Digital Information Platform

National Aeronautics and A
Space Administration NA\SA

_ogOMiBh_dlice,
R Ro'//ose %

DIP

DIGITAL INFORMATION PLATFORM

aVICE P

)aR\IlCE PROVIDg,

How To Invoke A REST API
With DIP

Table of Contents

1. TRY OUT AN APl icciiieuiiineiinnieianisieessrensssenssrsnssssnssssssssssnssssnssssnssssnsssssssssssssssnssssnssssnssssnssssnassannsss 3
MOCK IT OUT: TRY AN APl WITHOUT A SUBSCRIPTION 1eueutecetrecenrereererasenracessesessessssssassssssessassssessssssacsssessssnsnnse 3
TRY IT OUT: TRY AN API WITH A SUBSCRIPTION ...eutureterrecaereresessasseresassessssssssssssssssssasssssssssssnssesassssnssssasassasnsse 6
2. CONNECTION INFORMATION TO MAKE AN API REQUESTcccicueiiuensinansiennsnennsienssssnssssnnsssensssannes 9
TOKEN REQUEST PARAMETERS teuteutettettaienrestestastessectessessessessessesssssssssssssssssesssssesssssssssssssssssssssssssassssssnssnns 10
AAPI PARAMETERS «.veutettettesreetensestessastassessessessesssssesssssesssssessnsans 11
REFRESHING TOKENS BEFORE THEY EXPIRE.....uceteeteeeerecereceererasessecassesassesassssassssasassssassssassssassssosassasassasassnsns 13
3. APIREQUESTS USING PYTHON.....cicuutetennsiennsrennsssanssenesssnsssssnsssonssssnssssnssssnssssssssssnssssnssssnssssnssssnns 14
SETUP tuietieieieienieteretestestestestessastessestessestessastessessessessesssssssssssesssssessessssssssssssssssssssssssssssssssssnssassnnsans 14
RUNNING THE EXAMPLE .eueuvereeereeeereseseceereressssssserssessscsssesassesssosassasnssesasansns 14
CUSTOMIZING THE EXAMPLE ...cueueteteuereieecreteecresenceesesceesesssessassnssassassansns 14
4. API REQUESTS USING POSTIMAN.....ccccteuuiiennerennssranssrnnsssnnssrsnsssenssssnssssnssssnsssssnssssnssssnssssnssssnasssnns 18
CREATE A COLLECTION .« eututeeeerecenrecesrerassssncsssesesssssssesasssssssssesssssssssssassssessssesssssssssssassssessssssassssesassasnssnnans 18
ADD AN AUTHENTICATION TOKEN REQUEST ..c.cucuetereceeecenrecessecacrsracassocessssassssosessscasssssssssasassosassssasassasassacnsse 19

ADD A SERVICE REQUEST . ceuuuiiuuuitnenirensireesireesisensieeesirensireesereassresssessssmssssmessssensssenssstssssensssrssssmenssrenssses 22

Try Out An API

1. Try Out An API

Starting point: Service information page on the DIP Platform website.

DIP CATALOG

NASA Departure:.Runway Service

Register Service Browse

Home / Search / Service
Digital _ -~
o S Q@
Platform 7
Name & ID NASA Departure Runway Service
NA tag Service ID: 8
Description
Version 1.0.0 Serving 2 Users

About This Service

NASA Departure Runway Service CONNECT UNSUBSCRIBE

The NASA Departure Runway Service contains a collection of data access services for obtaining departure runway
information. There are three services in this collection:

Departure Runway Per Flight: Returns the coalesce of the actual (external source), detected (detection logic using position

data), or modeled (predicted using machine learning model or decision tree service) departure runway value for a single
flight.

Mock it Out: Try an APl Without a Subscription

Services API can be tested without a subscription. In this case, both the request and responses
are limited to mock data. The intent of the mock data is to provide an example of the
request/response input parameters, headers, and data-models. This data is for educational
purpose only. The steps are as follows:

1. Click on “API” to open the Open API specifications.

Try Out An API

About This Service

NASA Departure Runway Service CONNECT UNSUBSCRIBE

The NASA Departure Runway Service contains a collection of data access services for obtaining departure runway
information. There are three services in this collection:

2. Click on “POST” to select the service of interest.

default ~

/departure/runway N
POST k,/airpn rt/departure/runway v

/departure/runway/utilization v

3. Click on “Try It Out.”

/airport/departure/runway ~

The Departure Runway Service by Airport returns the coalesce of the actual (external source), detected (detection logic using position data), or modeled
(predicted using machine learning model or decision tree service) departure runway value for a list of flights coinciding with a time range and departure airport.

