U = Result was below the laboratory MDL
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uS/cm - Microsiemens per Centimeter from all rain gauges were averaged and for Actual Conductivity
°C - Degrees Celsius visualization purposes only.
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Definitions : Notes: FDSA-MW0021S2 Transducer Data
ft amsl - Feet Above Mean Sea Level 1. Rainfall data from the John F. Kennedy Space Elevation Specific Conductivity
ft - Feet Center Spaceport W eather Archive. https://ksc Temperature I Rl
in - Inch wxarchive.ksc.nasa.gov/. Rainfall data obtained Act plc ductivit
uS/cm - Microsiemens per Centimeter from all rain gauges were averaged and for ctualt-onductivity
°C - Degrees Celsius visualization purposes only.
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Definitions : Notes: FDSA-MW0036 Transducer Data
ft amsl - Feet Above Mean Sea Level 1. Rainfall data from the John F. Kennedy Space Elevation Specific Conductivity
ft - Feet Center Spaceport Weather Archive. https://ksc Temperature I Rl
in - Inch wxarchive.ksc.nasa.gov/. Rainfall data obtained Act plc ductivit
uS/cm - Microsiemens per Centimeter from all rain gauges were averaged and for ctualt-onductivity
°C - Degrees Celsius visualization purposes only.
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Definitions : Notes: FDTL-IW0041 Transducer Data
ft amsl - Feet Above Mean Sea Level 1. Rainfall data from the John F. Kgnnedy Space Elevation Specific Conductivity
ft - Feet Center Spaceport W eather Archive. https://ksc Temperature I Rl
in - Inch wxarchive.ksc.nasa.gov/. Rainfall data obtained Act plc ductivit
uS/cm - Microsiemens per Centimeter from all rain gauges were averaged and for ctualt-onductivity
°C - Degrees Celsius visualization purposes only.
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Definitions : Notes: HMF-NLP-IW001D2 Transducer Data
ft amsl - Feet Above Mean Sea Level 1. Rainfall data from the John F. Kennedy Space Elevation Specific Conductivity
ft - Feet Center Spaceport W eather Archive. https://ksc Temperature I Rl
in - Inch wxarchive.ksc.nasa.gov/. Rainfall data obtained Act plc ductivit
uS/cm - Microsiemens per Centimeter from all rain gauges were averaged and for ctualt-onductivity
°C - Degrees Celsius visualization purposes only.
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Definitions : Notes: LETF-MWO0005 Transducer Data
ft amsl - Feet Above Mean Sea Level 1. Rainfall data from the John F. Kennedy Space Elevation Specific Conductivity

ft - Feet

in - Inch

uS/cm - Microsiemens per Centimeter
°C - Degrees Celsius

Center Spaceport W eather Archive. https://ksc
wxarchive.ksc.nasa.gov/. Rainfall data obtained
from all rain gauges were averaged and for

= Temperature _ Rainfall

Actual Conductivity

visualization purposes only.
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Definitions : Notes: POL-MW0009D Transducer Data
;t arlgsl - Feet Above Mean Sea Level 1. Eainfall Sdata from t/k\l/e Jc;]hn i Khe_nneﬁy SF)/?I(ce Elevation Specific Conductivity
t - Feet enter Spaceport W eather Archive. https://ksc Temperature E Rainal

in - Inch
uS/cm - Microsiemens per Centimeter
°C - Degrees Celsius

wxarchive.ksc.nasa.gov/. Rainfall data obtained
from all rain gauges were averaged and for

Actual Conductivity

visualization purposes only.
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Definitions : Notes: WILC-MWO0087 Transducer Data
ft amsl - Feet Above Mean Sea Level 1. Rainfall data from the John F. Kennedy Space Elevation Specific Conductivity
ft - Feet Center Spaceport W eather Archive. https://ksc Temperature I Rl
in - Inch wxarchive.ksc.nasa.gov/. Rainfall data obtained Act plc ductivit
uS/cm - Microsiemens per Centimeter from all rain gauges were averaged and for ctualt-onductivity
°C - Degrees Celsius visualization purposes only.
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Definitions : Notes: SLF Outfall Transducer Data
ft amsl - Feet Above Mean Sea Level 1. Rainfall data from the John F. Kennedy Space Elevation Specific Conductivity
ft - Feet Center Spaceport W eather Archive. https://ksc Temperature I Rl
in - Inch wxarchive.ksc.nasa.gov/. Rainfall data obtained Act plc ductivit
uS/cm - Microsiemens per Centimeter from all rain gauges were averaged and for ctualt-onductivity
°C - Degrees Celsius visualization purposes only.
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Definitions : Notes: VAB Outfall Transducer Data
ft amsl - Feet Above Mean Sea Level 1. Rainfall data from the John F. Kennedy Space Elevation Specific Conductivity
ft - Feet Center Spaceport W eather Archive. https://ksc Temperature I Rl
in - Inch wxarchive.ksc.nasa.gov/. Rainfall data obtained Act plc ductivit
uS/cm - Microsiemens per Centimeter from all rain gauges were averaged and for ctualt-onductivity
°C - Degrees Celsius visualization purposes only.
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Definitions : Notes: Industrial Area Outfall Transducer Data

ft amsl - Feet Above Mean Sea Level
ft - Feet

in - Inch

uS/cm - Microsiemens per Centimeter
°C - Degrees Celsius

1. Rainfall data from the John F. Kennedy Space
Center Spaceport W eather Archive. https://ksc
wxarchive.ksc.nasa.gov/. Rainfall data obtained
from all rain gauges were averaged and for

Elevation

= Temperature _ Rainfall

Specific Conductivity

Actual Conductivity

visualization purposes only.
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FORENSIC PROFILE OF
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pt5x11_landscape.mxd

Document Path: C:\Sara_GIS local\KSC\PFAS\TEMPLATES\PFAS 8|

A=COM

JOHN F. KENNEDY
SPACE CENTER

MERRITT ISLAND, FLORIDA

DATE: 10/20/2021 |[DRWN: SD

FIGURE 5-4
FORENSIC PROFILE OF
GROUNDWATER CLUSTER G4




pt5x11_landscape.mxd

Document Path: C:\Sara_GIS local\KSC\PFAS\TEMPLATES\PFAS 8|

A=COM

JOHN F. KENNEDY
SPACE CENTER

MERRITT ISLAND, FLORIDA

DATE: 10/20/2021 |[DRWN: SD

FIGURE 5-5
FORENSIC PROFILE OF
GROUNDWATER CLUSTER G5




pt5x11_landscape.mxd

Document Path: C:\Sara_GIS local\KSC\PFAS\TEMPLATES\PFAS 8|

A=COM

JOHN F. KENNEDY
SPACE CENTER

MERRITT ISLAND, FLORIDA

DATE: 10/20/2021 |[DRWN: SD

FIGURE 5-6
FORENSIC PROFILE OF
GROUNDWATER CLUSTER G6




pt5x11_landscape.mxd

Document Path: C:\Sara_GIS local\KSC\PFAS\TEMPLATES\PFAS 8|

A=COM

JOHN F. KENNEDY
SPACE CENTER

MERRITT ISLAND, FLORIDA

DATE: 10/20/2021 |[DRWN: SD

FIGURE 5-7
PFOS AND PFHxS CORRELATION
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