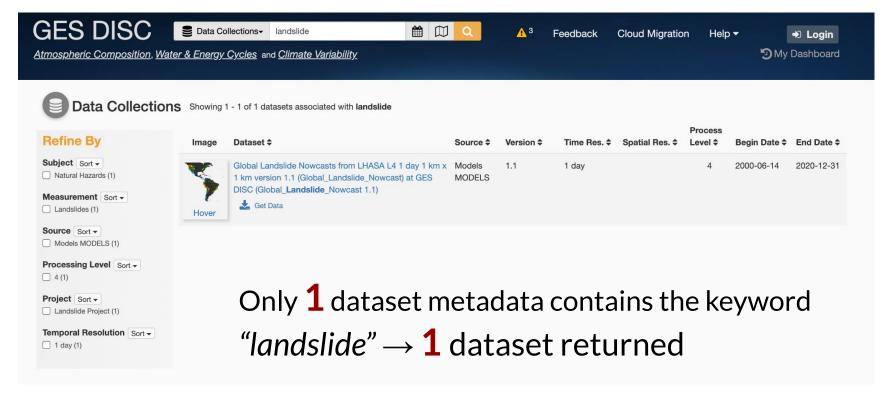

# GES-DISC Graph-Enabled Vector Search ESIP Summer Meeting 2022

Armin Mehrabian<sup>1,2</sup>, Irina Gerasimov<sup>1,2</sup>, Mohammad Khayat<sup>1,2</sup>, Brianna Pagán<sup>1,2</sup>
Binita KC<sup>1,2</sup>, Mahabal Hegde<sup>1</sup>, and David J Meyer<sup>1</sup>

#### Current Search Stack








```
"ScienceKeywords" : [ {
 "Category": "EARTH SCIENCE",
 "Topic": "ATMOSPHERE",
                                      Count = 2
 "Term": "PRECIPITATION",
 "VariableLevel1": "TOTAL SURFACE PRECIPITATION RATE"
```

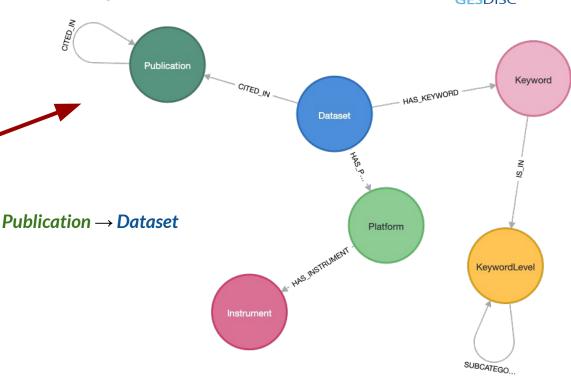
"EntryTitle" : "TRMM (TMPA/3B43) Rainfall Estimate

