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Abstract—A performance optimized implementation of Delay 
Tolerant Networking (DTN) with the capacity of gigabit-per-
second rates is developed for the International Space Station (ISS) 
and missions demanding large amounts of communications band-
width. An overview of the High-rate Delay Tolerant Networking 
(HDTN) architecture and support for different convergence 
layers is provided. This paper then presents an overview of the 
testing and integration efforts to evaluate interoperability and 
capability in relevant environments. The first was interoperability 
testing with DTN Marshall Enterprise (DTNME) which resulted 
in near-gigabit per second data rates. This was followed by ISS 
emulation testing with the Software Development and Integration 
Laboratory (SDIL) at the Lyndon B. Johnson Space Center 
(JSC) and local testing based on the ISS DTN network topology. 
The local tests resulted in the discovery of potential sources of 
performance loss in the network and demonstrated near-gigabit 
rates between HDTN and DTNME.

Index Terms—Delay tolerant networking, International Space 
Station, high-rate communications, interoperability

I. INTRODUCTION

The High-rate Delay Tolerant Networking (HDTN) [1], [2],
[3] project at NASA Glenn Research Center is developing
a performance-optimized Delay Tolerant Networking (DTN)
implementation which is able to provide reliable multi-gigabit
per second automated network communications for near-Earth
and deep space missions. To that end, this paper presents an
overview of the testing and integration efforts leading toward
future infusion of HDTN with the International Space Station
(ISS).

The fundamental unit of data in a DTN is the bundle, which
can be of essentially any size. Data rates can then be measured
in bits per second, meaning “bits on the wire,” but also in
terms of bundles per second. HDTN is optimized for bundle
per second, meaning that one does not need to carefully tune
bundle sizes to reach gigabit per second rates. On top of
size, bundle processing represents non-trivial overhead. This is

due to the non-fixed width headers in bundles, which prohibit
random access and constant time processing. Notably, there are
two standards for the bundle protocol (BP), versions 6 and 7,
which use two different schema for header data representation
[4], [5].

The first in the series of tests was with a DTN implemen-
tation called DTN Marshall Enterprise (DTNME) [6], which
was conducted using the DTN Experimental Network (DEN)
[7]. This environment provided the opportunity to test the rate
and connectivity of HDTN using different convergence layers
as well as to determine the latency and interoperability of the
software. These tests also provided a space to compare the
performance of HDTN using both BP version 6 and BP version
7. HDTN was tested as both source and destination network
nodes to assess the bidirectional connectivity and latency, as
well as a gateway node. The expected use-case for HDTN
onboard the ISS is a DTN gateway [8].

This was followed by tests using HDTN with the Software
Development and Integration Laboratory (SDIL) at the Lyndon
B. Johnson Space Center (JSC), which provides a realistic em-
ulation of the network conditions on the ISS. Successful SDIL
testing is a required step for any software to be deployed on the
ISS. HDTN is evaluated in this environment to determine the
data rate, connectivity, and interoperability between HDTN,
DTNME, and the Interplanetary Overlay Network (ION) [9]
implementations of the DTN protocol. Here HDTN is used as
a gateway node between an ION node (space) and DTNME
node (ground).

The results of these tests are analyzed, and the paper
concludes with a discussion of future work for the ISS and
extensions to other missions.

II. ISS AS AN INTRA AND INTER-NETWORK

The International Space Station (ISS) exists as a very large
intra-networking platform between all of its various avionics
subsystems to keep the spacecraft operational (thermal, atti-
tude control, power, etc.) As our national orbital laboratory,NASA/TM-20220011407 1
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the ISS is host to a multitude of onboard experiment payloads,
connected together through a Joint Station LAN (JSL), pre-
senting another intra-networking scenario of moving scientific
data and command instructions between the payloads and the
radios. Functioning as a system, the ISS can return data to the
ground using several paths at different frequencies, including
directly to Earth or primarily relaying through the Tracking
and Data Relay Satellite (TDRS) constellation and down to
one of two ground terminal locations. Finally, scientific data
is routed across a multi-node terrestrial network, through the
ISS Payload Operations and Integration Center (POIC) and
ultimately delivered to a payload science team. The complete
space communications system offers multiple paths to move
data between the various client payloads and their correspond-
ing science teams, through TDRS and across the JSL. In
this way it is a large multiple-in-multiple-out (MIMO) system
whose traffic must be carefully managed to successfully route
data to the correct destination at given quality of service (QoS)
levels.

