
Impact of Emerging Computing Architectures and Opportunities
for Process Systems Engineering Applications

David E. Bernal a,d, Carl D. Lairdb,1, Stuart M. Harwood c, Dimitar Trenevc, and Davide Venturelli a,d

a Research Institute for Advanced Computer Science (RIACS), Universities Space Research Association (USRA)

b Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

c ExxonMobil Technology and Engineering Company

d Quantum Artificial Intelligence Laboratory (QuAIL), NASA Ames Research Center

Abstract
Moore’s “law” was the observation that the number of transistors in an integrated circuit doubled approximately every two
years. This trend has distinctly failed to hold in recent years. The death of Moore’s law has left researchers and practition-
ers in the computational sciences searching for technologies to provide the speedups formerly supported by Moore’s law.
Previously overlooked chip architectures and other computing technologies are now receiving more development resources.
Critically, these technologies are gaining more mature software support, opening their adoption by researchers in algorithms
and applications. In this article, we review some of these computing technologies, their relationship with various algorithms
and applications, and their potential benefits (or pitfalls). We close with recommendations for future work by the process
systems engineering community specifically.

Keywords
Emerging hardware, parallel computing, distributed computing, quantum computing, analog computing, high-performance

computing

1 Introduction

A key tenet of the field of Process Systems Engineering
(PSE) is the formal mathematical description of a problem
to enable efficient numerical solution with the aid of a com-
puter. With this, the limits of what is possible in PSE are,
of course, linked to what is possible in the area of comput-
ing. Work in PSE has included developing and improving
numerical algorithms (largely serial). Steady hardware per-
formance improvements coupled with these algorithm devel-
opments have led to repeated successes in solving previously
intractable problems in the area of PSE. However, as single
core performance improvements slowed, computing hard-
ware breakthroughs now focus on emerging technologies
with new capabilities, limitations, and computing paradigms.
To see continued performance improvement and innovation,
scientific computing research is focused on developing new
understanding, implementations, and algorithms that can ef-
fectively exploit these emerging computational architectures.

Computational complexity theory captures the ability of
an algorithm to scale with problem size and limits the num-
ber of steps an algorithm must take to solve a given prob-
lem. However, there is still a lot of flexibility in implement-

ing those algorithms. While emerging architectures have the
potential for transformative computational performance, they
also bring implementation constraints; different architectures
have different strengths and weaknesses concerning execu-
tion time and power requirements. Using the proper com-
puting hardware for the right job provides opportunities to
achieve practical time or energy savings; these savings could
make the difference between a problem being “tractable”
or not at application scale. Furthermore, there is signifi-
cant scope for designing and implementing new algorithms
that can take advantage of emerging computational architec-
tures and, in some cases, even co-design the algorithm and
hardware simultaneously to improve computational perfor-
mance [22] significantly.

In this article, we provide an overview of some emerging
computational architectures, discuss their capabilities and the
maturity of software tools, and provide context for these ar-
chitectures with respect to different algorithms and applica-
tions within PSE. We close with some discussion of the ma-
turity of and applicability of these architectures with recom-
mendations for future work by the PSE community specifi-
cally.

1 Corresponding author. Email: claird@andrew.cmu.edu.



2 Emerging Technologies and Their Applications

2.1 Multi-core, Distributed, and Hybrid Parallel Architec-
tures

The early to mid-2000s saw a stagnation in the year-over-
year increase in CPU clock speeds, and chip manufactur-
ers focused instead on hyperthreading and the development
of multicore architectures to drive performance improve-
ments [55]. Similarly, we also saw a significant rise in the
availability of distributed computing clusters for both aca-
demic and industrial users that promised scalable parallel
computing resources. These changes had a major impact on
the landscape for scientific computing today, where parallel
computation is now mainstream.

Almost every standard desktop or laptop sold today con-
tains multiple computing cores. Typical multicore systems
are affordable, and there is a range of mature, standardized
tools for implementing parallel scientific computing codes.
While communication between threads can be very fast on
these shared-memory architectures, they still typically con-
tain a relatively low number of cores, and for large-scale ap-
plications, key bottlenecks include the available bandwidth
for “off-chip” memory [21]. Distributed computing clusters,
on the other hand, bring a large number of cores by connect-
ing many computational nodes with standard or specialized
networking technology. While these architectures can over-
come memory bottlenecks by distributing the workload over
multiple nodes, communication across the network must be
carefully managed for scalable performance.

