

Table of Contents

1. TRY OUT AN API ..3

MOCK IT OUT: TRY AN API WITHOUT A SUBSCRIPTION ...3
TRY IT OUT: TRY AN API WITH A SUBSCRIPTION ..6

2. CONNECTION INFORMATION TO MAKE AN API REQUEST ...9

TOKEN REQUEST PARAMETERS .. 10
API PARAMETERS .. 11
REFRESHING TOKENS BEFORE THEY EXPIRE ... 13

3. API REQUESTS USING PYTHON... 14

SETUP ... 14
RUNNING THE EXAMPLE .. 14
CUSTOMIZING THE EXAMPLE ... 14

4. API REQUESTS USING POSTMAN.. 18

CREATE A COLLECTION ... 18
ADD AN AUTHENTICATION TOKEN REQUEST ... 19
ADD A SERVICE REQUEST ... 22

1. Try Out An API

Starting point: Service information page on the DIP Platform website.

Mock it Out: Try an API Without a Subscription
Services API can be tested without a subscription. In this case, both the request and responses
are limited to mock data. The intent of the mock data is to provide an example of the
request/response input parameters, headers, and data-models. This data is for educational
purpose only. The steps are as follows:

1. Click on “API” to open the Open API specifications.

Tr
y

O
u

t
A

n
 A

P
I

2. Click on “POST” to select the service of interest.

3. Click on “Try It Out.”

4. Click on “Execute.” Note: changing the “request post body” in the Mock it out mode
would have no impact on the response.

Tr
y

O
u

t
A

n
 A

P
I

5. Examine the result in the Response body section.

Tr
y

O
u

t
A

n
 A

P
I

6. Optionally, click on “Download” to save the response or click on the copy icon to
copy the response, or the script and paste them into another application.

Try it Out: Try an API With a Subscription
Services API can be tested with a subscription. Unlike testing with unsubscribed Mock Data, a
subscription allows requests to return real data. Valid responses are limited to the scope of the
data set, so requests need to be mindful of these limitations. In this case, the request and
responses are only limited to available data. The steps are as follows:

1. Click on “API” to open the Open API specifications.

2. Click on “POST” to select the service of interest.

Tr
y

O
u

t
A

n
 A

P
I

3. Edit the “request post body” script with data within the scope of data indicated in the
description section, and click on “Execute.”

4. Examine the result in the Response body section.

Tr
y

O
u

t
A

n
 A

P
I

5. Optionally, click on “Download” to save the script or click on the copy icon to copy
the response and paste it into another application.

6. Optionally, a Curl script is included above the response body. It includes the API URL
address, the API key and the token required to invoke the service (see the next section
about the connection information). Click on the copy icon to copy the script and paste it
into another application.

Tr
y

O
u

t
A

n
 A

P
I

2. Connection Information to Make an API Request

On the Service Page, click on the “Connect” button to obtain the Token and API parameters to
make requests to the API. A window opens.

 Tr

y
O

u
t

A
n

 A
P

I
C

o
n

n
ec

ti
o

n
 In

fo
rm

at
io

n

C
o

n
n

ec
ti

o
n

 In
fo

rm
at

io
n

C

o
n

n
ec

ti
o

n
 In

fo
rm

at
io

n

Token Request Parameters
In the upper section, the key Token Request Parameters are the Client ID and Client Secret
information. These are unique to each partner and therefore are confidential information. Both
Client ID and Secret expire after 24h. They are used to generate a temporary Token. This token
can re-used for multiple requests. All Tokens expire after 24h, however they can be updated
automatically by using the example of the Curl script in the window (recommended).

There are 2 ways to create a token:

1. Click on “Generate Token”, and copy that information in another application, or, better,
2. Click on “Token Request Example” to see the CURL script. The script needs to be

updated with the Client ID and Client Secret. This script will automatically generate a
token, and automatically renew the token when it expires.

C
o

n
n

ec
ti

o
n

 In
fo

rm
at

io
n

API Parameters
In the lower section, the API Parameters are the API key and the API Base URL information.
These are unique to each service and therefore are confidential information. The API key and
URL, as well as the above token are needed to call the API. There are 2 ways to create a
request:

C
o

n
n

ec
ti

o
n

 In
fo

rm
at

io
n

1. Copy the API key and the API URL address, or, better,
2. Click on “API Request Example” to see the Curl script. The script needs to be updated

with the Access Token and the API key.

