
Smart Video Guidance Sensor (SVGS)

National Aeronautics and Space Administration

A Versatile Relative Pose Sensor

OVERVIEW

- Designed for resource constrained systems (e.g., CubeSats, small satellites, small landers) the Smart Video Guidance Sensor (SVGS) is a low mass, low-cost COTS implementation of the Advanced Video Guidance Sensor designed for Rendezvous Proximity Operations and Capture (RPOC); entry, descent and landing (EDL), intravehicular navigation, and GPS-denied navigation.
- Captures images using a camera and analyzes the pattern of the illuminated markers on the target spacecraft using photogrammetry techniques to determine the range and relative orientation (6D0F state).
- Available on both hobby grade (e.g., Raspberry Pi, Android) and high-end platforms (e.g., Xilinx US+MPSoC).
- · Software implementations in Linux, FreeRTOS, and Android.
- · Sensor range is customizable depending on target configuration.
- · Projected SWaP for SVGS flight unit:

Size: 8.5x6.5x4.5cm

Weight: 250g

Power: 5W camera + 5W target

PROJECT STATUS

- Developed prototype implementation on Android smart phone and performed initial accuracy testing (2013)
- Implemented LED targets to improve accuracy and robustness (2017)
- Demonstrated formation flying in closed-loop control (3D0F) with Resonant Inductive Near Field Generation System (RINGS) ground demonstration at Florida Institute of Technology (2017)
- Enabled demonstration of electromagnetic actuation for formation flying in RINGS ground demo at FIT (2018)
- Ported SVGS software and capabilities from consumer grade platforms to high-end, flight qualifiable platforms (2019 – 2022)
- Demonstrated precision landing capabilities of SVGS on a multirotor platform in an indoor flight experiment as pathfinder for use of SVGS for EDL applications (2021)
- Integrated SVGS with Astrobee for flight onboard International Space Station (ISS) (2022)
- Outdoor landing experiment with more lander-like trajectory planned for 2022 – 2023.

SVGS Platforms

		Operating	Camera		Update	
Platform	Language	System	Interface	Target	Rate	Environment
Samsung S8	Java/C	Android	MIPI	LED/Retro	30Hz	Terrestrial
INFORCE 6640-820	Java	Android	MIPI	LED	20Hz	Terrestrial
Raspberry Pi 3	Java	Linux	Pi Cam	LED	10Hz	Terrestrial
Xilinx US+ MPSoC	С	FreeRTOS	GigE	LED	10Hz	Space (projected)
Qualcomm SDA845	С	Linux	MIPI	LED	10Hz	Space (projected)

SVGS Accuracy

	0 – 3 meters	3 – 10 meters	10 – 20 meters			
X,Y lateral position (m)	0.005	0.010	0.030			
Z range position (m)	0.020	0.140	0.25			
RPY attitude (deg)	0.6	1.4	3.2			

On-going SVGS Applications

Precision Landing Pathfinder on Multirotor for EDL

ISS Intravehicular Formation Flight

Partnership between NASA Marshall Space Flight Center and Florida Institute of Technology

POCs

John Rakoczy/NASA/MSFC john.m.rakoczy@nasa.gov
Dr. Ivan Bertaska/NASA/MSFC ivan.r.bertaska@nasa.gov
Alexander Summers/NASA/MSFC alexander.w.summers@nasa.gov
Dr. Hector Gutierrez/FIT hgutier@fit.edu