Parameters Try ilokui

No parameters

Request body [application/json v]

request post body

Example Value Schema

"departure_aerodrome_icao_name": "KDFW",
“"end_time": "2822 21Tee:00:00z",

"start_time": "2022-06-20T00:00:00Z"
}

4. Click on “Execute.” Note: changing the “request post body” in the Mock it out mode
would have no impact on the response.

Try Out An API

POST Jairport/departure/runway ~

The Departure Runway Service by Airport returns the coalesce of the actual (external source), detected (detection logic using position data), or modeled
(predicted using machine learning model or decision tree service) departure runway value for a list of flights coinciding with a time range and departure airport.

Parameters Cance! ‘

No parameters

Request body application/json ~ I

request post body

{
“departure_aerodrome_icao_name"
"end_time "2022-06-21T00:00:00Z",
"start_time": "2022-06-20T00:00:00Z"
}

%

Execute

5. Examine the result in the Response body section.

Responses

Curl
curl -X "POST

application/json

-H '"Content-Type: application/json' \
W *Authorizattan: Bear«r [N

-d "{
"departure_aerodrome_icao_name”: "KDFN",
"end_time": 022-06-21T00:00:00Z",
"start_time": "2022-06-20T00:00:00Z"

}'

Request URL

<=/ ——

Server response

Code Details

200 Response body

"result”: [
{

"acid": "AAL2501",
"arrival_aerodrome_icao_name
"departure_aerodrome_icao_name"
"departure_runway": "17R"
"departure_runway_source”: "detected”,
"igtd": "2022-06-20T19:28Z",

"timestamp "2022-06-20T720:37:1

Try Out An API

6. Optionally, click on “Download” to save the response or click on the copy icon to
copy the response, or the script and paste them into another application.

Responses

"accept: application/json’
-H "Content-Type: application/json'
-H "Authorization: Bearer
-d '{

"depcirture_aerudrome_irun_nume": "KDFW",
"end_time 2022-06-21T00: eez"
"start_time": "2022-06-20T00:00:007"

Request URL

https -/ ——

Server response

Code Details

200 Response body

{

"result™: [

"acid": "AALZ501",
"arrival_aerodrome_icao_name": "KEWR",
"departure_aerodrome_icao_name": "KDFW",
"departure_runway": "17R",
"departure_runway_source": "detected",
"igtd": "2022-06-20T19:28Z",
"timestamp": "2022-06-20T20:37:18Z"

Response headers

content-length: 291
content-type: application/json

Try it Out: Try an APl With a Subscription

Services API can be tested with a subscription. Unlike testing with unsubscribed Mock Data, a
subscription allows requests to return real data. Valid responses are limited to the scope of the
data set, so requests need to be mindful of these limitations. In this case, the request and
responses are only limited to available data. The steps are as follows:

1. Click on “API” to open the Open API specifications.

About This Service

NASA Departure Runway Service CONNECT UNSUBSCRIBE

The NASA Departure Runway Service contains a collection of data access services for obtaining departure runway
information. There are three services in this collection:

2. Click on “POST” to select the service of interest.

Try Out An API

default ~

/departure/runway AV

/airport/departure/runway k A
/departure/runway/utilization v

3. Edit the “request post body” script with data within the scope of data indicated in the
description section, and click on “Execute.”

/airport/departure/runway ~

The Departure Runway Service by Airport returns the coalesce of the actual (external source), detected (detection logic using position data), or modeled
(predicted using machine learning model or decision tree service) departure runway value for a list of flights coinciding with a time range and departure airport.

