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Abstract 13 
 14 

Despite long-standing efforts, hydrologists still lack robust tools for calibrating land 15 

surface model (LSM) streamflow estimates within ungauged basins. Using surface soil 16 

moisture estimates from the Soil Moisture Active Passive Level 4 Soil Moisture (L4_SM) 17 

product, precipitation observations, and streamflow gauge measurements for 617 medium-scale 18 

(200-10,000 km2) basins in the contiguous United States, we measure the temporal (Spearman) 19 

rank correlation between antecedent (i.e., pre-storm) surface soil moisture (ASM) and the 20 

storm-scale runoff coefficient (RC; the fraction of storm-scale precipitation accumulation 21 

converted into streamflow). In humid and semi-humid basins, this rank correlation is shown to 22 

be sufficiently strong to allow for the substitution of storm-scale RC observations (available 23 

only in basins that are both lightly regulated and gauged) with high-quality ASM values 24 

(available quasi-globally from L4_SM) in streamflow calibration procedures. Using this 25 

principle, we define a new, basin-wise LSM streamflow calibration approach based on L4_SM 26 

alone and successfully apply it to identify LSM configurations that produce a high rank 27 

correlation with observed RC. However, since the approach cannot detect RC bias, it is less 28 

successful in identifying LSM configurations with low mean-absolute error.  29 

 30 
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Plain Text Summary 31 

Accurately forecasting the fraction of rainfall that runs off into streams, as opposed to infiltrates 32 

into the soil, is critical for flash-flood prediction, water-resource monitoring, and tracking the 33 

transport of nutrients from agricultural fields into local waterways. Such forecasting is typically 34 

performed by hydrologic models that attempt to represent the physical processes responsible for 35 

surface runoff generation. However, to provide accurate streamflow forecasts, these models 36 

typically need to be calibrated against actual streamflow observations. This is problematic 37 

given the relatively poor, and declining, global availability of stream gauges. This paper 38 

presents a novel model calibration strategy that uses soil moisture from remote sensing and 39 

numerical modeling in place of streamflow observations during calibration. This transition has 40 

significant practical advantages because, unlike streamflow observations, the soil moisture data 41 

are continuously available across space. Our results demonstrate that this new approach can 42 

significantly improve hydrologic models within humid and semi-humid basins lacking 43 

sufficient ground-based instrumentation for traditional streamflow calibration. 44 

 45 
1. Introduction 46 

Despite several decades of development, land surface models (LSMs) still do not 47 

generally provide adequate streamflow estimates outside of hydrologic basins in which they 48 

have been directly calibrated (Xia et al., 2012; Hrachowitz et al., 2013). This is problematic due 49 

to the limited, and declining, worldwide availability of streamflow gauge data (Fekete et al., 50 

2015) – as well as the proliferation of stream diversion and impoundment infrastructure that 51 

degrades the quality of hydrologic information contained in streamflow observations. As a 52 

result, there is a widely acknowledged need to develop effective LSM calibration strategies that 53 

can be applied in the absence of reliable streamflow observations (Samaniego et al., 2017). 54 
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The estimation and routing of runoff is a multi-faceted process; however, one 55 

fundamental aspect is the application of an LSM to estimate the fraction of storm-scale 56 

precipitation converted into runoff (hereinafter, the runoff coefficient or “RC”). Storm-to-storm 57 

variation in antecedent (i.e., pre-storm) soil moisture (ASM) is a well-known predictor of RC - 58 

see, e.g., Song & Wang (2019) and references therein. However, past attempts to quantify the 59 

impact of ASM on RC have been complicated by the presence of significant independent errors 60 

in available ASM and RC estimates and the resulting attenuation bias in their sampled temporal 61 

correlation (Crow et al., 2017). Attenuation bias refers to the tendency for independent random 62 

errors, present in either independent or dependent variables, to spuriously decrease sampled 63 

cross-correlation values (Hutcheon et al., 2010). Recent work with the Soil Moisture Active 64 