The communications capabilities for the ISS have been
upgraded several times, and most notably the Ku-band en-
hancements which enabled several hundred Mbps return-link
services. The extension of the ISS to at least 2030 will
see additional payload opportunities and evolutions to the
infrastructure. The upcoming Integrated Laser Communica-
tions Relay Demonstration (LCRD) LEO User Modem and
Amplifier Terminal (ILLUMA-T) will soon be installed on
the ISS, where it will serve as a low-Earth orbit ‘customer’
terminal to operate in conjunction with the LCRD mission.
This payload will demonstrate high-rate laser-based commu-
nications at several data rates up to 1 Gbps through the LCRD
spacecraft in geostationary orbit and down to two new optical
ground terminals. The ISS internal infrastructure was upgraded
to operate at rates on the order of 1000 Mbps in order to
improve internal communications and to better utilize the
bandwidth which ILLUMA-T and LCRD will provide. This
capability adds to the MIMO architecture of the ISS, which
will require additional network storage and management to
utilize its full capacity.

The HDTN project has identified several technological
challenges to address the needed performance upgrades to
support laser communications on the ISS while considering the
existing RF infrastructure. The goal of HDTN is to provide a
high speed path for moving networked data between spacecraft
payloads and communication systems which operate across
a range of disparate and asymmetric rates, so the enhanced
ISS environment presents a relevant opportunity to evaluate
HDTN. Data services span a wide range of priorities, rates and
sizes including software updates, large file transfers, streaming
multimedia, science data return, etc., and the networked nature
of the overall system demands interoperability between each of
the nodes within the system. In particular, this means that the
network traffic (i.e., bundles) can be expected to have a wide
range of characteristics, especially size. Network conditions
are deleteriously affected by the orbit of the ISS, as well
as TDRS coverage and inherent link latencies. Lastly the

frequent disconnections of the communication links requires
local storage at the nodes, to later forward when links become
active. The particulars of this environment have been studied
and modeled for the ISS use-case, and utilized as a test bed
to develop and evaluate HDTN as described in the following
sections.

III. HDTN OVERVIEW

Figure 1 shows HDTN modules and their interactions. The
Ingress module intakes bundles generated by the BPGen tool
and decodes the header fields to determine the source and
destination of the bundles. It receives linkUp or linkDown
events from the Scheduler module to determine if a given
bundle should be forwarded immediately to Egress or should
be sent to storage. To determine a given link availability, the
scheduler reads a contact plan which is a JavaScript Object
Notation (JSON) file that defines all the connections between
all the nodes in the network. If the link is available, Ingress
will send the bundles in a cut-through mode straight out to
Egress and if the link is down or custody transfer is enabled
then it will send the bundles to the storage module. The
storage is always required when custody transfer is enabled
even if an immediate forwarding opportunity exists because
the bundle layer must be prepared to re-transmit the bundle
if it does not receive acknowledgment within the time-to-
acknowledge of the bundle that the subsequent custodian has
received and accepted the bundle. The storage is a multi-
threaded implementation distributed across multiple disks and
custody transfer is also handled there. It receives messages
from the Scheduler to determine when stored bundles can be
released and forwarded to Egress.

The Contact Graph Routing (CGR) [10] client calculates
the optimal route and the next hop for a given contact plan
and final destination using PyCGR [11] which is a Python
implementation of the Contact Graph Routing algorithm. The
Router module communicates with the CGR client to get the
next hop for the optimal route leading to the final destination,
then sends a RouteUpdate event to Egress to update its
outduct to the outduct of the next hop. The Egress module is
responsible for forwarding the bundles received from Storage
or Ingress to the right outduct and next hop determined based
on the optimal route computed by CGR.