Parameters I Cancel | | Reset I

No parameters

Request body "“9"/"%9 [application/json -]

request post body

"departure_aerodrome_icao_name": "KDFW",

"end_time": “2022-06-21T19:00:00Z",
“start_time": “2022-06-21T18:00:002"

T

4. Examine the result in the Response body section.

Try Out An API

Responses

Curl

curl -X "POST" \
"https://
-H "accept: application/json"' \
"Content-Type: application/json' \
x-api-key: P45eev@AKr9)7MaStNDTN61Ei1KQSBiN6MQnXye3' \

‘Authorization: Bearer 4§

"departure_aerodrome_icao_name": "KDFWN",
"end_time": "2022-06-21T19:00:00Z",
"start_time": 922-06-21T18:00:00Z"

}

Request URL

o=/ —

Server response

Code Details

200 Response body

"result”": [

"acid": "UPS2820",
"departure_aerodrome_icao_name": "KDFWN",
"arrival_aerodrome_icao_name”™: "KPHL"
"igtd™: "2022-06-21T18:33:00",
"departure_runway": "17R",
"departure_runway_source”: "detected”,
"timestamp®: "2022-06-21T18:48:15"

"acid®: "AALl1100",
"departure_aerodrome_icao_name": "KDFW",
"arrival_aerodrome_icao_name™: "KBNA",
"igtd™: "2022-86-21T18:18:00",
"departure_runway": "17R",
"departure_runway_source”: "modeled”,
"timestamp™: "2022-06-21T18:48:15"

"acid": "AAL1599",

"departure_aerodrome_icao_name": "KDFW",

"arrival_aerodrome_icao_n ": "KLAS",

=5 =2 pE_2 2-02.00 ,‘:

gid~- A2 _QE_

Response headers

content-length: 11198
content-type: application/json

5. Optionally, click on “Download” to save the script or click on the copy icon to copy
the response and paste it into another application.

6. Optionally, a Curl script is included above the response body. It includes the APl URL
address, the API key and the token required to invoke the service (see the next section
about the connection information). Click on the copy icon to copy the script and paste it
into another application.

Responses

Curl

curl -X '"POST" \
"https://
'accept: application/json' \
"Content-Type: application/json’ \

"x-api-key: P45eevBAKr9)7MaStNDTNG1Ei1KQ5BiNG6MQnXye3" \
"Authorization: Bearer
"{

"departure rodrome_icao_name": "KDFN",

"end_time" 22-06-21719:00:00Z",

"start_time": "2022-06-21T18:00:00Z"

Request URL l t

Connection Information

2. Connection Information to Make an APl Request

On the Service Page, click on the “Connect” button to obtain the Token and API parameters to
make requests to the API. A window opens.

NASA Departure Runway Service
NASA Stage Service ID: 8

e @O

Version 1.0.0 Serving 2 Users

About This Service

NASA Departure Runway Service CONNECT UNSUBSCRIBE

The NASA Departure Runway Service contains a collection of data access services for obtaining departure runway
information. There are three services in this collection:

Departure Runway Per Flight: Returns the coalesce of the actual (external source), detected (detection logic using position
data), or modeled (predicted using machine learning model or decision tree service) departure runway value for a single
flight.

Connection Information

Token Request Parameters

First, you need a token to make an APl request. Tokens can (and should) be re-used for multiple requests.
Tokens expire in 24 hours.

Client Id:

Authentication Token URL

Token Request Example

GENERATE TOKEN

AP| Parameters

API Key: *++erasnsssonsnsssunsnsesnsrrnssnnse o
APl Base URL!

To call an APl you need a token, an api key, and a URL. The base url for the APl is shown above. Details of
available API resources can be found in the API documentation, and are needed to make a valid request. Include
your token in an Authorization Bearer header, and your AP| Key in an x-api-key header.

AP| Request Example

Token Request Parameters

In the upper section, the key Token Request Parameters are the Client ID and Client Secret
information. These are unique to each partner and therefore are confidential information. Both
Client ID and Secret expire after 24h. They are used to generate a temporary Token. This token
can re-used for multiple requests. All Tokens expire after 24h, however they can be updated
automatically by using the example of the Curl script in the window (recommended).

There are 2 ways to create a token:

1. Click on “Generate Token”, and copy that information in another application, or, better,

2. Click on “Token Request Example” to see the CURL script. The script needs to be
updated with the Client ID and Client Secret. This script will automatically generate a
token, and automatically renew the token when it expires.

