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Background

 NASA'’s long term vision includes crewed missions to Mars

* Current focus is on Artemis program
— First 215t century crewed lunar mission
— Will demonstrate key Mars enabling technologies
« Permanent habitat
* In-situ resource utilization (ISRU)
» Fission surface power (FSP)

« Anticipating expansion to commercial lunar economy

« Artemis and future planetary surface missions require highly available and reliable power
— Power needs to be as reliable/universal as terrestrial utility
— Necessitates planetary surface power grid



Expected Evolution of Lunar Surface Power (Lunar Grid)

1) Early lunar surface power users
will bring their own power sources
(including energy storage)

4) A power system is required to

enable power sharing
/
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Evolution of Lunar Power Systems

Initial Lunar Power Needs (~1 — 5 kW) Artemis
— Exploration and lunar science (robotics, rovers, etc.) Beyond Artemis
— Sources: solar arrays, primary fuel cells, and batteries
Initial Demonstrations (~10 — 20 kW)
— Lunar habitat, first ISRU systems, exploration, and lunar science
— Sources: solar arrays, primary fuel cells, and batteries
Advanced Demonstrations (~80 — 100 kW)
— Lunar habitat, full scale ISRU, exploration, and lunar science
— Sources: solar arrays, primary fuel cells, fission surface power, regenerative fuel cells and batteries
Lunar Expansion / Globalization (~1 MW - 100s MW)
— In-space: In-space manufacturing demonstrations
— Sources: solar arrays, primary fuel cells, fission surface power, regenerative fuel cells and batteries
Full Lunar Economy (~100s MW - 1 GW)
— In-space manufacturing, commercial operations, etc.
— Sources: solar arrays, primary fuel cells, fission surface power, regenerative fuel cells and batteries

Lunar surface activities and the need for power will continue to grow and evolve



Case for a Lunar Power Grid

» Lunar power grid to provide electrical power
— Flexibility, evolvability, and reconfiguration
— Optimal dispatch of power sources and energy storage to service loads & enhance reliability
— Systematic integration of new sources and loads
— Allow development and use of a common grid interface

— Allows for the deployment of future loads that do not need to carry their own power
generation
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Baseline Artemis with a Lunar Microgrid
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» Create a regional lunar grid with:
— Primary distribution system to enable power sharing between local microgrids
— Additional power source (FSP) that can be utilized by local microgrids
* NASA has conducted grid trade studies to inform grid and interface converter design



Artemis Grid Trade Study

» Electrical Power System—Sizing and Analysis Tool (EPS-SAT) used for studies
— MATLAB-based tool for power system concept analysis, available for general govt purpose use
— https://software.nasa.gov/software/LEW-20017-1
— Planetary surface cable and converter models developed and used for this work
* Transmission bus voltage, power type, and frequency allowed to vary
— Voltage: 1.2 kV to 6 kV, DC and 3-Ph AC
— Frequency: 60 Hz to 1 kHz
« Evaluate radial, ring, and mesh architectures for overall grid design
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https://software.nasa.gov/software/LEW-20017-1

Trade Study Assumptions

e Cables

— Copper 10-14 AWG wires with ETFE insulation (~90% design efficiency at 40 kW) 4

— Skin/proximity effect, inductance, temperature modeled, others (e.g. regolith) ignored —

— If individual wire cannot handle the line power, a bundle of parallel wires will be used VAR VY

« Converters \_

— 95% efficient if DC-DC (bidirectional DC-DC)
— 96.5% efficient if DC-AC (bidirectional inverter)

— 98% efficient if AC-AC and no AC frequency changes (a transformer)
 Loads/Sources

Converter

?

— Habitat includes 2x 10 kW, 120 VDC sources, and 20 kW load

— |ISRU includes 8x 10 kW 120 VDC sources, and 68 kW load \_

— FSPis a 40 kW AC source

 Constant design efficiency for each voltage




Radial Architecture

« Radial System Assumptions

— Assume high voltage bus is near
habitat

 Brings ISRU and FSP power to i "
habitat, to serve as a backup T Bl ISRU

Batteries Batteries

— Excess FSP power can flow to - ) L i
ISRU if habitat power needs are Solar Arrays é Solar Arrays

Production

satisfied first 3.4 km 3.6 km

2.6 km

* Radial Advantages
— Simple (lower implementation cost) ?

