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Abstract 27 

Current understanding of the cold season Arctic Oscillation (AO) impact on the summertime 28 

sea ice is revisited in this study by analyzing the role from each month. Earlier studies examined 29 

the prolonged AO impact using a smooth average over 1-2 seasons (e.g., December−March, 30 

December−April, March−May), ignoring large month-to-month AO variability. This study finds 31 

that the March AO is most influential on the summertime sea ice loss. First, the March AO is 32 

most highly negative-correlated with the AO in summer. Secondly, surface energy budget, sea 33 

level pressure, and low-tropospheric circulation exhibit that their time-lagged responses to the 34 

positive (negative) phase of the March AO grow with time, transitioning to the patterns 35 

associated with the negative (positive) phase of the AO that induces sea ice decrease (increase) 36 

in summer. Time evolution of the surface energy budget explains the growth of the sea ice 37 

concentration anomaly in summer, and a warming-to-cooling transition in October. The regional 38 

difference in sea ice anomaly distribution can be also explained by circulation and surface energy 39 

budget patterns. The sea ice concentration along the pan-Arctic including the Laptev, East 40 

Siberian, Chukchi, and Beaufort Sea decreases (increases) in summer in response to the positive 41 

(negative) phase of the March AO, while the sea ice to the northeast of Greenland increases 42 

(decreases). This sea ice response is better represented by the March AO than by the seasonally 43 

averaged winter AO, suggesting that the March AO can play more significant role. This study 44 

also finds that the sea ice decrease in response to the positive AO is distinctively smaller in the 45 

20th century than in the 21st century, along with the opposite sea ice response over the Canada 46 

Basin due to circulation difference between the two periods.  47 

  48 



3 
 

1. Introduction 49 

The Arctic Oscillation (AO) in the boreal winter significantly explained by natural 50 

variability (Screen et al 2018) is understood as one of the key factors for driving the anomalous 51 

surface condition in the following melt season (Rigor and Wallace 2004, Lindsay and Zhang 52 

2005, Kwok 2009, Polyakov et al 2012, Döscher et al 2014). Earlier studies showed that the 53 

wintertime AO can have persisting impacts on the surface temperature, pressure, sea ice drift and 54 

circulation in the subsequent months. Most importantly, this memory of the wintertime AO can 55 

play a profound role in driving variability of the summertime sea ice (Rigor et al 2002, Zhang 56 

2015, Ogi et al 2016, Park et al 2018, Gregory et al 2022). Rigor et al (2002) and Williams et al 57 

(2016) found that sea ice motion that responds to the positive phase of the AO modulates the 58 

Beaufort Gyre, Transpolar Drift Stream (Mysak 2001) and subsequent ice export through the 59 

Fram Strait (Ogi and Wallace 2012), enhancing the summer sea ice loss. Several studies 60 

attributed this ice export to the Arctic Dipole pattern (Lindsay et al 2009, Overland et al 2012, 61 

Choi et al 2019). In contrast, Beaufort Gyre was found to be stronger after the negative phase of 62 

the winter AO leading to thickening of the sea ice pronouncedly in the Canada Basin 63 

(Proshutinsky and Johnson 1997). Atmospheric circulation and surface radiative/turbulent heat 64 

fluxes in spring and summer can be also modulated by the AO forcing in the preceding winter 65 

(Park et al 2018). Williams et al (2016) used a hindcast model based on the AO index averaged 66 

over winter and spring (December – April) and was able to reduce errors in anticipating the sea 67 

ice extent anomaly in September.  68 

In addition to the wintertime AO impact, studies also found that the sea ice extent minimum 69 

in late summer (August-September) is highly correlated with reflectivity of solar radiation in 70 

early summer (May-June) (Choi et al 2014, Zhan and Davies 2017). Kapsch et al (2019) 71 
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addressed a key role of spring atmospheric circulation patterns in modulating the Arctic sea ice 72 

in summer.  73 

Different conclusions from earlier studies indicate that there is still room for further 74 

improved understanding of time-lagged connection between AO and sea ice. Advanced 75 

understanding is also expected to contribute to the improvement in seasonal prediction skill of 76 

the summertime sea ice. Currently, many climate models such as the ones participating in the 77 