Connection Information

Token Request Parameters

First, you need a token to make an APl request. Tokens can {and should) be re-used for multiple requests.
Tokens expire in 24 hours.

Ciient 1 [

Client Secret; * & ¥ s r ek st ssu kR r e T E kL L kP TRXXERRFTERRRRRREER AL ﬁ-;‘

Authentication Token URL [

Token Request Example A4

K

GENERATE TO

Token Request Parameters

First, you need a token to make an API request. Tokens can (and should) be re-used for multiple requests.
Tokens expire in 24 hours.

Client Id:

client Secret- kkkkkkkkkkkkkkkRkkkkkkk kR kk bk ko kokk kR Rk Rk kkkok Rk Q

Authentication Token URL: [

Token Request Example ~

curl -d "grant_type=client_credentials"
-H "Content-Type: application/x-www-form-urlencoded"
-u "client_id:client_secret"

=X posT e

GENERATE TOKEN

Generated Token:

{
“access_token" : I
"expires_in": 86400,
"token_type'": "Bearer"

AP| Parameters

In the lower section, the API Parameters are the API key and the API Base URL information.
These are unique to each service and therefore are confidential information. The API key and
URL, as well as the above token are needed to call the API. There are 2 ways to create a
request:

Connection Information

1. Copy the APl key and the API URL address, or, better,
2. Click on “API Request Example” to see the Curl script. The script needs to be updated
with the Access Token and the API key.

API| Parameters

API Key. 1 ok ok ok ok ok Ok ok oK o ok ok ok oK o K ok ok ok ok 3Kk ok K ok ok % KOk o K K K ok ok ok kK “
. ‘

API Base URL: [

To call an APl you need a token, an api key, and a URL. The base url for the APl is shown above. Details of
available API resources can be found in the APl documentation, and are needed to make a valid request. Include
your token in an Authorization Bearer header, and your API Key in an x-api-key header.

AP| Request Example v

CLOSE

API| Parameters

API Key- Ekkkk kR kR ko ck ok kkk ok ko ko okk ok ok ok ok ok ok ko Q
.

APl Base URL: [

To call an APl you need a token, an api key, and a URL. The base url for the API is shown above. Details of
available API resources can be found in the APl documentation, and are needed to make a valid request. Include
your token in an Authorization Bearer header, and your APl Key in an x-api-key header.

AP| Request Example A

curl -H "Content-Type=application/json"
-H "Authorization=Bearer {access_token}"
-H "x-api-key={api_key}"

-X GET "api_endpoint"

CLOSE

Connection Information

Refreshing Tokens Before They Expire

The CURL script below provides the required information to renew tokens, using credential
information.

curl -d "grant_type=client_credentials"
-H "Content-Type: application/x-www-form-urlencoded"
-u "client_id:client_secret"

-X POST "https://dev-dipapi.auth.us-east-1.amazoncognito.com/oauth2/token"

API| Requests Using Python

3. APl Requests Using Python

Setup

1. Install Anaconda (https://anaconda.org/) on the system you will be using.
2. Create the Conda environment in which to run the demo code using the following command:

conda env create -f conda.yml -n daad-env

Running the Example

1. Activate the environment in which to run the example:
conda activate daad-env

2. Run the script containing the demo:

Simple console output
python daad_app.py

Request and graph in plotly dash
python daad_app_combo.py

Same as daad_app_combo but the code is all inline rather using utils.py
python daad_app_combo_inline.py

3. After ensuring that no errors were reported, point the browser at the URL indicated in the
printed output. If running locally, this should be “localhost:8050". If running remotely, this
should still be on port 8050, but another port could be used, as necessary.