Graphics processing units (GPUs) can hardly be con-
sidered “emerging” hardware anymore, but their impact on
various scientific computing problems cannot be overstated.
Originally driven by computer graphics requirements, GPUs
have become a highly parallel computing architecture that
can cost-effectively deliver many operations per second for
suitably parallelizable applications, such as sparse linear al-
gebra as commonly found in neural networks (NN) training.
While they promise massive parallelism at a relatively low
cost, these “streaming” architectures come with significant
implementation constraints over general CPU-based archi-
tectures, and applications must be selected carefully.

Modern distributed computing clusters are hybrid archi-
tectures that combine many multicore computing nodes and
often include specialized accelerators. Effective use of these
hybrid architectures is a major theme of the DOE Exascale
Computing Project [5, 23]. The tools for building paral-
lel applications with these architectures (e.g., MPI [27]) are
very mature with well-established standards and implemen-
tations [26]. Even high-level languages like Python and Julia
have mature libraries and interfaces for implementing par-
allel codes on both shared- and distributed-memory archi-
tectures [16, 17, 12]. Extensions built on these packages
have enabled scalable parallel optimization implementations
for specific applications like large-scale nonlinear program-
ming [44, 32, 60, 50]. Maturing APIs and software support
for GPUs (e.g., [34]) has enabled the use of GPUs for a num-
ber of scientific computing applications [39], mostly focused
on training deep NNs [35] but also including nonlinear opti-

mization [13]. Numerous examples within PSE demonstrate
solutions to previously intractable problems through effec-
tively utilizing these architectures.

2.2 Application Specific Integrated Circuits, Tensor Process-
ing Units and Field Programmable Gate Arrays

The categorization of a device as an application-specific in-
tegrated circuit (ASIC) can vary. For this discussion, we
consider an ASIC to be a device where a significant portion
of the algorithm that runs on it is programmed directly into
the chip’s architecture and thus is fixed at the time of man-
ufacture. D.E. Shaw Research’s development of Anton, the
supercomputer for performing molecular dynamics simula-
tions, provides a good example of the types of considera-
tions that go into the development of ASICs for a scientific
problem [47]. By definition, an ASIC is almost inextricably
linked with a particular algorithm or family of computational
kernels. This means that there must be mature algorithms
for solving the target problem that are unlikely to change
over the intended lifespan of the chip. Further, chip design
takes time (and money!), and the Anton development team
had to consider whether more conventional hardware would
advance to the required level of performance in the time it
would take them to develop and manufacture the chip. Even
with the death of Moore’s Law, the rapid progress of GPUs,
driven by applications in machine learning, might provide a
more cost-effective solution.

However, the performance improvements from an ASIC
can be huge; the second generation of Anton was over
two orders of magnitude faster than conventional HPC and
GPUs [48]. Anton may be used for non-commercial research
through the Pittsburgh Supercomputing Center.

Another case study is that of the Tensor Processing Unit
(TPU). It is tempting to view GPUs as the perfect hardware fit
for NN inference (executing an already-trained NN). While
this may increasingly be the case, Google saw enough room
for improvement to develop their custom chip, the TPU [31].
Once again, a careful analysis of alternative technologies and
the total costs of ownership was necessary. The main take-
away from these case studies is that while a custom chip is
almost certainly faster or more power efficient, the overall
economics of the hardware development, purchase, and op-
eration must be considered.

On the other hand, field programmable gate arrays (FP-
GAs) provide a more flexible alternative to ASICs. Roughly,
an FPGA is an integrated circuit with reconfigurable inter-
connections between the elements. FPGAs are often used
for prototyping and testing ASIC design. Functionally, FP-
GAs fill a role and have development challenges somewhere
between those of GPUs and ASICs. While the software is
improving, programming an FPGA is generally not as sim-
ple as a GPU. This barrier to effective programming hinders
performance; even with a few optimizations, solving a partial
differential equation on an FPGA was still not as fast as on a
GPU [59].