Coupled Model Intercomparison Project 6 (CMIP6) have underestimated the important 78 

connections between the winter AO (average over December through March) and the summer 79 

sea ice (Gregory et al 2022) more specifically over the pan-Arctic region such as the Laptev, 80 

East Siberian and Beaufort seas, where the strong downward trend of sea ice extent due to 81 

climate change (Meredith et al 2019) and increasing role of ocean-air heat exchange (Laptev 82 

Sea) (Ivanov et al 2019) was reported. Earlier version of climate models (e.g., CMIP5) also 83 

underestimates the observed relationship between solar radiation in early summer and sea ice 84 

extent in late summer (Choi et al 2014). Sea ice variation by atmospheric circulation associated 85 

with internal variability also tends to be underestimated (Shen et al 2022).    86 

Although it is a common analysis to evaluate AO impacts using 1-2 seasonal average, the 87 

AO phase can vary from weekly to intra-seasonal time scale. It is not unusual to see several 88 

phase transitions and resulting changes in weather events (Rudeva and Simmonds 2021) within a 89 

season. Because of these variabilities at shorter time scales, the strongest impactful AO signal 90 

might be substantially reduced by the seasonal averaging. Thus, if the AO from each winter 91 

month has different influence on the summer sea ice, an interesting question would be: what 92 

month of the AO has the most impact? 93 

In this study, we find that the most impactful AO is not from the winter months average. It is 94 
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the March AO that produces the strongest time-lagged response of the summertime sea ice in the 95 

Arctic than all winter or winter-spring averaged AOs. This study is organized by first confirming 96 

the negative relationship of the AO phase in winter with that in the following summer (Ogi et al 97 

2016) and extending the correlation analysis for the AOs from each individual months. Then, 98 

investigations are made to better understand how the time-lagged responses of thermodynamic 99 

(i.e., surface warming/cooling from surface energy budget) and dynamic (low-level circulation 100 

and pressure) process to the March AO evolves with time from March through September to 101 

drive the sea ice anomaly during the melt season. Finally, sea ice responses to the AO in the 21st 102 

century and the late 20th century are compared to quantify their differences (Gregory et al 2022). 103 

 104 

2. Data and Method 105 

2.1. Data 106 

Monthly AO index based on the Empirical Orthogonal Function (EOF) of 1000hPa 107 

geopotential height is obtained from NOAA over the period 1980 to 2021. Reanalysis variables 108 

for analysis are obtained from the Modern-Era Retrospective analysis for Research and 109 

Applications, Version 2 (MERRA-2) (Gelaro et al 2017). The variables used are geopotential 110 

height at each pressure level from 1000hPa to 100hPa, sea level pressure (SLP) and horizontal 111 

winds at 925hPa level (GMAO 2015a), sea ice fraction (GMAO 2015b), surface shortwave and 112 

longwave radiative fluxes, latent heat flux and sensible heat flux (GMAO 2015c). Since the 113 

MERRA-2 has some limitation in accurately representing the observed sea ice distribution (e.g., 114 

warm bias in sea ice representation (Marquardt Collow et al 2017, Batrak and Müller 2019)), 115 

results from the MERRA-2 are verified by the observation from the National Snow and Ice Data 116 

Center (NSIDC) (Walsh et al 2019). Also, the surface radiative fluxes from the Clouds and the 117 
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Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) 118 