Passive (SMAP) Level 4 Surface and Root-zone Soil Moisture (L4_SM) product suggests that, 65 

once attenuation bias is minimized via the application of high-quality L4_SM ASM estimates, 66 

storm-to-storm variations in ASM can be shown to play a dominant role in driving RC temporal 67 

variability within the central and eastern United States (Crow et al., 2019). This result stands in 68 

contrast with the typical representation of RC in LSMs - which generally predict a weaker role 69 

for ASM in determining RC (Crow et al., 2018; 2019). 70 

The apparent strength of the true coupling between ASM and RC presents an 71 

opportunity for LSM streamflow calibration. Crow et al. (2019) suggest that, in certain cases, 72 

the relationship between ASM estimates acquired from the L4_SM product and storm-scale RC 73 

observations is sufficiently strong for the two quantities to be used inter-changeably in 74 

correlation-based calibration objective functions. This is notable because the L4_SM product is 75 

available globally - while meaningful RC observations are restricted to a relatively small 76 

number of lightly regulated hydrologic basins with streamflow measurements available at their 77 
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outlet. Therefore, if L4_SM ASM and gauge-based RC values can be applied interchangeably, 78 

new opportunities exist for expanding the meaningful calibration of LSMs into ungauged or 79 

highly regulated basins – at least in areas like the contiguous United States (CONUS) where the 80 

L4_SM product is known to provide high-quality ASM information (Crow et al., 2017). 81 

Hereinafter, we will refer to the assumption of perfect temporal (i.e., storm-to-storm) 82 

rank correlation between ASM and RC as the “perfect correlation” (PC) assumption. Our two 83 

key objectives are to: i) evaluate the strength of the PC assumption using observations and ii) 84 

investigate the potential of the PC assumption as a streamflow calibration principle for LSMs.  85 

To achieve our first objective, we use ASM estimates acquired from the L4_SM product 86 

(Section 2.2) and RC estimates based on streamflow and rainfall observations (Section 2.3) 87 

obtained within the set of lightly regulated basins described in Section 2.1. Key steps towards 88 

achieving this objective include the discrimination of individual storm events (Section 3.1), 89 

modeling the impact of random errors on estimated ASM and RC values (Section 3.2), and the 90 

identification of factors impacting the observed correlation between ASM and RC (Section 91 

2.4). Results regarding the strength of the PC assumption are then described in Section 5.1.  92 

Our second objective expands on the first by evaluating LSM calibration strategies 93 

based on the PC assumption. These strategies employ an ensemble of LSM model 94 

configurations (Sections 4.1-4.3) and are described in detail in Section 4.4. Evaluation metrics, 95 

used to assess the performance of various calibration strategies, are introduced in Section 4.5. 96 

Note that, in this context, the term “calibration” indicates the selection of an optimal LSM 97 

ensemble member for an individual basin based on a particular calibration strategy. LSM 98 

calibration results based on the PC assumption are then described in Sections 5.2-5.4. 99 

 100 
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2. Domain and Data 101 

2.1. Study basins  102 

Our analysis is based on an examination of ASM, precipitation, and streamflow data 103 

within 617 medium-scale, lightly regulated CONUS basins during the period 1 April 2015 to 30 104 

August 2020. Here, we provide background on our study basins and the datasets used to 105 

examine the relationship between ASM and RC.  106 

Study basins are based on a list of 1145 lightly regulated CONUS basins described in 107 

