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Background

The Extreme Lunar Environment

• Day: 100-400 K highs based on latitude

• Night: 50-100 K lows for all latitudes

• Duration (non-polar): ~354 hrs (~15 Earth days)

• Duration (polar): winter sun below horizon for 
~4.5 months

Thermal model calculations of monthly and annual lunar surface temperature variations at various latitudes

Lunar night is 
extremely cold 

everywhere

Li-ion battery 
approx. freeze 
temperature

LRO DIVINER: Lunar Day/Night Temperature Range by Latitude

Polar winter (4.5 months)
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• Power System Survivability
• Radioisotope systems provide nighttime heat and power, but are regulated and costly

• Traditional solar panel and small battery systems cannot survive reliably

• Large batteries providing sufficient heat are mass-prohibitive due to night duration

• Lightweight Battery Solution
• Surveyor (1966-1968) used silver-zinc batteries

• Not designed to survive night conditions, but a few experienced
unexpected battery activity after returning to daylight

• Recent research shows that lithium-ion (Li-ion) batteries can be
safely frozen and thawed without apparent performance degradation

• Relies on cryogenically tolerant and operable electronics to properly 
manage revival

Image Credit: NASA
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Background

Lunar Power Systems



Overview

Proposed Survival Strategy

• Lunar Power Hibernation
• Extends capabilities and duration of lunar missions

• Reduces dependency on radioisotopes, pre-established infrastructure

• Success depends on:

• Cryo-tolerant Li-ion batteries

• Cryo-tolerant electronics to operate reliably in nominal conditions (after dawn)

• Cryo-operable electronics to perform cold start and safely restore power

• Hibernation Applications
• Commercial Lunar Payload Services (CLPS)

• Landers currently provide only a single lunar day of operation

• Robotic elements of the Artemis Program

• Lunar in-situ resource utilization (ISRU) systems

• Survival and recovery options in contingency situations
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• Cryo-Tolerant
• Required for all spacecraft electronics (power, avionics, comm)

• Must passively withstand thermal environment down to 50 K without damage

• Can depend on manufacturing processes and materials/packaging

• Cryo-Operable
• Required for hibernation electronics that restore power at lunar dawn

• Must start up and operate in 50-100 K lunar dawn

• Contingent on device properties and stability of interactions
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Hibernation Electronics Definitions
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Power Supply
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Payloads

Battery 
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BMS Data

Solar Array Strings

Battery 
Management 

System
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Hibernation 
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Dawn 
Battery 

Pre-Heater(s)

Battery Management System

Series String 
Isolation 
Switches

• Manages
• PV array
• Main bus voltage
• Battery voltage
• Main loads (inhibits)

• Dawn Mode Functions
•

•

Preheat batteries•

Preheat avionics•

Controls battery isolation

SAn
Dn

Dawn
Transmitter
Pre-Heater

Dawn 
Avionics 

Pre-Heater(s)

“Dawn Mode” functions (in yellow)
require active cryo-capable electronics

Li-ion Battery 
Cells

Overview

Hibernation Power Architecture

• Independent of battery power
• Coordinates with MBC
• Monitors cell temperatures/voltages
• Performs pre-charging at dawn
• Detects and isolates faults Regulates PV strings



Key
Cryo-tolerant
Cryo-operable (“Dawn Mode”)
(#) – Dawn start-up sequence Solar Arrays

Power 
Distribution

Spacecraft 
Avionics & 
Payloads 

Isolation Relay

(1)

(2)

(3)

(3)

Monitoring
Pre-heat control

Pre-charging

Closed during nominal ops 
for battery charge/discharge

Main Bus

(5)

(4)

Pre-heat as needed
Pre-heat

Battery Management 
System (BMS)

Battery

Main Bus 
Controller

Heater Control

→ Power
→ Thermal
→ C&DH
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Overview

Sample Revival Sequence

Pre-heat
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Figures courtesy of W. Bennett / NASA GRC

Batteries

Lithium-Ion Cell Investigation at NASA GRC
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• Initial Tests
• Performed at 1 atmosphere

• LN2 vapor chilled to 80 K (-193 °C)

• Refined Tests
• Performed in vacuum (70 mTorr)

• Cryocooler chilled to 100 K (-173 °C)

• 18650 Cell Results
• Near 200 K (-70 °C), voltage drops to 0 V

• Above 200 K, voltage and capacity recover

• No apparent degradation



• Printed Circuit Boards
• Copper-clad laminate and fiberglass-reinforced plastic (FRP) 

have well-matched coefficients of thermal expansion (CTEs)

• Target small boards and devices, matched CTE, mechanical compliance

• Avoid pure tin: tin whiskers and tin pest

• Hybrid Microcircuits
• Bare devices assembled on a low-CTE ceramic substrate

• Encapsulated in a hermetically sealed metal enclosure

• Eliminates thermal stress from plastic encapsulants

• Improves thermal conductivity

Electronics

Circuit Packaging for Cryo-Tolerance

Tin pest: Tin can transform to a brittle non-metallic form between 
0°C and -30°C, expanding 27% and disintegrating joints.