(NASA/LARC/SD/ASCE 2019) are used to compare the radiative fluxes between the MERRA-2 119 

and CERES-EBAF_Ed4.1. 120 

 121 
 122 
Figure 1. Time-height cross-section of the area-averaged (0°−360°E, 60°−90°N) geopotential 123 

height anomaly projected onto the Arctic Oscillation index in January (upper), February 124 
(middle), and March (lower). The regressed anomalies significant at 90% confidence are 125 
shaded. Time axis represents the months in number and the vertical axis represents the 126 
pressure levels in hPa. Unit of the anomaly is m. 127 
  128 

2.2. Method 129 

Time-lag correlation and regression are the main methods to explore the responses of the sea 130 

ice and key atmospheric/surface variables to the AO. The sea ice and AO time series are 131 
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detrended by least square estimate to remove any contribution from trend to time-lag 132 

correlations. The correlations are computed using the Pearson correlation method. To assess the 133 

significance, critical value of the correlation at 95% confidence is obtained based on the t-test 134 

with N-2 degree of freedom, where N is the sample size. In order to identify the time evolution 135 

of the sea ice, surface warming from surface energy budget, SLP and circulation in response to 136 

the March AO, we regress their anomaly time series at each grid point onto the AO index. This 137 

regression is also applied to three-dimensional geopotential height anomalies from 1000hPa to 138 

100hPa levels to acquire their vertical structure in the Arctic connected with the AO in target 139 

month that varies from December to May. A two-tailed t-test is conducted to test the significance 140 

of the regressed anomalies.  141 

 142 

3. Results 143 

The first step of our diagnostics is to find the cold season month in which the AO has the 144 

strongest lagged correlation with the AO in subsequent summer months. To identify that month, 145 

geopotential height anomalies in each calendar month are regressed for each pressure level onto 146 

the NOAA AO index for January (figure 1(a)), February (figure 1(b)), and March (figure 1(c)), 147 

respectively, followed by averaging the regressed anomalies over 0°−360°E, 60°−90°N. Since 148 

the loadings of the positive AO EOF are negative over this Arctic domain, the negative (positive) 149 

anomalies in figure 1 can be thought of as the positive (negative) AO phase.  The vertical 150 

structures exhibit different time-lagged relationship of geopotential height with the AO in three 151 

different preceding months. Geopotential height anomalies in response to the March AO are 152 

evidently positive in summer, indicating reversal of the AO phase (i.e., positive in March to 153 

negative phase in summer) (figure 1(c)) (Ogi et al 2016). Cases for January and February also 154 
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exhibit the weakening of the negative anomalies in summer (figures 1(a) and (b)), but the 155 

reversal of AO phase is not as clear as the case for March. We also compute correlation of the 156 

AO index in summer (June-September) with that from January, February, and March, 157 

respectively. Correlations turn out to be −0.08 (January), −0.10 (February), and −0.38 (March), 158 

with the largest amplitude from March. Especially, AO in August, out of the summer months of 159 

June-September, is most negatively correlated with the March AO, with correlation −0.54. 160 

Additional examination of the time-lagged geopotential height response to the AO in another 161 

months, December or two spring months (April and May), presents no clear relationship in the 162 

AO phase between those months and following summer (see supplementary figure S1). The 163 

results overall support the argument that the March AO is the most influential factor that leads to 164 

the opposite phase of the AO in the following summer. This advances the previous 165 

understanding about connection of the AO with the sea ice in summer based on the seasonally 166 

averaged AO in the preceding winter (Rigor et al 2002, Ogi et al 2016). An important finding in 167 

Ogi et al (2016) based on the seasonally averaged AO is that the September sea ice response to 168 

the AO is relatively weaker after 2007 and the surface air temperatures over the East Siberian, 169 

Chukchi, and Beaufort Seas play a stronger role in sea ice coverage in fall. 170 

The sea ice response to the AO evolves with time, showing that regional sea ice responses 171 

are better represented by the March AO than by the seasonally averaged winter AO. The main 172 

feature revealed from lag-correlation between sea ice and March AO is that negative correlations 173 

are gradually getting stronger, signifying the sea ice decrease with time over the Laptev, East 174 