2.3 Non-von Neumann architectures

Compute-in-Memory refers to techniques that aim to cir-
cumvent the bottlenecks in traditional von Neumann archi-
tectures – namely, the time and energy bottleneck of data
movement through the various levels of memory and onto
and off processing units [46]. A common feature of these
devices is the ability to do analog matrix-vector multiplica-
tion. Fast matrix-vector multiplication enables a number of
scientific computing applications, including equation solv-
ing, optimization, and machine learning. However, while
these devices can perform this operation quickly, their analog
nature limits precision. Consequently, compute-in-memory
does not suit every application, and taking advantage of it
might require hybrid strategies or a fundamental reformula-
tion of the problem. Sebastian et al. [46] review some suc-
cessful applications of compute-in-memory, including infer-
ence in deep NN and iterative linear algebra solvers.

A related idea is that of neuromorphic computing.
Neuromorphic computing is a field that aims to develop
neurologically-inspired computing devices [61, 19]. While
many research devices may be called a “neuromorphic chip,”
the most high-profile examples (IBM’s TrueNorth chip [37]
and Intel’s Loihi chip [19]) focus on efficient implementa-
tion of spiking NNs, a particular type of artificial NN that
encodes data through the timing of spikes or pulses [58]. As
with compute-in-memory devices, a benefit of these chips is
their incredibly low power consumption compared to con-
volutional or other deep NN architectures (potentially 1000
times less for particular devices and problems [19]). Spik-
ing NNs, and thus neuromorphic chips, may be applied to
several problems, including various machine learning prob-
lems, but also graph search and stochastic optimization [19].
The precise benefits that spiking NNs have over other so-
lution methods are unclear, but the low power consumption
of neuromorphic chips expands where these problems may
be solved to include autonomous or “edge” devices, where
power consumption is a constraint. Due to the overall depar-
ture from von Neumann architecture in neuromorphic chip
design, proponents of the technology prefer to distinguish be-
tween neuromorphic chips and, for example, accelerators for
deep learning.

Dataflow architectures are another alternative to the von
Neumann architecture. Originally proposed in the 1960s and
1970s as a computing paradigm optimized for data-driven
parallel computation [57], academic research on dataflow ar-
chitectures stalled in the 1980s. However, the rise of deep
NN-driven machine learning has motivated the development
of commercial systems incorporating ideas from dataflow ar-
chitectures. Argonne National Labs has tested one of these
systems on scientific applications of deep learning with pos-
itive results [25].

2.4 Physical Annealing and Analog Computing

Historically, the term analog computing was used, as the
name suggests, to refer to computing with physical systems
whose evolution mimics the system they were intended to
model and simulate. Today that definition has shifted to refer

to devices working on the continuum [11]. As opposed to
digital computers, in which information is processed in dis-
crete form (and input, output, and intermediate calculations
are discretized), analog computers represent variables con-
tinuously using various physical quantities (e.g., electrical,
mechanical, hydraulic signals, or a combination of such) as
analogues for the information being processed.

Analog computing devices were widely used throughout
history to perform specific calculations, from the ancient-
greek Antikythera mechanism used to predict astronomic po-
sitions of sky bodies, through the slide rule for computing
logarithms, to the advanced military targeting systems that
are still in use on navy ships all over the world. Such devices
took the back seat after the invention of digital computing
machines and the rapid evolution of these computers due to
their general applicability and programmability.

As high-performing digital computing systems become
more challenging to design, and their increased energy de-
mand makes them expensive to use, analog (or hybrid digital-
analog) devices are once again a topic of interest due to their
speed and efficiency.

One of the more promising examples of this renewed
research interest are the physical annealing machines [38],
such as the D-Wave quantum annealer or the Coherent Ising
machines developed at NTT and Stanford University [30].
These machines attempt to exploit the device’s underlying
physics to approximate ground solutions to the Ising model,
an NP-hard problem equivalent to quadratic unconstrained
binary optimization (or QUBO). As many combinatorial and
graph-theoretical problems can be reformulated as QUBOs,
the potential of physical annealing machines to accelerate the
finding of solutions to hard optimization problems is attrac-
tive. Nevertheless, there are a number of technical challenges
that need to be addressed first. On the engineering side, these
include scaling the number of variables and ensuring that
the system’s connectivity and resolution sufficiently repre-
sent the problem with enough precision.