Lohmann et al. (2004) and examined in Xia et al. (2012). From this original list, only basins 108 

between 200 and 10,000 km2 in size are considered here. Likewise, basins containing fewer 109 

than 50 snow-free and frozen-soil-free storm events during our analysis period are discarded - 110 

see additional details on our applied storm-event definition in Section 3.1. Finally, a small 111 

number (< 10) of additional basins containing visible reservoirs (despite prior screening for 112 

regulation), suffering from significant temporal gaps in daily USGS streamflow observations, 113 

or providing clearly non-physical long-term streamflow statistics (e.g., mean-annual streamflow 114 

exceeding mean-annual precipitation) are removed. Such screening results in the 617 selected 115 

basins shown in Figure 1. These basins are generally restricted to the eastern half of CONUS – 116 

along with a smaller number of basins along the west coast.  117 

Daily USGS streamflow observations are acquired and processed for each basin outlet. 118 

Note that, in the interest of maximizing the spatial coverage of our analysis, the rain-gauge 119 

density threshold suggested by Schaake et al. (2000) is not applied. Therefore, significant 120 

precipitation measurement errors are still possible. Likewise, despite our best efforts, the 121 

absence of small-scale anthropogenic impoundment or diversion structures cannot be 122 

guaranteed. 123 
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 124 

2.2 SMAP L4_SM product 125 

ASM values are based on the area-weighted spatial averaging of 9-km resolution surface 126 

(0-5 cm) soil moisture values acquired from Version 5 of the L4_SM product (Reichle et al., 127 

2019; 2020; 2021a) within each study basin. The 3-hourly L4_SM product is generated through 128 

the sequential assimilation of SMAP brightness temperature data (Piepmeier et al., 2017) into 129 

the NASA Catchment LSM (Reichle et al., 2017). Hourly, 0.25-degree surface meteorological 130 

forcing data for the Catchment LSM is derived from the Goddard Earth Observing System 131 

Forward-Processing (GEOS-FP) product (https://gmao.gsfc.nasa.gov/GMAO_products/; Lucchesi, 132 

2018). Over CONUS, the GEOS-FP precipitation forcing is corrected to match daily 133 

accumulations provided by the gauge-based NOAA Climate Prediction Center Unified (CPCU) 134 

product at a 0.5-degree scale. Prior to the start of our analysis (1 April 2015), the Catchment 135 

LSM is spun up from a cold start on 1 January 1980 using forcing data acquired from the 136 

Modern-Era Retrospective Analysis for Research and Applications, Version-2 dataset (Gelaro 137 

et al., 2017).  138 

Daily ASM values are based on L4_SM surface soil moisture estimates within the 3-139 

hour time window (centered at 2230 UTC) closest to the end of each 0 to 24 UTC day. 140 

Sampling at the end of the UTC day ensures that such ASM values are acquired as close as 141 

possible to the potential start of a rainfall event on the following day.  142 

Prior work has established that the L4_SM product provides a significantly better pre-143 

storm indicator of ASM than other available SM products - including a model-only version of 144 

the L4_SM product that does not assimilate SMAP brightness temperature (Crow et al., 2017). 145 

Likewise, L4_SM pre-storm surface (0 to 5-cm) soil moisture estimates are used because past 146 
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work suggests that they correlate slightly better with basin runoff response than corresponding 147 

root-zone (0 to 1-m) L4_SM estimates (Crow et al., 2018).  148 

 149 

2.3 NLDAS-2/CPCU precipitation 150 

Daily (i.e., 0 to 24 UTC) precipitation totals are based on the spatial weighted averaging 151 

of 0.125-degree gridded NLDAS-2 precipitation (Xia et al., 2009) estimates falling within each 152 

basin. At a daily scale, these estimates are designed to match a 0.25-degree gauge-only CPCU 153 

product (Chen et al., 2008) and corrected for topographic effects by the Parameter-elevation 154 

Regressions on Independent Slopes Mode precipitation climatology dataset (Daly et al., 1994). 155 

Note that we use the NLDAS-2 forcing data, instead of the GEOS-FP precipitation data applied 156 

to force the land model in the L4_SM system, to maximize the independence of ASM and RC 157 

estimates used in our analysis of the PC assumption. Nevertheless, there is considerable overlap 158 

in the rain gauge data used as the basis for both. The potential impact of cross-dependency in 159 

the precipitation data used to generate both ASM and RC is discussed further in Section 3.2. 160 