#### Conventional Full-text Search Engine





## GES-DISC Search Graph Schema



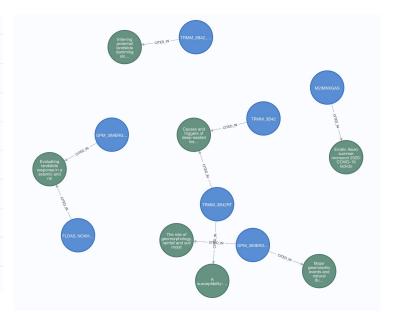



 Modeled our datasets and their metadata as a graph

2. Added "Publications" that cite our datasets

3. Added publications that cite publications that cite cite our datasets




Publication  $\rightarrow$  Publication  $\rightarrow$  Dataset

## Search Query "LANDSLIDE"



## MATCH (d:Dataset)-[i:CITED\_IN]->(p:Publication) WHERE p.abstract CONTAINS 'landslide' RETURN d.shortName, p.title

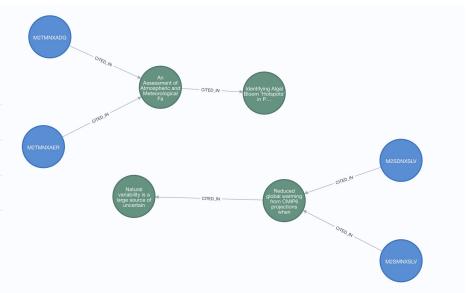
|   | d.shortName           | p.title                                                                                                                                        |
|---|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | "GPM_3IMERGHH"        | "The role of geomorphology, rainfall and soil moisture in the occurrence of landslides triggered by 2018 Typhoon Mangkhut in the Philippines"  |
| 2 | "GPM_3IMERGHH"        | "Major geomorphic events and natural hazards during monsoonal precipitation 2018 in the Kali Gandaki Valley, Nepal Himalaya"                   |
| 3 | "M2IMNXGAS"           | "Erratic Asian summer monsoon 2020: COVID-19 lockdown initiatives possible cause for these episodes?"                                          |
| 4 | "TRMM_3B42"           | "Causes and triggers of deep-seated hillslope instability in the tropics Insights from a 60-year record of Ikoma landslide (DR Congo)"         |
| 5 | "TRMM_3B42_Daily"     | "Inferring potential landslide damming using slope stability, geomorphic constraints, and run-out analysis: a case study from the NW Himalaya" |
| 6 | "FLDAS_NOAH01_C_GL_M" | "Evaluating landslide response in a seismic and rainfall regime: a case study from the SE Carpathians, Romania"                                |
| 7 | "GPM_3IMERGDF"        | "Evaluating landslide response in a seismic and rainfall regime: a case study from the SE Carpathians, Romania"                                |
| 8 | "TRMM_3B42RT"         | "Causes and triggers of deep-seated hillslope instability in the tropics Insights from a 60-year record of Ikoma landslide (DR Congo)"         |
| 9 | "TRMM_3B42RT"         | "A susceptibility-based rainfall threshold approach for landslide occurrence"                                                                  |



#### Search Query "ALGAL BLOOM"



MATCH (d:Dataset)-[i:CITED\_IN]->(p:Publication) WHERE p.abstract CONTAINS 'algal bloom' RETURN d.shortName, p.title


#### 0 Publications → 0 Datasets

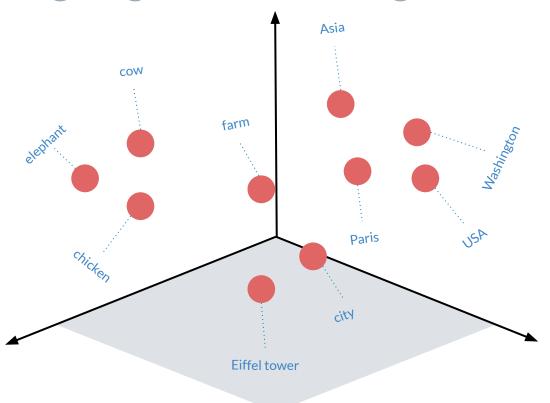
#### Search Query "ALGAL BLOOM"



MATCH (d:Dataset)-[i:CITED\_IN\*1..2]->(p:Publication) WHERE p.abstract CONTAINS 'algal bloom' RETURN d.shortName, p.title

|   | d.shortName | p.title                                                                                                     |
|---|-------------|-------------------------------------------------------------------------------------------------------------|
| 1 | "M2SDNXSLV" | ["Natural variability is a large source of uncertainty in future projections of hypoxia in the Baltic Sea"] |
| 2 | "M2TMNXAER" | ["Identifying Algal Bloom 'Hotspots' in Marginal Productive Seas: A Review and Geospatial Analysis"]        |
| 3 | "M2SMNXSLV" | ["Natural variability is a large source of uncertainty in future projections of hypoxia in the Baltic Sea"] |
| 4 | "M2TMNXADG" | ["Identifying Algal Bloom 'Hotspots' in Marginal Productive Seas: A Review and Geospatial Analysis"]        |