Customizing the Example

The dates in the scripts are examples. To customize what is displayed, simply edit the lines in
‘env_vars.py to set new values for 'START_TIME’, 'END_TIME", and "AIRPORT_ICAO".
Additional variables are defined for the APl URLs and Credentials. If those need to change, the
API calls in python are typically made using the Python requests package. Enter the required
headers obtained from the Connect information or Try It Now curl command for a subscribed
service as shown in the following example (based on the NASA arrival runway utilization
service):

API| Requests Using Python

conda.yml:
name: daad-env

channels:
- defaults
- conda-forge
dependencies:
- python=3.9
- pandas=1.1.%
- numpy=1.20.%
- pyyaml=5.4.*
- plotly=5.1.%
- dash=1.21.*
- dash-html-components=1.1.*
- dash-bootstrap-components=0.13.*
- scikit-learn=1.0.*
- pip
- requests=2.28.*

env_vars.py:
#!/usr/bin/env python

import dash
import requests

import dash_core_components as dcc
import dash_html_components as html
import plotly.express as px

import pandas as pd

TOKEN_URL = "[token url]'

X_API_KEY = 'Tadd api key]'
CLIENT_ID = 'Tadd client id]"
CLIENT_SECRET = Tadd client secret]'

#Urls for the arrival runway utilization service on dip dev

BASE_API_URL = '[base URL]
API_PATH = "arrival/runway/utilization'
START_TIME = '2022-06-29 00:00:00'
END_TIME = '2022-06-30 00:00:00
AIRPORT_ICAO = 'KDFW!'

daad app combo inline.py:
#!/usr/bin/env python

import dash

API| Requests Using Python

import requests

import dash_core_components as dcc
import dash_html_components as html
import plotly.express as px

import pandas as pd

from env_vars import *

app = dash.Dash(__name__)

Request the token
token_request = requests.post(
url=TOKEN_URL,
data={'grant_type": 'client_credentials', 'client_id": CLIENT_ID},
auth=(CLIENT_ID,CLIENT_SECRET)
)

if token_request.ok:
token = token_request.json()

else:
print(f'Failed to get the access token from url: {TOKEN_URL}")
exit()

Put the API Key and token in the headers for the API request
headers = {

'x-api-key': X_API_KEY,

'‘Authorization”: f'{token['token_type']} {token['access_token']}"

}

Set up your params for the service

data = {
‘arrival_aerodrome_icao_name"AIRPORT_ICAQ,
'start_time":START_TIME,
'end_time":END_TIME,
}

API full url
url = f{BASE_API_URL}{API_PATH}'

Call the API
response = requests.post(url, json=data, headers=headers)
print(f"Sending the request to {url}")

if response is not None and response.ok:
data = response.json()
print(f'Success getting data from url: {url}")

API Requests Using Python

else:
print(f'Failed to get data from url: {url}")
exit()

Put the data in a data frame
dat = pd.DataFrame.from_records(data["result"])

if not "hour" in dat.columns:
print("Some data seems to be missing")
exit()

Graph the data

fig = px.bar(
dat,
x="nhour",
y="arrival_runway_count",
color="arrival_runway_actual",
barmode="group",

)

app.layout = html.Div(children=[
html.H1(children=f{AIRPORT_ICAQ} Arrival Runway Utilization"),

html.Div("Runway utilization from {START_TIME} thru {END_TIME}"),

dcc.Graph(
id="arr-rwy-util',
figure=fig,
)
i)

if _name__==' main__"
app.run_server(debug=True)

APl Requests Using Postman

4. API Requests Using Postman

Assumptions:
- Free account with www.postman.com
- Access to the Service Connect information on the Platform (see earlier section)

Postman provides the advantage of managing all APIs inside a collection. This section steps
through the creation of a collection of 2 services: one that obtains an authorization token and
another one that queries one of the DIP NASA services. The request for the token applies then
to any DIP API services that would be added to the collection. Postman supports various set-
ups. The approach below is one of many.

Note: Postman exists in both a web and desktop versions. The examples below were based on
the web interface of Postman, and therefore there may be minor differences with the desktop
version.

Create a Collection

1. Click on the “ + “ sign on the left hand side of the workspace, and name the collection
(eg. “Collection Demo”)

2 My Workspace New Import

5 R

Collections

+ | = oee Collection Demo

> Collection Demo
Authorization Pre-request Script Tests 'x-"ana::llk

2. Click on the “Variables” tab. Variables enables storing values that can then be
referenced throughout collections, environments, requests, and test scripts. Three
variables are required at a minimum. The first 2 to handle the authentication, and at
least one for one of the DIP services. The values associated with the variables are found
in the Connect Window. Ensure the initial and current values are identical. Set the
following variables names and values from the Connect window:

o “client_key” as variable with the API Key as value
e “cognito_url” as variable with the Authorization token URL as value
e “nasa_departure_runway_url” as variable with the APl Base URL as value

http://www.postman.com/

APl Requests Using Postman

Collection Demo

Authorization Pre-request Script Tests Variables @

These variables are specific to this collection and its requests. Learn more about collection variables, 2