HDTN uses an event driven approach based on ZeroMQ
pub-sub sockets [12] for sending updates for unexpected
link and contact plan changes from Egress to Scheduler.
When the connection is lost unexpectedly, Egress will send
a LinkStatus change message to the Scheduler which will
trigger the Scheduler to send linkUp or linkDown events to
Ingress and Storage. In addition, Scheduler will recompute the
contact plan and send the message ContactsUpdate to the
Router for the PyCGR client to recompute the optimal route
based on the new contact plan and send a RouteUpdate
message to Egress.

BPSink tool validates the bundles received from Egress. The
Web Interface currently displays data rates graph and statistics
for network troubleshooting.

NASA/TM-20220011407 2



Fig. 1. HDTN modules interaction

IV. IMPLEMENTATION

A. Convergence Layers

HDTN supports several different convergence layers. All of
these convergence layers are written in the Boost.Asio C++
library [13] using non-blocking, asynchronous patterns for
sockets, resolvers, and timers. Using Boost.Asio ensures
the convergence layers are cross-platform, and the demulti-
plexing automatically occurs on the selected platform; this
means the operating system “select” function is used for Linux
Kernel 2.4 and VxWorks, the “epoll” function is used for
Linux Kernel 2.6, the “kqueue” function is used for Mac
OS X and FreeBSD, and overlapped I/O and I/O completion
ports (IOCP) is used for Windows NT. All HDTN convergence
layers deliver received bundles to the HDTN Ingress with extra
bytes of padding before and after the contiguous memory
of the received bundle. This allows HDTN to avoid mem-
ory allocations/copies during bundle manipulation, particularly
with BP version 7 (e.g. prepending a new previous node
canonical block) [5]. There is an HDTN compile option for
x86 hardware accelerated branchless Self-Delimiting Numeric
Values (SDNV) [14] encoding and decoding. This is useful for
Transmission Control Protocol Convergence Layer (TCPCL)
version 3 [15] and Licklider Transmission Protocol (LTP)
[16] which use SDNV’s. These functions use special x86
instruction sets including SSE, SSE2, SSSE3, SSE4.1, BMI,
BMI2, AVX, and AVX2.

The UDP convergence layer [17] is the simplest of the con-
vergence layers. However, its main drawback is that the bundle
size must be limited to the max size of a UDP datagram,
which is less than 1500 bytes for small Ethernet frames. Also,
another drawback is that it is unreliable unless BP version 6 [4]
custody transfer is enabled. The Simplified TCP (STCP) [18]
convergence layer is also minimally complex like UDP. The
STCP convergence layer specification is not documented in
an RFC but rather is documented in the description section of
the ION user manual [19] for STCPCLI which states, “Each
bundle received on the connection is preceded by a 32-bit
unsigned integer in network byte order indicating the length
of the bundle.” The benefits of STCP is that due to its minimal
complexity, testing shows it is the fastest of the convergence
layers, assuming TCP is using hardware acceleration. The
drawback of STCP is that it is unidirectional, meaning that
two TCP sockets (i.e. an induct and outduct pair) must be
used for bidirectional communication such as in the case of
having BP version 6 custody transfer enabled.

HDTN supports the TCP convergence layer (TCPCL) ver-
sion 3 (RFC 7242) [15] and version 4 (RFC 9174) [20]. Both
versions of TCPCL are bidirectional over one TCP socket,
meaning that administrative records such as custody signals
are receivable on the same TCPCL link. The TCPCL Request
for Comments (RFC) essentially defines the TCP connection
initiator as the “active entity” and defines the TCP connection

NASA/TM-20220011407 3



listener as the “passive entity.” Unlike the other convergence
layers, in which bundle communication is constrained to an
active entity unidirectionally talking to a passive entity only,
the HDTN TCPCL implementations also allow:

1) Two active entities talking to each other through HDTN
on one TCP connection,

2) Two passive entities talking to each other through HDTN
on one TCP connection,

3) A passive entity can send bundles to an active entity
through HDTN on one TCP connection, and

4) An active entity can send pings and receive echoes on
one TCP connection.