Siberian, Chukchi, and Beaufort Sea (LECB) in the event of positive AO in March (figures 2(a)-175 

(f)) (Gregory et al 2022). The area of sea ice reduction also expands with time, reaching the 176 

maximum spatial extent in August. The strongest negative correlations (< −0.6) are seen in 177 
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August, consistent with the strongest negative relationship in the AO phase between March and 178 

August (figure 1). The region of sea ice decrease shrinks to some extent in September, but the 179 

negative correlations over the LECB region remain high. In contrast, the region to the northeast 180 

of Greenland is characterized by positive correlations that indicate sea ice increase, with the 181 

maximum in June. Time-lagged correlations of the sea ice with the DJF averaged AO in figures 182 

2(g)-(l) exhibit relatively smaller amplitudes than those in figures 2(a)-(f) (March AO) more 183 

clearly during the melting period of July, August and September.            184 

 185 
Figure 2. a)-f) Time-lag correlation coefficients of the March AO index in the 21st century 186 

(2000-2021) with the sea ice anomaly for the following months of a) April, b) May, c) June, 187 
d) July, e) August and f) September. g)-l) Same as a)-f) but for the AO index averaged over 188 
December through February (with no impact from March). Stippling represents the grid 189 
points where correlation is significant at 95% confidence.  190 



10 
 

There is clear evidence that the sea ice response to the March AO is remarkably different 191 

between the 21st and the late 20th century (e.g., 1980 – 1999). The result for the 20th century 192 

demonstrates that the sea ice decrease over the East Siberian Sea is apparently smaller than that 193 

in the 21st century especially in climatologically a stronger melting period of August and 194 

September (figures 2(c)-(f) and 3). Sea ice in the 20th century is relatively thicker, older and 195 

more rigid, making the sea ice response to the AO less sensitive and harder to occur (Maslanik et 196 

al 2007). Particularly, the sea ice response, characterized by increase over the Canada Basin, is 197 

opposite to that in the 21st century. Not only the different nature of sea ice between the two 198 

periods, but also the different atmospheric circulation response to the AO, that will be discussed 199 

in figure 7, appears responsible for this opposite sea ice response. Also, the negative relationship 200 

of the AO phase between March and summer (August for example) in the 20th century is not as 201 

strong as that in the 21st century (Yamazaki et al 2019). The correlation of the AO between 202 

March and August is 0.10 in the 20th century while it was –0.54 in the 21st century. 203 

The sea ice data used in figures 2 and 3 are from reanalysis. Thus, the same calculation is 204 

conducted using the observed sea ice concentration from the NSIDC to verify the reliability of 205 

the results in figures 2 and 3. The main features found in figures 2 and 3 that 1) the March AO 206 

better explains the time-lagged sea ice response in the following summer than the DJF averaged 207 

AO, 2) the largest negative correlations over the LECB region in August and September, and 3) 208 

the opposite sea ice response between the 20th and 21st century to the AO over the Canada 209 

basin, are reproduced well based on the NSIDC data (figures S2 and S3), demonstrating the 210 

reliability of the patterns in figures 2 and 3.        211 
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 212 
Figure 3. Time-lag correlation coefficients of the March AO index in the 20th century (1980-213 

1999) with the sea ice anomaly for the following months of a) June, b) July, c) August and 214 
d) September. Stippling represents the grid points where correlation is significant at 95% 215 
confidence. 216 

 217 
To better understand how the thermodynamic processes influence the sea ice response, we 218 

analyze surface energy budget. The surface energy budget is broken down, as in the following, 219 

into the net radiative fluxes and turbulent heat fluxes with the positive (negative) budget value 220 

for warming (cooling) the surface,   221 

          Energy budget = SW↓ – SW↑ + LW↓ – LW↑ – (Latent heat + Sensible heat)  222 

Time evolution of the energy budget in response to the positive March AO reveals that the Arctic 223 