 161 

2.4 Aridity index  162 

Aridity index (AI) values, applied below to explain spatial trends in observed ASM 163 

versus RC coupling, are taken from the Global Aridity and Potential Evaporation Dataset 164 

(Zomer et al., 2007; Zomer et al., 2008). This product conforms to the AI definition offered by 165 

the United Nations Environment Program (UNEP, 1992) whereby AI is the dimensionless ratio 166 

between long-term, mean-annual precipitation divided by long-term, mean-annual potential 167 

evapotranspiration (i.e., low AI values correspond to arid climates and high AI values to humid 168 

climates).  169 
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AI values based on this definition are typically bounded between 0 and 1.5. Any 170 

absolute labelling of AI values is somewhat subjective; however, a value of 0.4 approximates 171 

the well-known wet/dry climate transition along the 100th meridian in CONUS. Note that AI 172 

values are based on climatological averages sampled from long-term (1950 to 2000) 173 

observations and an implied assumption of climate stationarity. As such, their temporal support 174 

does not correspond directly to our 1 April 2015 to 30 August 2020 analysis period.  175 

 176 

3. Approach 177 

3.1 Storm events and SRCS 178 

Storm-event separation is based on the approach of Crow et al. (2017) where a new 179 

storm event is assumed to start on any day with a NLDAS-2/CPCU precipitation accumulation 180 

exceeding Pmin. Unless otherwise noted, Pmin = 10 mm d-1.  181 

Following a triggering daily rainfall accumulation, storm events are assumed to last for 182 

an N-day period defined by rounding up the basin saturation time expression of Linsley et al. 183 

(1982) to the nearest positive integer: 184 

N [days] = CEIL[(A * 2.59)0.2]     (1) 185 

where A is basin area [km2] and CEIL is an upward integer rounding function. As a result, N is 186 

meant to capture the period in which streamflow can be attributed to a given storm event. Here, 187 

it is assumed to be independent of rainfall-event size. Derived values of N range from 4 days 188 

for our smallest (~200 km2) basin to 8 days for our largest (~10,000 km2) basin.  189 

ASM refers to the lowest end-of-day (i.e., 24 UTC or the closest available alternative), 190 

basin-averaged L4_SM surface soil moisture (0-5 cm) value for the two-day period preceding 191 

the start of a storm event, as will be discussed further below. Storm events interrupted by a new 192 
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storm (i.e., the arrival of another daily precipitation accumulation exceeding Pmin within an 193 

earlier N-day storm event) are discarded, and a new event is assumed to begin coincident with 194 

the latest triggering precipitation event.  195 

Since our analysis focuses only on hydrological responses to rainfall incident on 196 

unfrozen and non-snow-covered soil, only storm events where the pre-storm, basin-averaged 197 

snow fractional cover is below 1% (by area) and the 24 UTC surface temperature is above 3° C 198 

on the first (i.e., triggering) day of the event are considered. Surface state results from a 199 

baseline LSM configuration (see Section 4 below) are used for assessing both thresholds – 200 

which mask snow, rain-on-snow, and rain-on-frozen-soil storm events from our analysis.  201 

As noted above, storm-scale RC is calculated as the streamflow volume during the 202 

storm event divided by total precipitation accumulation volume (during the same storm-event 203 

sampling period). Within basins containing more than 50 valid storm events during the study 204 

period (1 April 2015 to 30 August 2020), soil moisture runoff coupling strength (SRCS) is 205 

defined as the sampled Spearman rank correlation between ASM and RC values across all 206 

storm events. A minimum of 50 qualifying events is required, reflecting a trade-off between the 207 

competing concerns of maximizing the spatial coverage of our analysis versus adequately 208 

filtering basins where SRCS values cannot be accurately sampled. 209 

As discussed above, the perfect rank correlation (PC) assumption dictates that SRCS = 210 