VARIABLE INITIAL VALUE @ CURRENT VALUE (@
client_key < API Key < APl Key
cognito_url < Authorization Token URL < Authorization Token URL
nasa_departure_runway_url < API Base URL < APl Base URL

Add An Authentication Token Request

1. Click on the “> " sign, click on the “Add a request” link. Give a name related to the
authorization token request (eg. Authorization Token).

2. Select “POST” as the query method and type in {{cognito_url}}/oauth2/token in the
request URL field. Note that in lieu of an actual URL address, “cognito_url” refers to a

value associated to a variable in the Collection environment. The linkage needs to be
established.

' Authentication Token

POST v {{cognito_url}} /oauth2/token

@ Unresolved Variable

Make sure the variable is defined and enabled in

Params Authoriza Tests Settings

Query Params the active environment, collection or globals.

KEY VALUE

To use environment variables here, you can

select an environment as active.

Add new variable

Ly

”

3. Hover over “{{cognito_url}}” to open the warning window. Click on “Add a new variable
and copy the Authorization Token URL from the Connect Window in the value field.
Next, select the scope to match the Collection name. Click on “Set Variable.” This
request URL is now linked to the authentication token URL.

POST v {{cognito_url}} /oauth2/token

Set as new variable

Params Authoriza Tests Settings

Query Params Name cognito_url
KEY Value < Authorization Token URL VALUE
Key Value
Scope Select A Scope ~

Global

Collection: Collection Demo

APl Requests Using Postman

POST v {{cognito_url}} /oauth2/token

Params Authoriza Set as new variable

Query Params Name cognito_url
KEY Value < Authorization Token URL
Key
Scope Collection: Collection Demo

Set variable

4. Click on the “Authorization” tab and enter the Client ID in the Username field and the
Client Secret in the password field.

APl Requests Using Postman

POST ~ {{cognito_url}}/oauth2/token
Params Authorization @ Headers (9) Body @ Pre-request Script Tests @ Settings

Type Basic Auth o @ Heads up! These parameters hold sensitive data. To keep this data secure while working in a collaborative

Learn more about variables 7

The authorization header will be automatically generated

when you send the request.

Learn more about authorization 2 Username < Client ID

Password < Client Secret

| Show Password

5. Click on the header tab and type in “Content-Type” in the key field and “application/x-
www-form-urlencoded” in the value field

POST v {{cognito_url}}/oauth2/token

Params Authorization @ Headers (9) Body @ Pre-request Script Tests @ Settings
Headers < 8 hidden
KEY VALUE

Content-Type application/x-www-form-urlencoded

6. Click on the Body tab, select the radio button “x-www-form-urlencoded” and add 2
keys:
e ‘“grant_type” as key and “client_credentials” as value.
e “client_id” as key and the Client ID as value.

POST v {{cognito_url}}/oauth2/token
Params Authorization @ Headers (9) Body ® Pre-request Script Tests @ Settings
none form-data @ x-www-form-urlencoded raw binary GraphQL
KEY VALUE
grant_type client_credentials
client_id < Client ID

7. Click on the “Tests” tab and type in the following script to link the access token with
other requests.

tests["Status code is 200 or 202"] = responseCode === 200 || responseCode === 201;

var data = JSON.parse(responseBody);
postman.setGlobalVariable("access_token", data.access_token);

POST v {{cognito_url}}/oauth2/token
Params Authorization @ Headers (9) Body @ Pre-request Script Tests @ Settings
tests["Status code is 200 or 202"] = responseCode === 200 || responseCode === 201;

1

2

3 var data = JSON.parse(responseBody);

4 postman.setGlobhalVariable("access_token", data.access_token);

Add A Service Request
1. Right-click on the Collection name and select “Add request”.
2. Give a name to the Request. Then in the request URL field, type in the variable set in the

collection, and the subfolders as indicated in the OpenAPI Page. For example:
“{{nasa_departure_runway_url}}/airpot/departure/runway”.