The HDTN TCPCL is implemented as a finite state machine
with callback functions, so any number of bytes can be read
and processed from the TCP stream as they arrive without the
need to wait for an entire TCPCL data segment or an entire
bundle. The HDTN TCPCL version 4 can optionally be com-
piled with or without Open Secure Sockets Layer (OpenSSL)
[21] support. The implementation supports Transport Layer
Security (TLS) versions 1.2 & 1.3 only. The OpenSSL support
uses Boost.Asio TCP socket stream wrappers and still uses
an asynchronous design. Testing shows that the maximum
bundle rate is approximately half of Non-SSL, assuming
OpenSSL is compiled with x86 hardware acceleration enabled.

HDTN supports the Licklider Transmission Protocol (LTP)
convergence layer (RFC 5326). The HDTN LTP implementa-
tion is capable of supporting tens of thousands of simultaneous
sessions in order to achieve gigabit rates for link delays
on the order of several seconds. HDTN LTP packet read
operations are implemented as a finite state machine with
callback functions. The entire UDP packet can be fed in at
once to the state machine, resulting in optimal performance,
or a trickle of bytes can be fed into the state machine as they
arrive, which is useful for other potential non-UDP protocols.
The HDTN LTP implementation uses a hardware random
number generator for LTP serial numbers and session numbers
from the “exclusive or” of 3 sources of randomness:

1) the x86 RDSEED instruction, which is optionally en-
abled at compile time,

2) the Boost::random_device library which gets
randomness from operating system sources such as
/dev/urandom, and

3) the current time in microseconds.
An incremental part, or reserved section of bytes, of the

generated number is used to prevent a “birthday paradox” or
duplicate random number. The HDTN LTP implementation
uses two threads in a link/connection. Thread 1 places received
UDP datagrams on a circular buffer and alerts Thread 2 of
data availability through boost::asio::post. Thread
2 handles the boost::asio::io_service::run
thread for the LTP timers (implemented as
boost::asio::deadline_timer) and the LTP
packet processing of all sessions of this LTP Engine. Limited
(pseudo) flow control is achieved by delaying the return of
the RedPartReceptionCallback function, which is

called when the bundle has been fully delivered over reliable
LTP red data transfer, which delays the send of the final
report segment needed to close the session, until the bundle
is first either fully queued to the next hop or is fully stored
on disk.

B. Applications

Since the HDTN software does not currently support a
CCSDS File Delivery Protocol (CFDP) file transfer [22], a
file transfer utility was implemented to break files into bundles
(BPSendFile) and to reassemble them at the destination node
(BPReceiveFile). These tools are discussed in further detail
[23], which describes how they were developed and used in
an aeronautical flight test.

The Bundle Protocol Ping (BPing) utility sends bundles be-
tween 2 nodes using DTN Bundle Ping. This tool tests for end-
to-end connectivity and latency between DTN nodes. HDTN
also supports an echo service that is used in conjunction with
BPing.

V. PERFORMANCE AND COMPATIBILITY TESTING

The HDTN team has been performing a series of interop-
erability tests to enable the integration of HDTN into the ISS
DTN network. These tests can be broken into three categories:
HDTN-DTNME interoperability over the DEN, testing within
the SDIL’s emulation of the ISS DTN network, and local
stand alone testing within the HDTN lab at GRC. This section
provides an overview of the testing within each scenario that
has been done to date.

A. DTNME Interoperability Testing

Fundamental interoperability testing to establish connectiv-
ity and measure baseline data rates was completed between
HDTN and Marshall Space Flight Center Delay Tolerant
Network (MSFC) Delay Tolerant Networking Marshall En-
terprise (DTNME) implementations. Testing was conducted
virtually between Glenn Research Center (GRC) and MSFC
over the DTN Experimental Network (DEN). Figure 2 shows
the network topology.

The Internet Control Message Protocol (ICMP) Ping was
used to measure the latency between the GRC and MSFC DEN
servers. The latency was around 21 ms without introducing
any delay. Next, bidirectional Bundle Protocol Ping was tested
for different configurations and convergence layers using both
BP version 6 and BP version 7. We also added a delay of
200 ms and 700 ms using the Linux kernel netimpair
command line tool [24] to simulate poor network conditions
and check how added delays impact the latency associated
with the different convergence layers. The connectivity tests
results are summarized in Table I for BP version 6 and in
Table II for BP version 7.