In addition, most practical optimization problems are
not only unconstrained and discrete; many problems in-
volve complex constraints and continuous decision variables.
While such problems can still be reformulated into QUBOs
through discretization and incorporating the constraints us-
ing additional variables and penalty terms, the satisfaction
of the constraints may only be guaranteed by finding the
QUBO’s optimal solution. Inexact approximations of the so-
lution might be very close to optimal in terms of minimiz-
ing the objective of the problem but still lead to infeasible
answers due to the inability to satisfy a specific hard con-
straint. Nevertheless, the potential availability of an efficient
close-to-optimal QUBO solver opens the way for novel al-
gorithms and heuristics that may accelerate the solution of at
least some challenging and relevant optimization problems.
Considerable effort has been made in developing high-level
interfaces to QUBO-based programming, for instance with
the Python-based open-source package from D-Wave Ocean
among several others [43]. Research in overcoming the chal-
lenges and defining the practical applicability of the physical
annealing machines is ongoing.



Recently, analog mechanisms that perform optimization
have also been implemented in neutral-atom devices, where
spin variables are represented by atomic qubits trapped in
arbitrary 3D configurations via optical tweezers. When op-
erated as annealers [24], the coherence of these systems is
considerably larger than flux-qubits in superconducting ar-
chitectures; however, there are programmability limitations,
with early-stage opensource projects supporting their prim-
itives [51]. The current size of devices supports only hun-
dreds of variables, with thousands within reach. These de-
vices are natively implementing interactions that naturally
map into Maximum-Independent-Set (MIS) constraints, with
compilation techniques similar to minor-embedding required
in superconducting annealers [33]. Applications of MIS in-
clude scheduling, asset allocation, telecommunication de-
coding [18] and its analog mode can be used to define
quantum sampling protocols with generic machine learning
kernel-based applications [29].

2.5 Digital Quantum Computing

Quantum computing (QC) refers to the processing of in-
formation and the performance of computation leveraging
phenomena explained through quantum mechanics, such as
quantum interference and superposition. This computational
paradigm does not expand what is computable using non-
quantum (or classical) computation, but its promise is that
it can accelerate (even exponentially) certain computational
tasks [9, 42]. Several computational models can fall un-
der the definition of QC presented above, e.g., adiabatic
QC, measurement-based QC, and the quantum circuit model.
This section will focus on the quantum circuit model of QC,
where algorithms can be implemented as quantum mechan-
ical manipulations of the primary processing unit in QC,
the quantum bit or qubit, through a set of operators known
as gates, which compose what is known as a quantum cir-
cuit. These (quantum) algorithms can be proved to pro-
vide speedups in specific computational tasks compared to
algorithms implemented in the non-quantum (classical) set-
ting, and there have been successful experimental realiza-
tions of such computational tasks, demonstrating the phys-
ical possibility of quantum supremacy [9]. The apparent
parallelism coming from the seamless operation of informa-
tion that grows exponentially with respect to the number of
qubits in the quantum circuits, together with probability am-
plitudes that interfere constructively and destructively, are
the main ingredients that can explain the theoretical advan-
tage of the quantum algorithms. Some of those algorithms
with proven advantages are aimed to tackle the simulation
of quantum systems, number factorization, and search and
optimization [10]. There is a considerable drive to keep de-
veloping quantum algorithms, hardware, and software that
allows the practical use of this technology in science and en-
gineering applications, with a particular interest in finding
those applications where the potential speedups provided by
QC can be exploited. In particular, complete software stacks
are developed by different companies, providing high-level
access to quantum computing simulators and devices, such
as IBM Qiskit [7] and Google Circ [20].

