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Motivation

• Challenge using laser powder bed fusion additive manufacturing (AM) 
for flight hardware (Ti-6Al-4V): need to ensure acceptable fatigue 
performance
• Influenced by build conditions, defects, microstructure, texture, etc.

• Process-structure-properties (PSP) simulations: understand how the 
design space maps to quantities of interest relevant for fatigue

• Need uncertainty quantification (UQ), verification, and validation to 
build confidence in AM processes and models1

• Requires enough simulations or experiments to build up statistics on a quantity 
of interest
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1S. Mahadevan et al., ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg. 8 (2022) 010801. https://doi.org/10.1115/1.4053184.

https://doi.org/10.1115/1.4053184


Objectives

• Build a PSP framework capable of simulating many AM-generated 
microstructures

• Predict distributions of fatigue indicator parameters in the simulated 
microstructures

• Understand the influence of microstructural randomness, process 
parameters, and build defects (porosity) on the fatigue indicator 
parameters
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Process-structure: Physically-based Monte Carlo

• Stochastic Parallel Particle Kinetic 
Simulator (SPPARKS)1

• Kinetic Monte Carlo framework from 
Sandia National Laboratories 
https://spparks.github.io/

• Initially used for microstructural evolution 
(e.g., annealing, recrystallization)

• Application to AM: Physically-based 
Monte Carlo (PBMC)2,3

• Thermal model → temperature field →
melt pool
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Melt pool from analytical thermal 
model (Rosenthal equation)

Melting 
temperature

Background 
temperature

𝑇 = 𝑇0 +
𝑄

2𝜋𝑟𝑘
exp −

𝑣 𝜉 + 𝑟

2𝛼

𝑇: temperature
𝑇0: background 

temperature
𝑄: absorbed power
𝑣: scan speed

𝑟: distance from point source
𝜉: local scan direction 

coordinate
𝑘: thermal conductivity
𝛼: thermal diffusivity

1This is not an endorsement by the National Aeronautics and 
Space Administration (NASA)
2T.M. Rodgers et al., Addit Manuf. 41 (2021) 101953. 
https://doi.org/10.1016/j.addma.2021.101953. 
3J.G. Pauza et al., Modelling Simul Mater Sci Eng. 29 (2021) 
055019. https://doi.org/10.1088/1361-651X/ac03a6.

https://spparks.github.io/
https://doi.org/10.1016/j.addma.2021.101953
https://doi.org/10.1088/1361-651X/ac03a6


Process-structure: Physically-based Monte Carlo
Melt pool from analytical thermal 

model (Rosenthal equation)
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Scan strategy (schematic) Example microstructure

Ti-6Al-4V build parameters from O. Zinovieva et al., 141 (2018) 
207–220. https://doi.org/10.1016/j.commatsci.2017.09.018.

1This is not an endorsement by the National Aeronautics and 
Space Administration (NASA)
2T.M. Rodgers et al., Addit Manuf. 41 (2021) 101953. 
https://doi.org/10.1016/j.addma.2021.101953. 
3J.G. Pauza et al., Modelling Simul Mater Sci Eng. 29 (2021) 
055019. https://doi.org/10.1088/1361-651X/ac03a6.

• Stochastic Parallel Particle Kinetic 
Simulator (SPPARKS)1

• Kinetic Monte Carlo framework from 
Sandia National Laboratories 
https://spparks.github.io/

• Initially used for microstructural evolution 
(e.g., annealing, recrystallization)

• Application to AM: Physically-based 
Monte Carlo (PBMC)2,3

• Thermal model → temperature field →
melt pool

• Solidification → epitaxial grain growth, 
columnar grains

https://doi.org/10.1016/j.commatsci.2017.09.018
https://doi.org/10.1016/j.addma.2021.101953
https://doi.org/10.1088/1361-651X/ac03a6
https://spparks.github.io/


Process-structure: Physically-based Monte Carlo
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Grain 
1

Molten 
site

Local temperature 
gradient

Solidification: select probabilistically 
from eligible grains1

Stochastic insertion of keyhole porosity

Weighted by alignment of <001> crystal 
directions with thermal gradient

Spherical 
keyhole pores

Grain 2 is favored for solidification

Assumptions
• Steady-state 

temperature field
• Neglect grain 

nucleation

1Adapted from T. M. Rodgers et al., Addit Manuf. 41 (2021) 
101953. https://doi.org/10.1016/j.addma.2021.101953. 

Solidification front
Capture 
distance

Molten site 
of interest

Solidified 
grains

Scan direction

https://doi.org/10.1016/j.addma.2021.101953


Microstructures: Equivalent ellipsoids

Aspect ratios for equivalent 
ellipsoids support observed 
dominance of columnar grains
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Aspect ratios for all grains across 200 simulations

Equivalent ellipsoid dimensions

Example 
micro-
structure



Structure-properties: Crystal plasticity

• Elasto-Viscoplastic Fast Fourier Transform (EVP-FFT)1

• Advantages
• Speed improvements over crystal plasticity finite element methods

• Shares voxel-based microstructure representation with SPPARKS (no need for meshing)
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ሶ𝜺𝑝 = ሶ𝛾0

𝑠=1

𝑁𝑠

𝒎𝒔
𝒎𝒔: 𝝈

𝜏𝑠

𝑛

sgn 𝒎𝒔: 𝝈

𝜏𝑠 = 𝜏0 + 𝜏1 + 𝜃1Γ 1 − exp −
𝜃0
𝜏1
Γ

Γ =

𝑠=1

𝑁𝑠

න ሶ𝛾𝑠𝑑𝑡

Flow rule:

Voce 
hardening:

𝝈 = 𝐂 ∶ 𝜺𝒕+𝚫𝒕 − 𝜺𝒕
𝒑
− ሶ𝜺𝒕+𝚫𝒕

𝒑
Δ𝑡

Implicit time 
discretization:

ሶ𝛾0: reference strain rate
𝑛: viscoplastic exponent
ሶ𝜺𝑝: plastic strain rate tensor
𝝈 : stress tensor
𝒎𝒔: Schmid tensor for slip system s
𝜏𝑠: critical resolved shear stress for slip system s
ሶ𝛾𝑠: plastic shear strain on slip system s
𝜏0, 𝜏1, 𝜃0, 𝜃1: Voce hardening law parameters
Γ: accumulated slip on all slip systems
𝑡, Δ𝑡: time, time step
𝐂: stiffness tensor
𝜺: total strain tensor
𝜺𝒑: plastic strain tensor

1R.A. Lebensohn et al., Int J Plast. 32–33 (2012) 59–69. https://doi.org/10.1016/j.ijplas.2011.12.005. This is not an endorsement by NASA.

https://doi.org/10.1016/j.ijplas.2011.12.005


Structure-properties: Crystal plasticity

• Elasto-Viscoplastic Fast Fourier Transform (EVP-FFT)1

• Advantages
• Speed improvements over crystal plasticity finite element methods

• Shares voxel-based microstructure representation with SPPARKS (no need for meshing)
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0.6% applied strain in build direction; periodic 
boundary conditions on sides of domain

Prior β
texture, z ref. 
direction

𝑥

𝑧

One of 12 possible α variants 
randomly selected for each grain

[001] [101]

[111]

1R.A. Lebensohn et al., Int J Plast. 32–33 (2012) 59–69. https://doi.org/10.1016/j.ijplas.2011.12.005. This is not an endorsement by NASA.

https://doi.org/10.1016/j.ijplas.2011.12.005


Micromechanical fields

• Goal: distributions of fatigue indicator 
parameters (FIPs)

• Here: equivalent plastic strain

• Value assigned to each grain by volume 
averaging near hotspots

• Other possibilities: crystallographic 
parameters (e.g., slip-system-based 
Fatemi-Socie1)

11

Plastic strain hotspots near grain boundaries

100 μm

𝜀𝑝 = න ሶ𝜀𝑝𝑑𝑡 ሶ𝜀𝑝 =
2

3
ሶ𝜺𝒑: ሶ𝜺𝒑

1V. Bennett, D.L. McDowell, Int J Fatigue. 25 (2003) 27–39. 
https://doi.org/10.1016/S0142-1123(02)00057-9.

https://doi.org/10.1016/S0142-1123(02)00057-9


Summary of PSP framework
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Melting 
temperature

Background 
temperature

Analytical thermal model Microstructures from PBMC Micromechanical fields from 
crystal plasticity

Multiple simulations → probability distributions of FIPs and UQ



FIP distributions: No porosity

• 200 simulations with full PSP framework, no pores

• Fatigue is an extreme value phenomenon → consider upper tail 
of the distribution

• How does the distribution shift in the presence of pores?
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Equivalent plastic strain for all grains across 200 simulations

Linear scale

Log scaleLinear scale

Positive skew 
(extreme values)

Example microstructure



FIP distributions: Porosity vs. no porosity

• 200 simulations with average of one 30-μm keyhole pore per simulation
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Example microstructure 
with a keyhole pore



FIP distributions: Porosity vs. no porosity

• 200 simulations with average of one 30-μm keyhole pore per simulation

• Overall distribution of plastic strain is similar
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~1 pore per simulationNo pores

Equivalent plastic strain for all grains across 200 simulations, linear scale



FIP distributions: Porosity vs. no porosity

• 200 simulations with average of one 30-μm keyhole pore per simulation

• Overall distribution of plastic strain is similar

• But extreme values are shifted!
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Equivalent plastic strain for all grains across 200 simulations, log scale

~1 pore per simulationNo pores

Grains affected by pores



FIP: Extreme values, no porosity

• 99th percentile of equivalent plastic strain → extreme values of the FIP

• Uncertainty bounds (confidence interval) based on binomial distribution1

171A.B. Owen, Monte Carlo Theory, Methods, and Examples. 2013.

Histogram of equivalent plastic strain values

Sample-based estimate of equivalent plastic 
strain 99th percentile across all grains with 

increasing number of simulations
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FIP: Extreme values, porosity vs. no porosity

99th percentile for simulations with pores
• Stable lower bound but upper bound of 95% confidence interval fluctuates

• Points toward pore-microstructure interactions

Fluctuating 
upper bound 
with pores

Sample-based estimate of equivalent plastic strain 99th percentile across all grains without and with porosity
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Concluding remarks

• PSP framework can simulate many builds and determine distributions of quantities 
of interest relevant to fatigue (FIPs)

• We can quantify the influence of pores on the extreme values of FIP distributions
• Small, isolated pores: minimal influence on overall distribution

• Small pores + interaction with local microstructure → heavy tail of FIP distribution

• Ongoing work
• Enhancements to each step in the framework (e.g., grain nucleation, columnar-equiaxed 

transition, α variant selection, FIP determination)

• More advanced UQ (e.g., sensitivity analysis, multi-fidelity Monte Carlo, extreme value 
distributions)
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Example microstructure and plastic strain contours
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99th percentile of equivalent plastic strain across 200 simulations
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