The connectivity testing results show that the recorded
round-trip latency was consistent with the standard ping time
with and without delay for all convergence layers, as well
as with an added hop when HDTN served as a gateway.

NASA/TM-20220011407 4



Fig. 2. Multi-Center DTN Testbed topology

TABLE I
RESULTS OF THE CONNECTIVITY TESTING USING BPV6

In addition, we verified that after adding 25% loss, the re-
transmission of lost data occurred correctly for all of the
test cases. Finally, the performance of BP version 7 was
comparable to BP version 6. This test showed there was no
delay introduced from additional overhead or processing time
due to the version 7 update.

The next test conducted was a data rate benchmark of the
LTP convergence layer. Bundles were sent as fast as possible
from HDTN to DTNME using a bundle size of 100 KB and

TABLE II
RESULTS OF THE CONNECTIVITY TESTING USING BPV7

LTP maximum transmission unit of 1360 bytes. The results
are summarized in Table III. In this case, it was found that
the DTNME server had only one core available, and that core

NASA/TM-20220011407 5



TABLE III
RESULTS OF THE DATA RATES TESTING FOR LTP CONVERGENCE LAYER

USING BPV6

was fully utilized. This likely constrained the rates to lower
than what could be achieved with additional cores.

Several LTP parameters were tuned to achieve the rates
shown in Table III. The ltpDataSegmentMtu was set
to 1,360 bytes to make sure UDP packets stayed under the
Ethernet maximum transmission unit (MTU) of 1,500 bytes
to prevent fragmentation. The zmqMaxMessagesPerPath
corresponds to the maximum number of sessions and was
set to either 400 or 5000 LTP sessions for this data rates
test case. The bundlePipelineLimit was set to 6000
to make sure it can handle up to 5000 sessions. The
numRxCircularBufferElements on the outduct corre-
sponds to the number of report segments HDTN can receive
and that was set to 10000 to handle burstiness of report
segments.

The oneWayLightTimeMs on the outduct corresponds
to signal propagation delay at the speed of light in the
outbound direction and that was set to 2000 ms (2 sec-
onds delay). We set ltpMaxRetriesPerSerialNumber
to 500 retries to make sure the Egress will keep bundles
for 30 minutes of disconnection time and prevent bun-
dles from being dropped. This was calculated as in For-
mula 1, in milliseconds, where Tmd is the maximum dis-
connection time, TOWLT is the oneWayLightTimeMs,
TOWM is the oneWayMarginTimeMs, and LTPMR is the
ltpMaxRetriesPerSerialNumber.

Tmd = 2× (TOWLT + TOWM )× LTPMR (1)

This gave the maximum time of disconnection for a bundle
before it is dropped as:

(4, 000 ms roundtrip time)× (500 retries) = 2, 000 s.

B. LTP Long Delay Testing

LTP is a space-related protocol specifically designed for
long delays. Current estimates for delays from the ISS through
NASA’s Integrated LCRD Low-Earth Orbit User Modem and
Amplifier Terminal (ILLUMA-T) and the Laser Communi-
cations Relay Demonstration (LCRD) are about 2 seconds
one-way, or 4 seconds maximum round trip time. Initially
the performance of LTP with these longer delays was poor.
The HDTN LTP implementation was tested and tuned for
longer delays to address this issue. Figure 3 shows the
test configuration. The HDTN BPGen tool generates bundles
which are transmitted to HDTN over localhost using STCP.
STCP is used as the connection between local inducts and

Fig. 3. LTP Long Delay Test Configuration

outducts due to its efficiency. The HDTN outduct transmits
BP version 6 bundles over LTP to the delay proxy. The delay
proxy emulates a 4 second round trip time (2 seconds each
way). It resides on another computer so that its processing
and resource consumption does not impact the tests results.
On another computer, HDTN listens using an LTP induct
to receive bundles. The bundles are then transmitted to the
HDTN BPSink tool using STCP over localhost. The BPSink
tool reports the final data rate results.