POST v {{nasa_departure_runway_url}} fairport/departure/runway

APl Requests Using Postman

@ Unresolved Variable

Params Authoriza Tes
Make sure the variable is defined and enabled in
Query Params the active environment, collection or globals.
KEY Vi

To use environment variables here, you can

select an environment as active.

Add new variable

3. Set the request method to “POST”. Similar to the set-up for the previous Authentication
Token request, a variable needs to be associated with {{nasa_departure_runway_url}}.
Open the warning window, copy the APl Base URL listed in the Collection’s variables (or
in the Connect Window), select the scope to the collection name and click on “Set
Variable.”

APl Requests Using Postman

POST v {{nasa_departure_runway_url}} /departure/runwayjutilization

Set as new variable

Params Authoriza Tests Settings

Query Params Name nasa_departure_runway_url
KEY Value & API Base URL VALUE
Key Value
Scope Collection: Collection Demo

Set variable

4. Click on the Authorization tab. Select “Bearer Token” as the type of authorization. Type
in the variable {{access_token}}in the Token field. This variable refers to the
authorization token request created above.

POST ~ {{nasa_departure_runway_url}}/airport/departure/runway
Params Authorization ® Headers (10) Body @ Pre-request Script Tests Settings
Type Bearer Token s @ Heads up! These parameters hold sensitive data. To keep this data secure while working in a collabor

Learn more about variables 2

The authorization header will be automatically generated
when you send the request.

Learn more about authorization 2 Tokan {{access_token}}

5. Click on the headers tab, add 2 keys with the following values:
e “Content-Type” as the key and “application/JSON” in the value field
o “x-api-key” as the key and {{client_key}} in the value field

APl Requests Using Postman

POST v {{nasa_departure_runway_url}}/airport/departure/runway

Params Authorization @ Headers (10) Body @ Pre-request Script Tests Settings
Headers 8 hidden

KEY VALUE
Content-Type application/json
x-api-key {{client_key}}

6. Click on the Body tab to add the request post body. Click on the “raw” radio button. An
example of a request can be found in the Open API page of the service. In this example,
the query would be as indicated on the picture below.

POST v {{nasa_departure_runway_url}}/airport/departure/runway

Params Authorization @ Headers (10) Body @ Pre-request Script Tests Settings
none form-data x-www-form-urlencoded @ raw binary GraphQL JSON
1 {
2 "departure_aerodrome_icao_name":"KDFW",
3 "start_time":"2022-07-01 15:00:00",
4 "end_time": "2022-07-01 18:00:00"
5 &

7. Save both requests and the collection. The set-up is now complete.

8. Send the request to obtain the authorization token. The token is displayed in the lower
“Body” section of Postman. As indicated in the response, the token is valid for 24h only.
Send a new request to renew the token.

APl Requests Using Postman

Body Cookies (1) Headers (14) Test Results (0/1) @ Status: 200 OK Time: 225ms Size: 168KB Save Response v

Pretty
1§

2

=

Raw Preview Visualize JsoN v~ B Q

"access_token":

Token is hidden

oteyZxipgdimg
"expires_in":
“token_type": “"Bearer"

9.

Send the request to obtain data from the example service. Save the response as either
an example or a file.

Body Cockies Headers (19) Test Results (s Status: 200 OK Time: 6715 Size: 1.36 KB Save Response ~
Pretty Raw Preview Visualize JSON = Save as example
N Save to a file

2 “result": [

3

4 “hour*: 15,

5 "departure_runway_actual”: "17R",
& "departure_runway_count": 37

7 g

8 i

9 “hour*: 15,

10 "departure_runway_actual”: "18L",
11 "departure_runway_count": 35

12 b,

	1. Try Out An API
	Mock it Out: Try an API Without a Subscription
	Try it Out: Try an API With a Subscription

	2. Connection Information to Make an API Request
	Token Request Parameters
	API Parameters
	Refreshing Tokens Before They Expire

	3. API Requests Using Python
	Setup
	Running the Example
	Customizing the Example

	4. API Requests Using Postman
	Create a Collection
	Add An Authentication Token Request
	Add A Service Request