1. That is, it assumes that rank variations in RC across multiple storm events can be captured 211 

perfectly given appropriate knowledge of ASM. As a correlation-based metric, SRCS is not 212 

impacted by the potential presence of bias in the L4_SM product.  213 

The separation of a continuous rainfall time series into discrete multi-day events 214 

introduces potential ambiguities into the calculation of SRCS. One potentially problematic case 215 
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is when rainfall begins before 24 UTC on a given day (without exceeding the Pmin daily 216 

accumulation threshold) and then continues into the following day – when the daily Pmin 217 

accumulation threshold is exceeded and, as a result, a new storm event begins. In this case, 218 

“end-of-day” surface soil moisture (SSM) may be enhanced on the day prior to the event, 219 

because rainfall actually started before 24 UTC, and storm-scale RC will also be spuriously 220 

increased, since rainfall during the previous day will be neglected in the “storm-scale” 221 

calculation of RC. Such simultaneous enhancement to both ASM and RC could, conceivably, 222 

inflate sampled SRCS values. To combat this, we define ASM as the minimum end-of-day 223 

SSM for the two-day period prior to the start of a storm event. Therefore, in the case where 224 

ASM is spuriously inflated by an event starting before 24 UTC, ASM will be defined using 225 

end-of-day SSM for the previous day - and thereby avoid any spurious increase in ASM.  226 

This approach has the benefit of not discarding any qualifying storm events. A more 227 

conservative approach is to simply discard events that are preceded by more than trace amounts 228 

of daily precipitation (defined here as any daily accumulation exceeding Pmin/5). While this 229 

causes a significant reduction in the number of storm events available for sampling SRCS, it 230 

also provides an important check that our SRCS results are not being spuriously impacted by 231 

rainfall events crossing over the 24 UTC demarcation. Therefore, key results below will be re-232 

generated using this more stringent masking procedure to ensure that our main SRCS results are 233 

reliable (see Section 5.1 and Figure S.1 of the Supporting Information).   234 

 235 

3.2 Error models for ASM and RC estimates 236 

As described above, a key focus of our analysis is the absolute value of SRCS sampled 237 

from noisy ASM and RC estimates. As a correlation-based metric, SRCS will be spuriously 238 
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biased towards zero (i.e., attenuated) via the presence of independent, random error in L4_SM 239 

ASM and/or USGS/CPCU RC estimates. This attenuation bias is not associated with sample 240 

size limitations and will persist even in the theoretical case of an infinite sample size (Dong and 241 

Crow, 2018). It is, therefore, conceptually distinct from the representation of confidence 242 

intervals that vary as a function of sample size.    243 

To estimate attenuation bias in sampled SRCS values, we first define random error 244 

models for the L4_SM ASM analysis and the NLDAS-2/CPCU precipitation observations 245 

underlying the RC estimates. L4_SM estimates are assumed to be degraded by mean-zero, 246 

time-independent, additive Gaussian random error with a standard deviation of σL4_SM = 0.032 247 

m3m-3. This estimate is based on L4_SM ground validation results against in situ measurements 248 

at the 36-km scale (Reichle et al., 2017) and a minor adjustment to correct for random 249 

uncertainty in the ground measurements themselves (Chen et al., 2019). While there is almost 250 

certainly spatial and temporal variability in σL4_SM (Qiu et al., 2021), such variability is difficult 251 

to assess and accurately reflect in an error model and therefore neglected here 252 

Likewise, NLDAS-2/CPCU daily precipitation observations are assumed to be impacted 253 

by random, multiplicative errors sampled from a log-normal distribution with unit mean and 254 

standard deviation σCPCU. Here, σCPCU is estimated as a discrete function of the time-average 255 

number of CPCU rain gauges (NG) contained within each of our study basins using the relative-256 

accuracy versus gauge-density relationship summarized by Villarini et al. (2008). Specifically, 257 