Several observations were noted in these longer delay tests.
The first was that tools such as netem and Linux Traffic
Control (TC) [25] were useful for emulating packet loss but
did not perform well for delays greater than 1 second. This
is possibly due to large amounts of data being queued. To
solve this, HDTN now has a custom delay proxy tool that can
be used to emulate longer delays. The tool was implemented
using the Boost.Asio library. The CPU usage for the tool
is low but it can require significant amounts of memory. The
circular buffer memory usage is approximately the product of
the data rate and the one-way delay.

The results of the LTP long delay tests are shown in Table
IV. The table summarizes the overall data rate, report segment
data rate, percentage of processor utilization for the sender and
receiver node, the percentage of lost data segments, the number
of bundles transmitted per second, the number of data segment
UDP packets per second, and the number of simultaneous LTP
sessions required to reach the these rates for several sizes of
bundles. In addition to the LTP parameter tuning discussed
in Section V-A, it was found that increasing the number of
simultaneous LTP sessions was key to achieving gigabit rates
in links with greater than one second delays.

C. SDIL Emulated Network

The GRC HDTN lab is connected to the SDIL lab through
a secure firewall over the NASA VPN. The SDIL uses a Wide
Area Network (WAN) emulator to introduce losses on both
the uplink and downlink as well as a fixed transmission delay
(600 ms) to recreate network conditions on the ISS.

Figure 4 shows the topology of the network between GRC
and the SDIL at JSC. The SDIL emulates an ISS payload
node that transmits bundles using the Telescience Resource Kit
(TReK) [26] and/or ION to an onboard DTN gateway emulated
in the GRC HDTN lab. The HDTN gateway forwards bundles
to a ground DTNME gateway which represents the Huntsville
Operations Support Center (HOSC). The ground gateway then
delivers bundles to the ground user node, which is currently

NASA/TM-20220011407 6



TABLE IV
DTN TO HDTN OVER LTP SENDING VERSION 6 BUNDLES, 4 SECOND ROUND TRIP TIME, 1360 BYTE LTP DATA SEGMENT SIZE.

anticipated to use TReK and ION. The payload to onboard
gateway connection uses STCP, the ISS to ground connection
uses LTP, and the ground gateway to ground user node uses
TCPCL. Currently, only BP version 6 has been tested in this
configuration.

HDTN has completed two initial tests with the SDIL.
The first test established one-way communication from the
ISS payload node to the ground user node. The next test,
conducted several months later, established full bi-directional
communication. This was done using BPing from the ION
payload node to the DTNME ground gateway via the HDTN
gateway, demonstrating interoperability between ION, HDTN,
and DTNME. In addition, large file transfer from the ION
payload (Space) to the Ground (Downlink) was tested and we
were able to successfully send a 1GB file with a data rate of
up to 10 MBits/s. This data rate was much lower than expected
and several factors were suspected as contributing to the poor
performance. The VPN connection between GRC and JSC was
one possible issue. For the uplink, we were able to only send
a small file from Space to Ground. We are suspecting that
the root cause is that DTNME version on the ground is an
older version and does not include the capability to use LTP
to connect to multiple remote clients. That capability is in
DTNME 1.0.1 and later but not in DTNME 0.1.1 or earlier.
In addition, the SDIL and GRC labs use virtual machines to
host the DTN nodes.

Fig. 4. NASA GRC to JSC SDIL Network

D. HDTN Local Testing

In order to determine the cause of the low data rates seen
in the initial SDIL testing, a series of tests were conducted
locally at GRC. This would eliminate the VPN connection

between JSC and GRC as a possible bottleneck in the network.
The tests were conducted using a ”4-box” configuration that
is representative of a single ISS payload, connected to the
ISS onboard gateway, the HOSC DTN ground gateway, and a
ground node. The onboard link between the payload and ISS
gateway uses STCP, the link from the ISS to ground uses LTP,
and the terrestrial link from the ground gateway to the ground
node uses TCPCL. This set of convergence layers was used
throughout the local testing. Several environments were used
for the tests: fully virtualized, native hardware-based using
computers in the HDTN lab, and a combination of both. The
hardware-based test and the combination test both use an HP
ZBook laptop that is an equivalent model to what is used on
the ISS for the onboard gateway. In addition, the test using
both virtual and hardware-based environments used a virtual
machine image that is the same as what is used on the ISS.
The next sections will discuss each test in detail.

