Process-Structure-Properties Simulations for Predicting Fatigue Indicator Parameters of Additive Manufactured Ti-6Al-4V with Quantified Uncertainty

Joshua D. Pribe¹, Saikumar R. Yeratapally¹, Brodan Richter², Patrick E. Leser², George Weber², Edward H. Glaessgen²

> ¹National Institute of Aerospace ²NASA Langley Research Center

Additive Manufacturing Benchmarks 2022

August 15, 2022

Outline

- Motivation and objectives
- Process-structure: Physically-based Monte Carlo
 - Thermal model and solidification
 - Example microstructures
- Structure-properties: Crystal plasticity
 - Model formulation
 - Micromechanical fields and fatigue indicator parameters
- Fatigue indicator parameter distributions and uncertainty quantification
- Concluding remarks

Motivation

- Challenge using laser powder bed fusion additive manufacturing (AM) for flight hardware (Ti-6Al-4V): need to ensure acceptable fatigue performance
 - Influenced by build conditions, defects, microstructure, texture, etc.
- Process-structure-properties (PSP) simulations: understand how the design space maps to quantities of interest relevant for fatigue
- Need uncertainty quantification (UQ), verification, and validation to build confidence in AM processes and models¹
 - Requires enough simulations or experiments to build up statistics on a quantity of interest

¹S. Mahadevan et al., ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg. 8 (2022) 010801. <u>https://doi.org/10.1115/1.4053184</u>.

- Build a PSP framework capable of simulating many AM-generated microstructures
- Predict distributions of fatigue indicator parameters in the simulated microstructures
- Understand the influence of microstructural randomness, process parameters, and build defects (porosity) on the fatigue indicator parameters

Process-structure: Physically-based Monte Carlo

- Stochastic Parallel Particle Kinetic
 Simulator (SPPARKS)¹
 - Kinetic Monte Carlo framework from Sandia National Laboratories <u>https://spparks.github.io/</u>
 - Initially used for microstructural evolution (e.g., annealing, recrystallization)
- Application to AM: Physically-based Monte Carlo (PBMC)^{2,3}
 - Thermal model → temperature field → melt pool

¹This is not an endorsement by the National Aeronautics and Space Administration (NASA)
²T.M. Rodgers et al., Addit Manuf. 41 (2021) 101953. <u>https://doi.org/10.1016/j.addma.2021.101953</u>.
³J.G. Pauza et al., Modelling Simul Mater Sci Eng. 29 (2021) 055019. https://doi.org/10.1088/1361-651X/ac03a6. Melt pool from analytical thermal model (Rosenthal equation)

Background temperature

Melting temperature

$$T = T_0 + \frac{Q}{2\pi rk} \exp\left(-\frac{v(\xi + r)}{2\alpha}\right)$$

T: temperature T₀: background temperature Q: absorbed power

v: scan speed

r: distance from point source

- ξ : local scan direction coordinate
- ower k: thermal conductivity α : thermal diffusivity

Process-structure: Physically-based Monte Carlo

- Stochastic Parallel Particle Kinetic **S**imulator (SPPARKS)¹
 - Kinetic Monte Carlo framework from Sandia National Laboratories https://spparks.github.io/
 - Initially used for microstructural evolution (e.g., annealing, recrystallization)
- Application to AM: Physically-based Monte Carlo (PBMC)^{2,3}
 - Thermal model \rightarrow temperature field \rightarrow melt pool
 - Solidification \rightarrow epitaxial grain growth, columnar grains

¹This is not an endorsement by the National Aeronautics and Space Administration (NASA) ²T.M. Rodgers et al., Addit Manuf. 41 (2021) 101953.

https://doi.org/10.1016/j.addma.2021.101953.

³J.G. Pauza et al., Modelling Simul Mater Sci Eng. 29 (2021) 055019. https://doi.org/10.1088/1361-651X/ac03a6.

Melt pool from analytical thermal model (Rosenthal equation)

Scan strategy (schematic)

Example microstructure

Ti-6Al-4V build parameters from O. Zinovieva et al., 141 (2018) 207–220. https://doi.org/10.1016/j.commatsci.2017.09.018.

Process-structure: Physically-based Monte Carlo

Microstructures: Equivalent ellipsoids

Aspect ratios for equivalent ellipsoids support observed dominance of columnar grains

8

Aspect ratios for all grains across 200 simulations

Structure-properties: Crystal plasticity

- Elasto-Viscoplastic Fast Fourier Transform (EVP-FFT)¹
- Advantages
 - Speed improvements over crystal plasticity finite element methods
 - Shares voxel-based microstructure representation with SPPARKS (no need for meshing)

Flow rule:
$$\dot{\boldsymbol{\varepsilon}}^p = \dot{\gamma}_0 \sum_{s=1}^{N_s} \boldsymbol{m}^s \left(\frac{|\boldsymbol{m}^s:\boldsymbol{\sigma}|}{\tau^s}\right)^n \operatorname{sgn}(\boldsymbol{m}^s:\boldsymbol{\sigma})$$