# Graph-Enabled Vector Search Engines

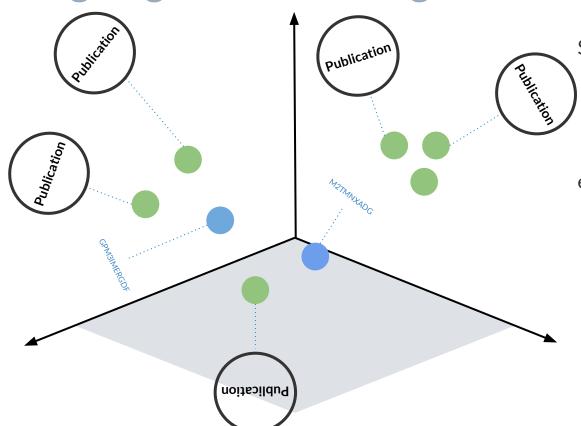
Combining NLP and Graph Capabilities

#### Language embeddings








We can represent every word, sentence, phrase, ... document with a meaningful vector

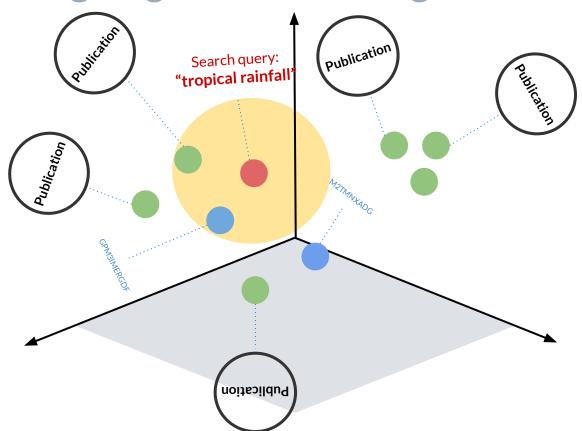
elephant = [0.31, 0.62, ..., 0.87]cheetah = [0.94, 0.54, ..., 0.88]Eiffel tower = [0.45, 0.67, ..., 0.87]France = [0.56, 0.83, ..., 0.22]farm = [0.32, 0.68, ..., 0.76]

#### Language embeddings








Similarly we can map

- Dataset metadata
- Publications
- User search queries

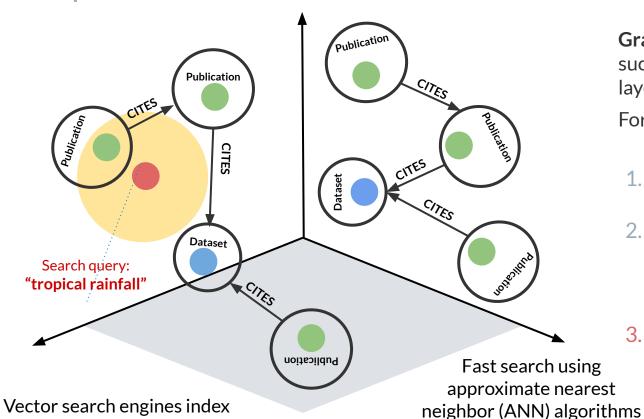
onto this space using language embeddings

- Contextionary-based (Fasttext, w2vec, ...)
- Transformer-based (BERT, xlm, GPTs, ...)

## Language embeddings






For a given user query i.e.

#### "tropical rainfall"

- 1. The query is mapped in the vector space
- 2. All objects including publications and dataset metadata within a radius of the query are identified.

#### Graph-enabled Vector Search





data as dense vectors

**Graph-enables vector search** tools such as **Weaviate** create a graph layer on top of the vector search.

For a given user query i.e. "tropical rainfall"

- 1. The query is placed in the vector space
- 2. All objects including publications and datasets within a radius of the query are identified.
- Fast search using approximate nearest eighbor (ANN) algorithms such as HSNW (<100ms)

  If identified object is of type "publication", we can traverse graph to find the closest dataset (minimum hops)