Fission Islfu
Surface -
Power Nmm_, Excavation

— Lightweight
* Radial Disadvantages

— Lack protection / redundancy
during failure



Radial Architecture Results

» Total transmission mass (converter + cables) versus grid voltage
— AC options showing various frequencies

* 1 kHz had lowest mass (will only present the 1 kHz going forward for AC)
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Ring Architecture

* Ring architecture adds a second tie g T
line between FSP and ISRU

. | Batterijs Habitat Batteries Pr(:(SiuR(;':ion
— Assume FSP to Habitat line _ —
1 SRR Solar Arrays
matches overall grid power type i ' ton
. m . m
* Ring Advantages 2.6 km
— Adds single line tolerance for only

Fission
Surface

3.0 km ﬁ
one more tie line 6

. jip— _ 1SRU
— Adds more efficient path for FSP o Excavation
power to get to ISRU mining "
which has no power of its own | | | | | | | | |
10 | | | —n—RingvDC |

* Ring Disadvantages ‘ ‘ g
— ~50% heavier than radial network L\ ................... T— ................... ................... E— T—— — _— = |

Ring 1000 Hz AC

€
— Can only lose one line and g o |
maintain ability to transmit power =
between any two assets S S U N~ S S S T T — |
2 L 1 1 | 1 1 Tf 1 |
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Grid Voltage, V
11



Mesh Architecture

* Mesh adds two additional tie lines W —i—
. Batteries / Batteries ISRU
— FSP to ISRU Production . Habitat .
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AC and DC Considerations and Trade Study Conclusions

« ACvs DC
— DC transmission significantly lighter than AC for voltages above 3-4 kV
« However, DC grid practically limited to 1.2-1.5 kV, due to lack of high voltage rad-hard switches
» Requires 4-5 series 300 V series stages, more stages likely prohibitive
— AC easier to increase voltage and expand, as transformers can change voltage in AC-DC designs
— Easy to standardize AC converter switch voltage ratings on the low voltage side of transformer
» These facts drove team to select AC

» Study trends highlighted
— 3 kV AC is mass optimal feasible design solution
— Architectures with more tie lines (ring, mesh) show higher fault tolerance and mass
— Architecture selection should be made by mass and fault tolerance requirements/constraints

» Buildup of a lunar surface microgrid will likely start small
— Start with radial and expand over-time to achieve increased reliability (fault tolerance)

* Desirable to explore possible grid expansions toward global exploitation .



Ultimate Global Exploitation
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Initial Study for Grid Expansion Beyond Artemis

« Conducted follow-on studies to envision expanded scale lunar power transmission system
— Envisions first big step beyond Artemis (beginning in-space manufacturing)
» Varying transmission system voltage, distance, and power

— One power level per slide 1 MW

« 20 kW (Artemis scale), 40 kW, 100 kW, 1 MW, and 10 MW 10 km
— Representative wire gauge used, held constant for each power level

— Cable losses and total transmission losses (cable+converters)

on y-axis, with possible constraints In-Space
Manufacturing

— Distances on x-axis 3 g

10 MW 100 kW
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Space Manufactured
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Voltage vs Distance at 100 kW

 Distribution or low power transmission (using insulated cable)

Voltage regimes
« 3 kV
— up to 600 m

* 6 kV

— up to 2.5 km
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— up to 6 km
12 kV
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— up to 20 km
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Voltage vs Distance at 1 MW

* Inter-regional, medium power transmission (using insulated cable)

. Lesses assuming 4 AWG eable, earrying 1000 kW at 1600 Hz
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Voltage vs Distance at 10 MW

« Initial extra-regional/global transmission (using uninsulated cable)

. Losses assuming bare 4/0 cable, carrying 10 MW at 1000 Hz
Voltage regimes
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Initial Study for Grid Expansion Beyond Artemis

« Possible design for a grid adding in-space manufacturing

- Design variables highly dependent on distances, powers (all TBD)

* Long distances beyond Artemis may require dropping to lower
frequency (TBD) to avoid stability, propagation issues

In-Spéée
Manufacturing

Space Manufactured
Solar Generation

3 kV gg 90 kV
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« Artemis scale grid trade studies conducted to inform grid and interface converter design
— AC selected for ease of increasing voltage, extensibility
— 3 kV AC selected as mass optimal solution

* Follow on studies conducted exploring possible expansions of the Artemis grid
— Focus on in-space manufacturing

« Grids become necessary for planetary surface operations as they grow to include more
assets dependent on each other for power

— NASA investing in initial R&D work for these grids
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