Ocean is dominated by surface warming due to energy surplus (figure 4). Surface warming 224 

grows from April through August reaching the maximum in August, followed by moderate 225 

weakening in September. The surface warming is even greater along the LECB region. In 226 

contrast, east and northeast of Greenland shows surface cooling in general from May to August. 227 

This regional distribution each month is quite similar to the patterns shown in figure 2, 228 
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demonstrating that the surface energy budget preceded by the March AO impact largely explains 229 

the time evolution of the sea ice anomaly in the Arctic. 230 

 231 
Figure 4. Time evolution (March to October) of the surface energy budget (see text for 232 

definition) anomaly regressed onto the March AO index in the 21st century (2000-2021). 233 
Unit is W m-2. Stippling represents the grid points where anomaly is significant at 95% 234 
confidence. 235 

 236 
The strong lag-correlation between the March AO and October surface flux is a 237 

manifestation of the total Arctic sea ice melt through the summer (figure 4h). The AO-correlated 238 

October warming (over sea ice) and cooling (over open water) bear a remarkable resemblance of 239 

the distribution of summer sea ice loss in the Arctic Ocean. This lag-correlation reflects the 240 

accumulated efforts from all summertime processes that contribute to the sea ice loss and the 241 

rapid warming-to-cooling transition during the fall. This transition begins in September when the 242 

correlation between the March AO and the surface flux is approximately neutral in the Arctic 243 

Ocean. But the surface flux exchanges intensify in October when the atmosphere cools down 244 
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rapidly. The slow October refreeze of the Arctic Ocean in recent years has raised a great concern 245 

in climate change research (e.g., Earth Observatory 2021). The role of downward longwave flux 246 

(Wu and Lee 2012, Sato et al 2021) essentially important after the warm season (Lee et al 2017, 247 

Luo et al 2017) and prolonged Siberian heat (Ciavarella et al 2021) are among the possible 248 

processes that lead to the delayed October refreeze. 249 

 250 
Figure 5. a)-d) Time evolution (June to September) of the total net (shortwave + longwave) 251 

radiative flux anomaly at surface from MERRA-2 regressed onto the March AO index in the 252 
21st century (2000-2021). e)-h) Same as a)-d) but for the radiative flux anomalies from 253 
CERES-EBAF. Unit is W m-2. Stippling represents the grid points where anomaly is 254 
significant at 95% confidence. 255 

 256 
The total net radiative flux terms in the surface energy budget in figure 4 are compared with 257 

CERES-EBAF for verification, although the CERES-EBAF is also known to have its own 258 

limitations. We compare the regressed anomalies onto the March AO specifically for June 259 

through September period (figure 5). It is clear that regional distribution of anomalies from 260 
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MERRA-2 (figures 5(a)-(d)) is generally in good agreement with CERES-EBAF (figures 5(e)-261 

(h)), with larger positive anomalies over the Arctic in July/August than in June/September.   262 

 263 
Figure 6. a)-d) Time evolution (June to September) of the net downward shortwave flux at 264 

surface over ocean regressed onto the March AO index in the 21st century (2000-2021). 265 
Unit is W m-2. e)-h) Same as a)-d) but for net downward longwave flux. Stippling represents 266 
the grid points where anomaly is significant at 95% confidence. 267 

 268 
It has been understood that the shortwave radiative flux can contribute significantly to the 269 

surface energy budget in summer (Persson et al 2002, Döscher et al 2014). By further separating 270 

the total radiative flux into shortwave and longwave flux, we are interested in identifying how 271 

the lagged response of shortwave flux to the March AO evolves with time over the entire course 272 

of boreal summer. The net shortwave flux from June to September explains that the positive 273 

anomaly, indicative of weak shortwave reflectivity to solar insolation, is especially stronger 274 

along the LECB region (figures 6(a)-(d)), where more sea ice decrease is found in figure 2. This 275 
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positive anomaly is largest in that region in June and tends to weaken gradually with time 276 