#### Query: rainfall and cloud type relationship

The exact query string does NOT exist in any publication, dataset metadata, etc. However, using vector search,

```
Explore (
                                                                      "data": {
 limit: 2,
                                                                        "Explore": [
 nearText:
                                                                            "beacon": "weaviate://localhost/167910bc-3135-55e5-801f-
    concepts: ["rainfall and cloud type relationship"],
    certainty: 0.7
                                                                            "certainty": 0.8890923,
                                                                            "className": "Publication"
  beacon
 certainty
                                                                            "beacon": "weaviate://localhost/0a65b2d9-74d7-5fa2-a58f-
  className
                                                                   8ac291d7b9fa",
                                                                            "certainty": 0.8522953,
                                                                            "className": "Publication"
```

#### Query: rainfall and cloud type relationship Example returned publications

### NASA GESDISC

#### Abstract 2 Abstract 2

Three years of reanalysis and ground-based observations collected at the Eastern North Atlantic (ENA) observatory are analyzed to document the properties of rain and boundary layer clouds and their relationship with the large-scale environment during general subsidence conditions and following cold front passages. Clouds in the wake of cold fronts exhibit on average a 10% higher propensity to precipitate and higher rain-to-cloud fraction than cloud found in general subsidence conditions. Similarities in the seasonal cycle of rain and of large-scale properties suggest that the large-scale conditions created by the cold front passage are responsible for the unique properties of the rain forming in its wake. The identification of monotonic relationships between rain-to-cloud fraction and rain rate with surface forcing and boundary layer stability parameters as well as between virga base height with stability and humidity measures further supports that large-scale conditions impact precipitation variability. That being said, these relationships between the large-scale and rain properties are less clear than those established between cloud and rain properties, suggesting that cloud macrophysics have a more direct impact on the properties of rain than the large-scale environment. The applicability of previously documented relationships between cloud thickness and rain properties is tested and the relationships adjusted to accommodate the complex shallow clouds and melting precipitation observed to occur in the ENA region. Establishing these relationships opens up opportunities for parametrization development and suggests that a realistic representation of precipitation properties in models relies on the accurate representation of both clouds and the large-scale environment.

Four years of CloudSat cloud and precipitation observations are combined with CALIPSO lidar, Moderate Resolution Imaging Spectroradiometer (MODIS) radiance, and Global Precipitation Measurement (GPM) precipitation data to document the cloud properties of precipitation confined to latitudes between 30°N and 30°S. The relations between two different cloud top heights (CTHs) and precipitation are examined. The maximum CTH observed in the column is one measure (referred to as the highest CTH, HCTH) and the second is the minimum CTH within the same raining column, interpreted to be the tops of the rain-bearing clouds in the column (referred to as the raining cloud top height, RCTH). Although a broad relation between rain intensity and CTH is shown to exist, especially for shallower warm clouds, the HCTH of the deepest, raining clouds in the tropics is shown to be a poor indicator of precipitation intensity. The implication of the difference between HCTH and RCTH is that for all but the deepest convection, the height of raining clouds is significantly overestimated from observing systems that cannot see below upper cloud layers. The vertical profile of CTHs is shown to be distinctly bimodal with RCTH profiles having a large maximum associated with shallow precipitating clouds, whereas the HCTH distribution has its maximum in the upper troposphere. The influence of this vertical profile information on radiative and latent heating profiles results in a nonnegligible shift in latent heating from an upper level maximum to a more bimodal profile reflecting the increased contribution of shallow

raining clouds.

#### Search Queries Matrix





| Search Query                         | Doc Search<br>(Elasticsearch) | Graph Search<br>(Neo4j) | Vector Graph<br>Search<br>(Weaviate) |
|--------------------------------------|-------------------------------|-------------------------|--------------------------------------|
| Precipitation                        | 1                             | 1                       | 1                                    |
| Wildfire                             | ✓ (1 dataset)                 | <b>✓</b>                | 1                                    |
| Air pollution                        | X                             | <b>✓</b>                | 1                                    |
| Algal Bloom                          | X                             | √ (multi-hop)           | <b>✓</b>                             |
| Rainfall and cloud type relationship | ×                             | ×                       | <b>✓</b>                             |

# THANK YOU