Tin whiskers: Single-crystal tin filament 
growths can create short circuits.

Image Credits: R. Oeftering / NASA GRC (left), NASA Electronic Parts and Packaging (NEPP) Program (right)
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Electronics

Choosing Components for Cryo-Operability

Device Advantages Challenges

Se
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Diodes (PN, Schottky)
• Can be operational at lunar temperatures with proper design 

and part selection
• Forward voltage generally increases at cryo temperatures
• On-resistance increases below 100 K (except for GaN Schottky)

Bipolar Junction Transistor 
(BJT)

• Increased gain at cryogenic temperatures (SiC) • DC gain decreases dramatically with temperature (Si)
• Likely unsuitable for use due to carrier freeze-out (Si)

Junction-Gate FET (JFET)
• Normally-on JFET performance at lunar night temperatures 

similar to that at room temperature (SiC)
• Carrier freeze-out increases on-resistance as temperatures decrease past ~200 K

Metal Oxide Semiconductor 
FET (MOSFET)

• On-resistance decreases w/ low temperature until ~77 K (Si)
• Switching time improves w/ low temperature (Si)

• Threshold voltage increases; breakdown voltage decreases (Si)
• Enhancement-mode SiC unsuitable – extreme carrier freeze-out

High-Electron Mobility 
Transistor (HEMT)

• On-resistance/switching time improves w/ low temperature; 
breakdown/threshold voltage doesn't change (GaN)

Insulated-Gate Bipolar 
Transistor (IGBT)

• Improved switching speed, forward voltage, and 
transconductance

• Breakdown voltage decreases
• Threshold voltage slightly increases

P
as

si
ve

s

Resistors
• Wire-wound and metal film have low TCRs (temp 

coefficients of resistance)
• Thick-film and carbon are greatly affected by temperature

Ceramic Capacitors
• Class I (paraelectrics): 

Good capacitance stability over temperature
• Class II (ferroelectrics): 

Higher variability over temperature ranges

Electrolytic Capacitors
• Solid tantalum electrolytics will operate marginally • Aluminum electrolytic (liquid): Electrolyte freezes at cryo temperatures

• Tantalum electrolytic (solid): Higher dissipation factor and ESR, lowered capacitance at 
higher frequencies

Inductors
• Air core inductors likely have little change in properties due 

to no core material
• Solid core inductors require special core material tailored for low losses at cryo

temperatures



Summary
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• Lunar Power Hibernation Architecture
• Reduces dependency on other prohibitive forms of power delivery

• Enables longer-term missions across multiple lunar cycles

• Can be implemented on existing designs at low cost and mass

• Lithium-ion Battery Management
• Proven to be capable of freezing and thawing w/ little-to-no loss of performance

• BMS should be implemented to control warming

• Electronics Design Considerations
• Minimize size of boards and part footprints, match CTE, avoid tin

• Most semiconductors can operate at cryogenic temperatures (50-100 K)

• Carrier freeze-out and electron tunneling may be a concern

• Solutions exist for most implementations of passive devices



Future Work

• Characterize safe Li-ion hibernation management

• Continue review of academic works

• If possible, build parts model library for simulation

• Test cryogenic operation of discrete parts

• Develop prototype cryo-circuit based on guidelines

• Conduct circuit-level testing with batteries and solar cells

• Seeking collaboration opportunities!
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Acronyms and Abbreviations

• BJT Bipolar Junction Transistor

• BMS Battery Management System

• C&DH Command and Data Handling

• CLPS Commercial Lunar Payload 
Services

• Comm Communications

• Cryo Cryogenic

• CTE Coefficient of Thermal Expansion

• ESR Equivalent Series Resistance

• FET Field-Effect Transistor

• FRP Fiberglass-Reinforced Plastic

• GRC Glenn Research Center

• HEMT High-Electron Mobility Transistor

• IGBT Insulated-Gate Bipolar Transistor

• ISRU In Situ Resource Utilization

• JFET Junction-Gate FET

• Li-ion Lithium-ion

• LRO Lunar Reconnaissance Orbiter

• MBC Main Bus Controller

• MOSFET Metal Oxide Semiconductor FET

• NEPP NASA Electronic Parts and 
Packaging

• PCB Printed Circuit Board

• TCR Temperature Coefficient of 
Resistance

• Temp Temperature
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