C
o

n
n

ec
ti

o
n

 In
fo

rm
at

io
n

Refreshing Tokens Before They Expire

The CURL script below provides the required information to renew tokens, using credential
information.

curl -d "grant_type=client_credentials"

-H "Content-Type: application/x-www-form-urlencoded"

-u "client_id:client_secret"

-X POST "https://dev-dipapi.auth.us-east-1.amazoncognito.com/oauth2/token"

C
o

n
n

ec
ti

o
n

 In
fo

rm
at

io
n

3. API Requests Using Python

Setup

1. Install Anaconda (https://anaconda.org/) on the system you will be using.

2. Create the Conda environment in which to run the demo code using the following command:

 conda env create -f conda.yml -n daad-env

Running the Example

1. Activate the environment in which to run the example:

 conda activate daad-env

2. Run the script containing the demo:

 Simple console output

 python daad_app.py

 Request and graph in plotly dash

 python daad_app_combo.py

 Same as daad_app_combo but the code is all inline rather using utils.py

 python daad_app_combo_inline.py

3. After ensuring that no errors were reported, point the browser at the URL indicated in the

printed output. If running locally, this should be `localhost:8050`. If running remotely, this

should still be on port 8050, but another port could be used, as necessary.

Customizing the Example

The dates in the scripts are examples. To customize what is displayed, simply edit the lines in

`env_vars.py` to set new values for `START_TIME`, `END_TIME`, and `AIRPORT_ICAO`.

Additional variables are defined for the API URLs and Credentials. If those need to change, the

API calls in python are typically made using the Python requests package. Enter the required

headers obtained from the Connect information or Try It Now curl command for a subscribed

service as shown in the following example (based on the NASA arrival runway utilization

service):

A
P

I R
eq

u
e

st
s

U
si

n
g

P
yt

h
o

n

conda.yml:

name: daad-env

channels:

 - defaults

 - conda-forge

dependencies:

 - python=3.9

 - pandas=1.1.*

 - numpy=1.20.*

 - pyyaml=5.4.*

 - plotly=5.1.*

 - dash=1.21.*

 - dash-html-components=1.1.*

 - dash-bootstrap-components=0.13.*

 - scikit-learn=1.0.*

 - pip

 - requests=2.28.*

env_vars.py:

#!/usr/bin/env python

import dash

import requests

import dash_core_components as dcc

import dash_html_components as html

import plotly.express as px

import pandas as pd

TOKEN_URL = '[token url]'

X_API_KEY = '[add api key]'

CLIENT_ID = '[add client id]’'

CLIENT_SECRET = '[add client secret]'

#Urls for the arrival runway utilization service on dip dev

BASE_API_URL = '[base URL]'

API_PATH = '/arrival/runway/utilization'

START_TIME = '2022-06-29 00:00:00'

END_TIME = '2022-06-30 00:00:00'

AIRPORT_ICAO = 'KDFW'

daad_app_combo_inline.py:

#!/usr/bin/env python

import dash

A
P

I R
eq

u
e

st
s

U
si

n
g

P
yt

h
o

n

import requests

import dash_core_components as dcc

import dash_html_components as html

import plotly.express as px

import pandas as pd

from env_vars import *

app = dash.Dash(__name__)

Request the token

token_request = requests.post(

 url=TOKEN_URL,

 data={'grant_type': 'client_credentials', 'client_id': CLIENT_ID},

 auth=(CLIENT_ID,CLIENT_SECRET)

)

if token_request.ok:

 token = token_request.json()

else:

 print(f"Failed to get the access token from url: {TOKEN_URL}")

 exit()

Put the API Key and token in the headers for the API request

headers = {

 'x-api-key': X_API_KEY,

 'Authorization': f"{token['token_type']} {token['access_token']}"

}

Set up your params for the service

data = {

 'arrival_aerodrome_icao_name':AIRPORT_ICAO,

 'start_time':START_TIME,

 'end_time':END_TIME,

 }

API full url

url = f'{BASE_API_URL}{API_PATH}'

Call the API

response = requests.post(url, json=data, headers=headers)

print(f"Sending the request to {url}")

if response is not None and response.ok:

 data = response.json()

 print(f"Success getting data from url: {url}")

A
P

I R
eq

u
e

st
s

U
si

n
g

P
yt

h
o

n

else:

 print(f"Failed to get data from url: {url}")

 exit()

Put the data in a data frame

dat = pd.DataFrame.from_records(data["result"])

if not "hour" in dat.columns:

 print("Some data seems to be missing")

 exit()

Graph the data

fig = px.bar(

 dat,

 x="hour",

 y="arrival_runway_count",

 color="arrival_runway_actual",

 barmode="group",

)

app.layout = html.Div(children=[

 html.H1(children=f'{AIRPORT_ICAO} Arrival Runway Utilization'),

 html.Div(f"Runway utilization from {START_TIME} thru {END_TIME}"),

 dcc.Graph(

 id='arr-rwy-util',

 figure=fig,

)

])

if __name__ == '__main__':

 app.run_server(debug=True)

A
P

I R
eq

u
e

st
s

U
si

n
g

P
yt

h
o

n

4. API Requests Using Postman

Assumptions:

- Free account with www.postman.com
- Access to the Service Connect information on the Platform (see earlier section)

Postman provides the advantage of managing all APIs inside a collection. This section steps
through the creation of a collection of 2 services: one that obtains an authorization token and
another one that queries one of the DIP NASA services. The request for the token applies then
to any DIP API services that would be added to the collection. Postman supports various set-
ups. The approach below is one of many.