Specialized devices known as quantum computers need
to be built to implement quantum algorithms, with the strin-
gent requirement of maintaining the delicate quantum state of
the qubits while controllably applying the predefined gates.
Currently, available quantum computers can reliably imple-
ment algorithms for enough qubits (around 50) and gates for
their classical simulation to be impractical, but too few to
implement error correction schemes that can prevent unin-
tended perturbations of the quantum states. These devices
have been named noisy intermediate-scale quantum (NISQ)
computers. Although the practical realization of most algo-
rithms that provide quantum advantage requires implement-
ing circuits beyond the current capabilities of NISQ devices,
one can still leverage the capabilities of these computers to
represent probability distributions that are difficult to rep-
resent using classical computers. This is mainly done by
proposing parameterized quantum circuits integrated into a
computational loop with a classical computer to optimize a
performance metric of the circuit, in an approach known as
variational quantum algorithms (VQA) [15]. This setting is
similar to the training of an artificial NN, where the parame-
terized circuit can be executed by specialized hardware, e.g.,
a GPU in the NN case or a gate-based quantum computer in
the case of VQA. These approaches can still provide quan-
tum advantage using NISQ devices, and algorithms for quan-
tum systems simulation, optimization, and machine learning
using this paradigm have been proposed and implemented in
the existing hardware [9, 15].

3 Opportunities for the PSE Community

Table 1 summarizes the intersection of emerging comput-
ing technologies with disciplines of the process systems en-
gineering community. Emerging technologies have already
been successfully applied within some domains, and reason-
ably mature examples or implementations exist. In other
cases, the area may not be mature; however, there is enough
preliminary research to indicate a real potential for further
adoption. In this table, we note which combinations are rel-
atively mature/already developed (AD) and those that offer
the potential (P) for further research. For each of these, we
provide some example citations; however, in the interest of
space, this is not an exhaustive list.

These emerging computing technologies offer opportuni-
ties to re-think our problem formulations and go-to solution
methods. Given the PSE community’s adoption of comput-
ing technology so far, we have no doubt that many of these
new hardware platforms will become standard tools.

References

[1] Martı́n Abadi et al. TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Systems, 2015. URL
https://www.tensorflow.org/. Software available from
tensorflow.org.

[2] Karam M Abughalieh and Shadi G Alawneh. A survey of
parallel implementations for model predictive control. IEEE
Access, 7:34348–34360, 2019.



Table 1: Intersection of emerging computing technologies (rows) and potential application spaces in PSE (columns). We
note which combinations are relatively mature or already developed (AD) and those that offer the potential (P) for further
research and relevant citations. Where there is no entry, there is insufficient evidence to support a conclusion about potential.

Design Control Optimization Data Analytics Simulation
Distributed / Multicore AD [2] AD [45, 8, 41, 32] AD [1]

GPU AD [2] AD [13, 52] AD [1, 52] AD [52, 56, 62, 54]
ASICS/FPGA P [40] AD [36, 2],P [40] P [49] P [48]

Physical Annealing P [6] P [6] P [4, 38, 6] P [3, 38, 6] P [6]
Quantum P [10] P [14] P [10, 28] P [10] P [10, 53]

[3] Akshay Ajagekar and Fengqi You. Quantum computing as-
sisted deep learning for fault detection and diagnosis in indus-
trial process systems. Computers & Chemical Engineering,
143:107119, 2020.

[4] Akshay Ajagekar, Travis Humble, and Fengqi You. Quan-
tum computing based hybrid solution strategies for large-
scale discrete-continuous optimization problems. Computers
& Chemical Engineering, 132:106630, 2020.

[5] F. Alexander et al. Exascale applications: Skin in the
game. Phil. Trans. of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 378(2166), 2020. doi:
https://doi.org/10.1098/rsta.2019.0056.

[6] Martin P Andersson, Mark N Jones, Kurt V Mikkelsen,
Fengqi You, and Seyed Soheil Mansouri. Quantum comput-
ing for chemical and biomolecular product design. Current
Opinion in Chemical Engineering, 36:100754, 2022.

[7] MD Sajid Anis et al. Qiskit: An Open-source Framework for
Quantum Computing, 2021. URL https://qiskit.org.

[8] Ignacio Aravena et al. Recent Developments in Security-
Constrained AC Optimal Power Flow: Overview of Chal-
lenge 1 in the ARPA-E Grid Optimization Competition. arXiv
preprint arXiv:2206.07843, 2022.