Voce hardening:

$$\tau^{s} = \tau_{0} + (\tau_{1} + \theta_{1}\Gamma) \left[1 - \exp\left(-\frac{\theta_{0}}{\tau_{1}}\Gamma\right) \right]$$
$$\Gamma = \sum_{s=1}^{N_{s}} \int \dot{\gamma}^{s} dt$$

Implicit time discretization: $\boldsymbol{\sigma} = \mathbf{C} : \left(\boldsymbol{\varepsilon}_{t+\Delta t} - \boldsymbol{\varepsilon}_{t}^{p} - \dot{\boldsymbol{\varepsilon}}_{t+\Delta t}^{p} \Delta t\right)$

 $\dot{\gamma}_0$: reference strain rate *n*: viscoplastic exponent $\dot{\boldsymbol{\varepsilon}}^p$: plastic strain rate tensor $\boldsymbol{\sigma}$: stress tensor *m^s*: Schmid tensor for slip system *s* τ^s : critical resolved shear stress for slip system s $\dot{\gamma}^{s}$: plastic shear strain on slip system s $\tau_0, \tau_1, \theta_0, \theta_1$: Voce hardening law parameters Γ : accumulated slip on all slip systems t, Δt : time, time step **C**: stiffness tensor *ε*: total strain tensor ε^p : plastic strain tensor

¹R.A. Lebensohn et al., Int J Plast. 32–33 (2012) 59–69. <u>https://doi.org/10.1016/j.ijplas.2011.12.005</u>. This is not an endorsement by NASA.

Structure-properties: Crystal plasticity

- Elasto-Viscoplastic Fast Fourier Transform (EVP-FFT)¹
- Advantages
 - Speed improvements over crystal plasticity finite element methods
 - Shares voxel-based microstructure representation with SPPARKS (no need for meshing)

 $\frac{One \ of \ 12 \ possible \ \alpha \ variants}{randomly \ selected \ for \ each \ grain}$

0.6% applied strain in build direction; periodic boundary conditions on sides of domain

¹R.A. Lebensohn et al., Int J Plast. 32–33 (2012) 59–69. <u>https://doi.org/10.1016/j.ijplas.2011.12.005</u>. This is not an endorsement by NASA.

parameters (FIPs) • Here: equivalent plastic strain $\varepsilon^p = \int \dot{\varepsilon}^p dt \qquad \dot{\varepsilon}^p = \sqrt{\frac{2}{3}} \dot{\varepsilon}^p : \dot{\varepsilon}^p$

Goal: distributions of fatigue indicator

Micromechanical fields

- Value assigned to each grain by volume averaging near hotspots
- Other possibilities: crystallographic parameters (e.g., slip-system-based Fatemi-Socie¹)

Summary of PSP framework Multiple simulations \rightarrow probability distributions of FIPs and UQ Micromechanical fields from **Microstructures from PBMC** Analytical thermal model crystal plasticity Melting Background

temperature

temperature

FIP distributions: No porosity

- 200 simulations with full PSP framework, no pores
- Fatigue is an extreme value phenomenon → consider upper tail of the distribution
- How does the distribution shift in the presence of pores?

Equivalent plastic strain for all grains across 200 simulations

Example microstructure

13

FIP distributions: Porosity vs. no porosity

• 200 simulations with average of one 30-µm keyhole pore per simulation

Example microstructure with a keyhole pore

FIP distributions: Porosity vs. no porosity

- 200 simulations with average of one 30-µm keyhole pore per simulation
- Overall distribution of plastic strain is similar

FIP distributions: Porosity vs. no porosity

- 200 simulations with average of one 30-µm keyhole pore per simulation
- Overall distribution of plastic strain is similar
- But extreme values are shifted!

16

Equivalent plastic strain for all grains across 200 simulations, log scale

FIP: Extreme values, no porosity

- 99th percentile of equivalent plastic strain \rightarrow extreme values of the FIP
- Uncertainty bounds (confidence interval) based on binomial distribution¹

¹A.B. Owen, *Monte Carlo Theory, Methods, and Examples*. 2013.

FIP: Extreme values, porosity vs. no porosity

99th percentile for simulations with pores

- Stable lower bound but upper bound of 95% confidence interval fluctuates
- Points toward pore-microstructure interactions

Sample-based estimate of equivalent plastic strain 99th percentile across all grains without and with porosity

Concluding remarks

- PSP framework can simulate many builds and determine distributions of quantities of interest relevant to fatigue (FIPs)
- We can quantify the influence of pores on the extreme values of FIP distributions
 - Small, isolated pores: minimal influence on overall distribution
 - Small pores + interaction with local microstructure \rightarrow heavy tail of FIP distribution
- Ongoing work
 - Enhancements to each step in the framework (e.g., grain nucleation, columnar-equiaxed transition, α variant selection, FIP determination)
 - More advanced UQ (e.g., sensitivity analysis, multi-fidelity Monte Carlo, extreme value distributions)

Acknowledgements

- This work was supported by the NASA Aeronautics Research Mission Directorate (ARMD) Transformational Tools and Technologies (TTT) project
- We also thank Dr. Ricardo A. Lebensohn from Los Alamos National Laboratory for sharing the serial/distribution version of the EVP-FFT code
- Contact information: joshua.pribe@nasa.gov

99th percentile of equivalent plastic strain across 200 simulations