(figures 6(c) and (d)). Nonetheless, spatial pattern in figures 6(a)-(d) indicates that the impact of 277 

positive AO in March is still active in August and September, contributing to continued surface 278 

warming and sea ice decrease along the LECB region. 279 

In contrast, the longwave flux plays as a moderate contributor to surface warming in 280 

summer. Figures 6(e)-(h) exhibit positive anomalies in the Arctic, but with smaller amplitude 281 

than the net shortwave flux. In addition, while the net shortwave flux contributes to warming 282 

close to the coastal area of LECB, the positive net longwave flux anomaly is seen over inner part 283 

of the Arctic Ocean clearly in July and August (figures 6(f) and (g)). Distribution of this positive 284 

anomaly is shown to resemble well the distribution of positive total cloud fraction anomaly in the 285 

Arctic (figure S4). Compared to the net shortwave/longwave fluxes, the amplitude of latent heat 286 

and sensible heat fluxes are relatively smaller (figure S5), indicating that the surface 287 

warming/cooling is more contributed by net radiative fluxes.          288 

More absorption of shortwave radiation (figure 6), surface warming (figure 4), and sea ice 289 

decrease (figure 2) during the melt season raises an interesting question about their physical 290 

connections to atmospheric circulation. Low-level (925 hPa) wind and SLP anomalies regressed 291 

onto the March AO elucidate their time evolution from March through September (figure 7). 292 

Figure 7a for March represents the typical pressure/circulation pattern associated with the 293 

positive phase of the AO. This spatial structure weakens in April. Subsequently, the positive SLP 294 

anomaly in conjunction with anticyclonic circulation anomaly develops over the Arctic starting 295 

in May (figures 7(b)-(g)). This pattern continues to enhance forming the well-established spatial 296 

structure of anticyclonic circulation centered over Greenland and North Pole (Wang et al 2009, 297 

Ogi and Wallace 2012). It is also clear that the SLP anomaly over the sub-polar continents is 298 
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near zero or negative in summer (Screen et al 2011), similar to the negative phase of the AO 299 

(figures 7(d)-(f)). Low-level wind surrounding the positive SLP anomaly blows from the west of 300 

Greenland toward the Arctic Ocean. The anticyclonic circulation anomaly also forms the 301 

northerly flow that blows from the North Pole to the Fram Strait. West and east of Greenland is 302 

characterized by warm and cold condition, respectively, due to this circulation anomaly observed 303 

in May through August. More absorption of solar radiation, surface warming and sea ice 304 

decrease described earlier are located along the northern flank of positive SLP and anticyclonic 305 

circulation anomaly. In contrast, less absorption of solar radiation, surface cooling and sea ice 306 

increase are located over the northeast of Greenland, where the northerly flow is predominant.  307 

 308 
Figure 7. Same as Figure 4 but for sea level pressure anomaly (shaded) and horizontal 309 

circulation anomaly at 925 hPa level (vectors). Units of the sea level pressure and wind are 310 
hPa and m s-1, respectively. 311 

 312 
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The SLP and circulation in earlier months (March and April) are nearly opposite to the 313 

features seen in May through August, causing warming over east of Greenland (figures 4(a) and 314 

(b)). It is suggested that strong negative SLP anomaly and cyclonic circulation anomaly in 315 

accordance with the positive AO in March (figure 7(a)) could induce more cloudiness and 316 

downward longwave flux over the Arctic Ocean. This can drive relatively stronger warming in 317 

March than in April in the Arctic as we find that monthly difference in figure 4. 318 

More importantly, it is worth noting that these SLP and circulation anomalies remarkably 319 

differ from those in the late 20th century (figure S6). Comparison between figure 7 and figure S6 320 

demonstrates that, in the late 20th century, the SLP and circulation in summer does not reflect 321 

well the reversal of the March AO phase. As a result, the Canada Basin is not characterized by 322 

the strong southerly flows passing through the west of Greenland that is found in the 21st 323 

century. It in turn indicates unfavorable condition for sea ice decrease in this region in the late 324 