[9] Frank Arute et al. Quantum supremacy using a programmable
superconducting processor. Nature, 574(7779):505–510,
2019.

[10] David E Bernal, Akshay Ajagekar, Stuart M Harwood,
Spencer T Stober, Dimitar Trenev, and Fengqi You. Perspec-
tives of quantum computing for chemical engineering. AIChE
Journal, 68(6):e17651, 2022.

[11] Olivier Bournez and Amaury Pouly. A survey on analog mod-
els of computation. In Handbook of Computability and Com-
plexity in Analysis, pages 173–226. Springer, 2021.

[12] Simon Byrne, Lucas C Wilcox, and Valentin Churavy. MPI. jl:
Julia bindings for the Message Passing Interface. In Proceed-
ings of the JuliaCon Conferences, volume 1, page 68, 2021.

[13] Yankai Cao, Arpan Seth, and Carl D Laird. An augmented
Lagrangian interior-point approach for large-scale NLP prob-
lems on graphics processing units. Computers & Chemical
Engineering, 85:76–83, 2016.

[14] Davide Castaldo, Marta Rosa, and Stefano Corni. Quantum
optimal control with quantum computers: A hybrid algorithm
featuring machine learning optimization. Physical Review A,
103(2):022613, 2021.

[15] Marco Cerezo et al. Variational quantum algorithms. Nature
Reviews Physics, 3(9):625–644, 2021.

[16] Lisandro Dalcin and Yao-Lung L Fang. mpi4py: Status up-
date after 12 years of development. Computing in Science &
Engineering, 23(4):47–54, 2021.

[17] Lisandro Dalcı́n, Rodrigo Paz, and Mario Storti. MPI for

Python. Journal of Parallel and Distributed Computing, 65
(9):1108–1115, 2005.

[18] Constantin Dalyac, Loı̈c Henriet, Emmanuel Jeandel, Wolf-
gang Lechner, Simon Perdrix, Marc Porcheron, and Margarita
Veshchezerova. Qualifying quantum approaches for hard in-
dustrial optimization problems. A case study in the field of
smart-charging of electric vehicles. EPJ Quantum Technol-
ogy, 8(1):12, 2021.

[19] Mike Davies, Andreas Wild, Garrick Orchard, Yulia San-
damirskaya, Gabriel A Fonseca Guerra, Prasad Joshi, Philipp
Plank, and Sumedh R Risbud. Advancing neuromorphic com-
puting with Loihi: A survey of results and outlook. Proceed-
ings of the IEEE, 109(5):911–934, 2021.

[20] Cirq Developers. Cirq, April 2022. URL
https://quantumai.google/cirq. See
full list of authors on Github: https://github
.com/quantumlib/Cirq/graphs/contributors.

[21] Jeff Diamond, Martin Burtscher, John D McCalpin, Byoung-
Do Kim, Stephen W Keckler, and James C Browne. Evalua-
tion and optimization of multicore performance bottlenecks in
supercomputing applications. In (IEEE ISPASS) IEEE Inter-
national Symposium on Performance Analysis of Systems and
Software, pages 32–43. Ieee, 2011.

[22] Sudip S Dosanjh et al. Exascale design space exploration and
co-design. Future Generation Computer Systems, 30:46–58,
2014.

[23] A. Dubey, L. C. McInnes, R. Thakur, E. W. Draeger, T. Evans,
T. C. Germann, and W. E. Hart. Performance Portability in
the Exascale Computing Project: Exploration Through a Panel
Series. Computing in Science and Engineering, 2021.

[24] Sepehr Ebadi et al. Quantum optimization of maximum in-
dependent set using Rydberg atom arrays. Science, page
eabo6587, 2022.

[25] Murali Emani et al. Accelerating scientific applications with
Sambanova reconfigurable dataflow architecture. Computing
in Science & Engineering, 23(2):114–119, 2021.

[26] Thomas M. Evans, Andrew Siegel, Erik W. Draeger, Jack
Deslippe, Marianne M. Francois, Timothy C. Germann,
William E. Hart, and Daniel F. Martin. A survey of soft-
ware implementations used by application codes in the Ex-
ascale Computing Project. International Journal on High Per-
formance Computing, 2021.