Fig. 5. Virtualized Configuration for Local Testing

1) Virtualized Test: Figure 5 shows the configuration for
the fully virtualized test. This test was conducted using a
Powerworks-174026 server. The server has 256 x AMD EPYC
7H12 64-Core Processors (2 Sockets) and 1.48 TiB RAM.
It hosts several virtual machines using Kernel-based Virtual
Machines (KVM) as well as Linux containers (LXC). The
virtual machines used for the initial local testing were based on
Ubuntu 20.04.4 for the onboard gateway and ground gateway
and Oracle Linux 8 for the ISS payload and ground node.
Each virtual machine has access to 16 cores based on the
host architecture and 32 GB RAM. The baseline network rates
between two of the virtual machines were measured using
iPerf3 [27]. This showed the system reaching 1.5 Gbps using
UDP and 16.4 Gbps using TCP.

Fig. 6. Linux Container Configuration for Local Testing

2) Linux Containers Test: The next testing configuration
was done using Linux containers (LXC) as shown in Figure 6.
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The containers were hosted on the same virtualization server
as described in section V-D1. Each container has access to
8 cores and 32 GB of RAM. The containers share the same
operating system as the host, which is Debian 11 (Bullseye).
The Linux containers are virtualized at the operating system
level and share the same kernel. The KVM virtual machines
are virtualized at the hardware level and each have their own
kernel. The Linux containers are lightweight, have faster start
up times, and are generally more efficient. In our use-case
the main advantage of the KVM virtual machines is that
they are able to run operating systems that are compatible
with the different software components, for example TReK
recommends Red Hat Enterprise Linux 7.x, whereas most the
HDTN laboratory commonly uses Debian and Ubuntu.

3) Native Hardware Test: In order to determine any po-
tential performance loss caused by virtualization, the same
topology and convergence layer configuration was tested with
Linux running on bare metal. The ISS onboard payload,
ground gateway, and ground node were running on lab servers
with Debian 10 operating system, 8 x Intel Core i7-7700K
CPU @ 4.2 GHZ, and 32 GB RAM. The ISS DTN onboard
gateway was running on an HP ZBook 15 G4 with 8 x Intel
Core i7-7700HQ CPU @ 2.8 GHZ and 32 GB RAM, also
using Debian 10. This model of laptop is the same that is
currently used to host the operational DTN gateway on ISS
at the time of this paper. Figure 7 shows the network for this
test.

Fig. 7. Native Hardware Configuration for Local Testing

4) ISS Onboard Gateway Image Test: Finally, the same
hardware from section V-D3 was used but the HP ZBook
hosted a KVM image which is used for the onboard DTN gate-
way on ISS. This combination of the ZBook laptop and VM
image is representative of the actual operating environment
expected for HDTN on ISS. The KVM image is configured
to have 2 cores based on the host architecture and 1600 MB
RAM. This is a much more constrained environment than the
other tests conducted, however it is the most realistic case.
The ISS must conserve resources on each machine as much
as possible and hosts several KVM guests on a single ZBook
laptop. Figure 8 shows this test configuration.

Fig. 8. Configuration with ISS DTN Gateway Image for Local Testing, now
with ZBook KVM image

TABLE V
RESULTS OF THE HDTN/DTNME GROUND GATEWAY INITIAL TEST

5) Local Testing Results: Table V summarizes the results
from sections V-D1 to V-D4. Each test was conducted with
HDTN as the ground gateway as well as DTNME. This was
done since we are less familiar with DTNME configuration, so
HDTN was first configured as a sanity check on the test setup.
The configurations for HDTN as a gateway node and HDTN
as a ground node are shown in Figures 9 and 10 respectively
in the appendix. In the SDIL and the real ISS network,
it is expected that DTNME will be the ground gateway.
While iperf3 shows that each configuration should be able to
reach 900 Mbps or greater using UDP there were significant
performance losses for both HDTN and DTNME using the
KVM virtual machines. We believe the UDP benchmark is
representative of the LTP rates HDTN should be able to
achieve since the current LTP implementation uses UDP as
the transport layer. The Linux containers were more efficient
and were closer to the performance achieved using native
hardware. The end-to-end rates measured by BPSink show
that both HDTN and DTNME are able to achieve line rates
when using the native hardware.