20th century as it was discussed earlier in figure 3.      325 

 326 

4. Conclusion and discussion 327 

The impact of the March AO on the Arctic sea ice in the following summer is investigated in 328 

this study. While earlier studies average over winter or winter-spring to investigate the cold 329 

season AO impact on the interannual variation of the summertime sea ice, this study clearly 330 

found that the March AO is more highly correlated with the summertime sea ice than the AOs in 331 

the other boreal winter months or in spring (e.g., April and May). Specifically, a significant 332 

negative relationship of the AO between March and summer is identified, with the maximum 333 

anticorrelation in August. Time evolution of surface warming from surface energy budget, 334 

shortwave/longwave radiative flux, SLP and low-tropospheric circulation depict 335 



18 
 

comprehensively how the AO phase in March gradually fades away and then transitions to the 336 

negative phase over the period from April to August. Anomalous sea ice distribution in each 337 

month is reasonably explained by time evolution of surface energy budget and SLP/circulation. 338 

Sea ice decrease enhances along the LECB region during the melt season in the event of positive 339 

AO in March, whereas the sea ice increases over the region to the northeast of Greenland. The 340 

sea ice decrease along the LECB region is found to be more active in the recent 21st century 341 

(2000-2021) than later part of the 20th century (1980-1999), due to the fact that sea ice is thinner 342 

and more susceptible to surface warming and sea ice motion (Maslanik et al 2007, Williams et al 343 

2016, Gregory et al 2022). Also, different atmospheric circulation response to the March AO 344 

between the 21st and 20th century yields the opposite sea ice anomaly between the two periods 345 

over the Canada Basin.  346 

The strong anticorrelation of the AO between March and summer in this study is based on 347 

the NOAA index that focuses on the 1000hPa geopotential height. Additionally, we compute our 348 

own AO index by applying the upper-level (250hPa) MERRA-2 geopotential height to verify 349 

that the strong anticorrelation of the AO between March and the following summer is robust. We 350 

first find that this AO index is highly correlated with the NOAA index (0.93 in March and 0.66 351 

in summer). Time-lagged correlations of the AO time series between March and the subsequent 352 

months clarify a dramatic growth of negative correlation with time reaching the peak in August 353 

(figure S7(d)), identical to the feature based on the NOAA index. 354 

Arctic sea ice historic record in peak melt season (e.g., September) indicates that the years 355 

characterized by significant melting are 2007, 2008, 2011, 2012, 2015, 2016, 2019 and 2020 356 

(https://nsidc.org/arcticseaicenews/charctic-interactive-sea-ice-graph/). The March AO index in 357 

those years was strongly in positive, generally a good agreement with the findings in this study. 358 
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On the other hand, 2013 and 2018 are the years that experience more sea ice extent in melt 359 

season than the other years. The March AO in those two years was in negative phase. 360 

Our further interest is whether more sea ice loss than average over the LECB region occurs 361 

only when the AO is in positive phase with no exception in the preceding cold season. Despite 362 

the negative AO phase in early 2010, atmospheric circulation, specifically the Beaufort Gyre 363 

responsible for ice transport and thickening of ice in the Canada Basin was not so enhanced in 364 

2010, compared to the mean anomaly pattern based on negative AO events (Stroeve et al 2011), 365 

resulting in the above average sea ice loss in the boreal summer. Please note, however, that this 366 

negative sea ice anomaly is not greater than that observed in the subsequent strong melt years in 367 

2010s. The case in 2010 suggests that the atmospheric process could be occasionally exceptional 368 

causing more sea ice decrease than average even if the AO is not in the positive phase in the 369 

preceding winter. This study also suggests that, while a very interesting connection between the 370 

March AO and summertime sea ice is found, fully-coupled simulations with more complex 371 

representations of sea ice and snow on the ice are needed to more directly test these connections. 372 
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