[27] William Gropp, William D Gropp, Ewing Lusk, Anthony
Skjellum, and Argonne Distinguished Fellow Emeritus Ew-
ing Lusk. Using MPI: portable parallel programming with
the message-passing interface, volume 1. MIT press, 1999.

[28] Stuart Harwood, Claudio Gambella, Dimitar Trenev, Andrea
Simonetto, David Bernal, and Donny Greenberg. Formulating
and solving routing problems on quantum computers. IEEE
Transactions on Quantum Engineering, 2:1–17, 2021.



[29] Louis-Paul Henry, Slimane Thabet, Constantin Dalyac, and
Loı̈c Henriet. Quantum evolution kernel: Machine learning
on graphs with programmable arrays of qubits. Physical Re-
view A, 104(3):032416, 2021.

[30] Toshimori Honjo et al. 100,000-spin coherent Ising machine.
Science advances, 7(40):eabh0952, 2021.

[31] Norman P Jouppi et al. In-datacenter performance analysis of
a tensor processing unit. In Proceedings of the 44th annual in-
ternational symposium on computer architecture, pages 1–12,
2017.

[32] Jia Kang, Yankai Cao, Daniel P Word, and Carl D Laird. An
interior-point method for efficient solution of block-structured
NLP problems using an implicit Schur-complement decom-
position. Computers & Chemical Engineering, 71:563–573,
2014.

[33] Minhyuk Kim, Kangheun Kim, Jaeyong Hwang, Eun-Gook
Moon, and Jaewook Ahn. Rydberg quantum wires for max-
imum independent set problems. Nature Physics, pages 1–5,
2022.

[34] Andreas Klöckner. PyCUDA: Even simpler GPU program-
ming with Python. Nvidia GTC, 2010.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
Advances in neural information processing systems, 25, 2012.

[36] KV Ling, SP Yue, and JM Maciejowski. A FPGA implemen-
tation of model predictive control. In American control con-
ference, page 6. Citeseer, 2006.

[37] Paul A Merolla et al. A million spiking-neuron integrated
circuit with a scalable communication network and interface.
Science, 345(6197):668–673, 2014.

[38] Naeimeh Mohseni, Peter L McMahon, and Tim Byrnes. Ising
machines as hardware solvers of combinatorial optimization
problems. Nature Reviews Physics, 4(6):363–379, 2022.

[39] Manolis Papadrakakis, George Stavroulakis, and Alexander
Karatarakis. A new era in scientific computing: Domain
decomposition methods in hybrid CPU–GPU architectures.
Computer Methods in Applied Mechanics and Engineering,
200(13-16):1490–1508, 2011.

[40] Iosif Pappas, Dustin Kenefake, Baris Burnak, Styliani
Avraamidou, Hari S Ganesh, Justin Katz, Nikolaos A Dian-
gelakis, and Efstratios N Pistikopoulos. Multiparametric pro-
gramming in process systems engineering: Recent develop-
ments and path forward. Frontiers in Chemical Engineering,
2:620168, 2021.

[41] Cosmin G Petra and Ignacio Aravena. Solving realistic
security-constrained optimal power flow problems. arXiv
preprint arXiv:2110.01669, 2021.

[42] John Preskill. Quantum computing 40 years later. arXiv
preprint arXiv:2106.10522, 2021. To appear in Feynman Lec-
tures on Computation, 2nd edition, published by Taylor &
Francis Group, edited by Anthony J. G. Hey.

[43] Abraham P Punnen. The Quadratic Unconstrained Binary
Optimization Problem: Theory, Algorithms, and Applications.
Springer Nature, 2022.

[44] J Rodriguez, Robert Parker, C Laird, Bethany Nichol-
son, J Siirola, and Michael Bynum. Scalable Paral-
lel Nonlinear Optimization with PyNumero and Parap-
int. Preprint at http://www. optimization-online. org/DB
HTML/2021/09/8596. html, 2021.