While the native hardware test was quite successful, we saw
a significant performance loss when the ISS gateway image
was incorporated on the ZBook laptop. Intuitively, the rates
were expected to be lower since the resources allotted to the
virtual machine are much less than what is available on the
laptop (2 cores and 1600 MB RAM versus 8 cores and 32 GB
RAM). The virtual machine image was reconfigured several
times with more cores and memory allocated to it, but it did
not seem to make a difference in the rates. There are several
possible explanations for this. One possibility is that there was
an issue changing the configuration using the virt-manager tool
[28]. Another potential issue could be the type of network
interface virtualization that is being used, however the iperf3
results do not seem to indicate this. Finally, it is possible
that there is some issue inherent in the KVM virtualization
itself. We have begun exploring the possibility of changing to
a different hypervisor such as VMware vSphere Hypervisor.

The tests in this section were completed with a zero second
delay configured in the UDP delay proxy. This was done to
determine the baseline rates for each configuration. Since the
native hardware configuration was successful at achieving over
900 Mbps for both HDTN and DTNME, we incorporated a 4
second round trip time (2 seconds each way) into the native
hardware test set up using HDTN as the ISS onboard gateway
and DTNME as the ground gateway. This test was able to
reach an average of 940 Mbps with similar LTP parameter
tuning as discussed in section V-B. This demonstrates inter-
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operability of HDTN and DTNME in a similar topology to
the ISS DTN network with a realistic delay for ILLUMA-T
and LCRD.

VI. FUTURE WORK

The initial deployment of HDTN on the ISS is targeting
the existing computing capabilities offered by the existing in-
cabin laptop systems. In the future, should upgrades facilitate
higher performing systems such as server-class computing
with extended storage for buffering, then the HDTN team
could potentially target those platforms to extend the capability
on orbit.

There are additional local tests which will be conducted
to more closely match the configuration of the SDIL. The
next step for interoperability will be to incorporate TReK and
ION on the ISS payload node and ground node. The ISS
frequently uses TReK and ION to send files using CFDP.
Our current tests did not use CFDP but rather the custom
HDTN file transfer tools. We anticipate that this will cause a
change in performance. Another local test will be conducted
to determine the cause of the poor performance using KVM.
The hypervisor on the ZBook laptop will be changed from
KVM to another tool, such as those offered by VMware. The
local virtualization testing was significant since it uncovered
an issue which may have also impacted our SDIL testing. A
KVM hypervisor was also used for the HDTN gateway during
the last round of SDIL testing. We believed at that time that the
low rates might have been due to the VPN between GRC and
JSC, or possibly the version of DNTME used on the ground
gateway. Our local testing has revealed KVM itself may impact
performance more significantly than originally anticipated.

In addition to pursuing further testing with the SDIL, HDTN
is currently performing a series of convergence layer bench-
mark tests using the Goddard Space Flight Center Mission
Cloud Platform (MCP). MCP provides access to Amazon Web
Services (AWS) in a managed environment for NASA. Many
aspects of the Near Earth Network are expected to utilize cloud
and container-based services due to the low cost, flexible com-
puting resources, distributed locations, ease of deployment,
high levels of redundancy, and resource availability. For these
reasons, HDTN has been evaluating the network and compute
performance of AWS Elastic Compute Cloud. The results will
be published in a future paper.

Finally, the HDTN team has been experimenting with imple-
mentations on ARM architectures, both considering multiple-
core processors as well as distributed HDTN implementations
across multiple processors. The results of these parametric
ARM tests will be released in a forthcoming publication, and
utilize similar baseline testing techniques as presented in this
paper. The evaluation of HDTN across a range of processing
platforms will create a portfolio of implementation solutions
spanning different mission classes and ground infrastructure
needs.
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APPENDIX

Fig. 9. HDTN Gateway node configuration

Fig. 10. HDTN Ground node configuration
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