Note: Postman exists in both a web and desktop versions. The examples below were based on
the web interface of Postman, and therefore there may be minor differences with the desktop
version.

Create a Collection

1. Click on the “ + “ sign on the left hand side of the workspace, and name the collection
(eg. “Collection Demo”)

2. Click on the “Variables” tab. Variables enables storing values that can then be
referenced throughout collections, environments, requests, and test scripts. Three
variables are required at a minimum. The first 2 to handle the authentication, and at
least one for one of the DIP services. The values associated with the variables are found
in the Connect Window. Ensure the initial and current values are identical. Set the
following variables names and values from the Connect window:

• “client_key” as variable with the API Key as value

• “cognito_url” as variable with the Authorization token URL as value

• “nasa_departure_runway_url” as variable with the API Base URL as value

A
P

I R
eq

u
e

st
s

U
si

n
g

P
o

st
m

an

http://www.postman.com/

Add An Authentication Token Request

1. Click on the “ > ” sign, click on the “Add a request” link. Give a name related to the
authorization token request (eg. Authorization Token).

2. Select “POST” as the query method and type in {{cognito_url}}/oauth2/token in the

request URL field. Note that in lieu of an actual URL address, “cognito_url” refers to a
value associated to a variable in the Collection environment. The linkage needs to be
established.

3. Hover over “{{cognito_url}}” to open the warning window. Click on “Add a new variable”
and copy the Authorization Token URL from the Connect Window in the value field.
Next, select the scope to match the Collection name. Click on “Set Variable.” This
request URL is now linked to the authentication token URL.

 API Key

 Authorization Token URL

 API Base URL

 API Key

 Authorization Token URL

 API Base URL

A
P

I R
eq

u
e

st
s

U
si

n
g

P
o

st
m

an

4. Click on the “Authorization” tab and enter the Client ID in the Username field and the
Client Secret in the password field.

 Authorization Token URL

 Authorization Token URL

A
P

I R
eq

u
e

st
s

U
si

n
g

P
o

st
m

an

5. Click on the header tab and type in “Content-Type” in the key field and “application/x-
www-form-urlencoded” in the value field

6. Click on the Body tab, select the radio button “x-www-form-urlencoded” and add 2
keys:

• “grant_type” as key and “client_credentials” as value.

• “client_id” as key and the Client ID as value.

7. Click on the “Tests” tab and type in the following script to link the access token with
other requests.

 Client ID

 Client ID

 Client Secret

A
P

I R
eq

u
e

st
s

U
si

n
g

P
o

st
m

an

Add A Service Request

1. Right-click on the Collection name and select “Add request”.

2. Give a name to the Request. Then in the request URL field, type in the variable set in the
collection, and the subfolders as indicated in the OpenAPI Page. For example:
“{{nasa_departure_runway_url}}/airpot/departure/runway”.

3. Set the request method to “POST”. Similar to the set-up for the previous Authentication
Token request, a variable needs to be associated with {{nasa_departure_runway_url}}.
Open the warning window, copy the API Base URL listed in the Collection’s variables (or
in the Connect Window), select the scope to the collection name and click on “Set
Variable.”

tests["Status code is 200 or 202"] = responseCode === 200 || responseCode === 201;

var data = JSON.parse(responseBody);

postman.setGlobalVariable("access_token", data.access_token);

A
P

I R
eq

u
e

st
s

U
si

n
g

P
o

st
m

an

4. Click on the Authorization tab. Select “Bearer Token” as the type of authorization. Type
in the variable {{access_token}} in the Token field. This variable refers to the
authorization token request created above.

5. Click on the headers tab, add 2 keys with the following values:

• “Content-Type” as the key and “application/JSON” in the value field

• “x-api-key” as the key and {{client_key}} in the value field

 API Base URL

A
P

I R
eq

u
e

st
s

U
si

n
g

P
o

st
m

an

6. Click on the Body tab to add the request post body. Click on the “raw” radio button. An
example of a request can be found in the Open API page of the service. In this example,
the query would be as indicated on the picture below.

7. Save both requests and the collection. The set-up is now complete.

8. Send the request to obtain the authorization token. The token is displayed in the lower
“Body” section of Postman. As indicated in the response, the token is valid for 24h only.
Send a new request to renew the token.

A
P

I R
eq

u
e

st
s

U
si

n
g

P
o

st
m

an

9. Send the request to obtain data from the example service. Save the response as either
an example or a file.

Token is hidden

A
P

I R
eq

u
e

st
s

U
si

n
g

P
o

st
m

an

	1. Try Out An API
	Mock it Out: Try an API Without a Subscription
	Try it Out: Try an API With a Subscription

	2. Connection Information to Make an API Request
	Token Request Parameters
	API Parameters
	Refreshing Tokens Before They Expire

	3. API Requests Using Python
	Setup
	Running the Example
	Customizing the Example

	4. API Requests Using Postman
	Create a Collection
	Add An Authentication Token Request
	Add A Service Request