[45] Michel Schanen, François Gilbert, Cosmin G Petra, and Mi-
hai Anitescu. Toward multiperiod AC-based contingency con-
strained optimal power flow at large scale. In 2018 Power Sys-
tems Computation Conference (PSCC), pages 1–7. Ieee, 2018.

[46] Abu Sebastian, Manuel Le Gallo, Riduan Khaddam-Aljameh,
and Evangelos Eleftheriou. Memory devices and applications
for in-memory computing. Nature nanotechnology, 15(7):
529–544, 2020.

[47] David E Shaw et al. Anton, a special-purpose machine for
molecular dynamics simulation. Communications of the ACM,
51(7):91–97, 2008.

[48] David E Shaw et al. Anton 2: raising the bar for performance
and programmability in a special-purpose molecular dynamics
supercomputer. In SC’14: Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, pages 41–53. Ieee, 2014.

[49] Ahmad Shawahna, Sadiq M Sait, and Aiman El-Maleh. Fpga-
based accelerators of deep learning networks for learning and
classification: A review. ieee Access, 7:7823–7859, 2018.

[50] Sungho Shin, Carleton Coffrin, Kaarthik Sundar, and Victor M
Zavala. Graph-Based Modeling and Decomposition of Energy
Infrastructures. arXiv preprint arXiv:2010.02404, 2020.

[51] Henrique Silvério, Sebastián Grijalva, Constantin Dalyac, Lu-
cas Leclerc, Peter J Karalekas, Nathan Shammah, Mourad
Beji, Louis-Paul Henry, and Loı̈c Henriet. Pulser: An open-
source package for the design of pulse sequences in pro-
grammable neutral-atom arrays. Quantum, 6:629, 2022.

[52] Hardik Singh, Raavi Sai Venkat, Sweta Swagatika, and Sanjay
Saxena. Gpu and cuda in hard computing approaches: analyti-
cal review. Proceedings of ICRIC 2019, pages 177–196, 2020.

[53] Spencer T Stober, Stuart M Harwood, Dimitar Trenev, Pana-
giotis Kl Barkoutsos, Tanvi P Gujarati, and Sarah Mostame.
Considerations for evaluating thermodynamic properties with
hybrid quantum-classical computing work flows. Physical Re-
view A, 105(1):012425, 2022.

[54] John E Stone, David J Hardy, Ivan S Ufimtsev, and Klaus
Schulten. GPU-accelerated molecular modeling coming of
age. Journal of Molecular Graphics and Modelling, 29(2):
116–125, 2010.

[55] Herb Sutter et al. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s journal, 30(3):
202–210, 2005.

[56] Botond Szilágyi and Zoltán K Nagy. Graphical processing
unit (GPU) acceleration for numerical solution of population
balance models using high resolution finite volume algorithm.
Computers & Chemical Engineering, 91:167–181, 2016.

[57] Arthur H Veen. Dataflow machine architecture. ACM Com-
puting Surveys (CSUR), 18(4):365–396, 1986.

[58] Xiangwen Wang, Xianghong Lin, and Xiaochao Dang. Super-
vised learning in spiking neural networks: A review of algo-
rithms and evaluations. Neural Networks, 125:258–280, 2020.

[59] Dennis Weller, Fabian Oboril, Dimitar Lukarski, Juergen
Becker, and Mehdi Tahoori. Energy efficient scientific
computing on FPGAs using OpenCL. In Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 247–256, 2017.

[60] Daniel P Word, Jia Kang, Johan Akesson, and Carl D Laird.
Efficient parallel solution of large-scale nonlinear dynamic op-
timization problems. Computational Optimization and Appli-
cations, 59(3):667–688, 2014.

[61] Wenqiang Zhang, Bin Gao, Jianshi Tang, Peng Yao, Shimeng
Yu, Meng-Fan Chang, Hoi-Jun Yoo, He Qian, and Huaqiang
Wu. Neuro-inspired computing chips. Nature electronics, 3
(7):371–382, 2020.

[62] Yan Zhang, Panagiotis Vouzis, and Nikolaos V Sahinidis.
GPU simulations for risk assessment in CO2 geologic seques-
tration. Computers & Chemical Engineering, 35(8):1631–
1644, 2011.