Figure 9 in Villarini et al. (2008) suggests that:  258 

σCPCU = 0.10  for NG ≥ 9 259 

σCPCU = 0.15  for 5 ≤ NG ≤ 8 260 

σCPCU = 0.20  for NG = 4    (3) 261 
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σCPCU = 0.25  for NG = 3 262 

σCPCU = 0.30  for NG = 2      263 

σCPCU = 0.40  for NG = 1. 264 

The spatial density of the CPCU rain gauge network underlying our daily precipitation 265 

estimates varies greatly in time and across CONUS. Therefore, gridded reports of station 266 

densities underlying CPCU rain gauge estimates for a representative sample of days between 1 267 

April 2015 to 30 August 2020 are used to estimate basin-specific values of NG. 268 

 Given estimates of σCPCU and σL4_SM for each basin, we can numerically estimate the 269 

value of SRCS (i.e., SRCSPC) you would expect to sample from observed ASM and RC time 270 

series if the PC assumption holds and observed SRCS is degraded only by attenuation bias 271 

associated with random observation error in either ASM or RC. This is done by first sorting 272 

observed pre-storm L4_SM ASM and USGS/CPCU storm-scale RC values (separately) such 273 

that their rank-correlation is unity and then adding random independent errors to both daily 274 

precipitation values and ASM consistent with the error models described above. By re-ordering 275 

the observed time series in the first step, we create ASM and RC time series that are (by 276 

construction) consistent with the PC assumption. Therefore, when we subsequently add random 277 

independent errors to these re-ordered time series, their rank correlation (i.e., SRCSPC) reflects 278 

what we would expect from our observed data if the PC assumption was valid. Based on this 279 

logic, we can re-sample the Spearman rank correlation between the synthetically perturbed 280 

ASM and RC values to obtain a basin-specific estimate of SRCSPC. 281 

This approach is repeated 5,000 times to ensure statistical convergence of the generated 282 

SRCSPC values. Comparisons between sampled SRCS and SRCSPC values can then be used to 283 

evaluate the validity of the PC assumption. If the PC assumption is valid, SRCS and SRCSPC 284 
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will be approximately equal. However, in cases where any time-varying factor besides ASM 285 

significantly impacts RC, SRCS will be less than SRCSPC. 286 

Note that our estimates of SRCSPC are conservative in that they likely underestimate the 287 

total magnitude of attenuation bias for multiple reasons. First, USGS streamflow observations 288 

are assumed to be free of random error. Second, based on the latest SMAP validation results 289 

employing longer records (Colliander et al., 2021), the bias-corrected standard error of SSM 290 

estimates in the L4_SM product is 0.034 m3m-3 and thus slightly larger than the 0.032 m3m-3 291 

value applied here. Finally, the dual use of the gauge-based CPCU product to estimate RC 292 

(from NLDAS-2/CPCU; Section 2.2) and to force the land model in the L4_SM algorithm 293 

(Section 2.3) should result in negative error cross-correlation between RC and ASM estimates 294 

and thus represents an additional source of SRCS attenuation bias that is missing in our 295 

estimates of SRCSPC. For example, an overestimation of precipitation in the CPCU product 296 

would result in an overestimation of L4_SM ASM and an underestimation of RC values (since 297 

RC represents streamflow normalized by precipitation accumulation). The sign contrast in these 298 

errors would, in turn, work to spuriously degrade the otherwise positive rank correlation 299 

between true ASM and true RC. Therefore, if we could properly account for ASM and RC error 300 

cross-correlation in our error modeling, our derived SRCSPC estimates would be even lower. In 301 

summary, our error modeling approach is conservative in the sense that our simplifications 302 

(described above) likely result in SRCSPC values that underrepresent the actual impact of 303 

attenuation bias. The implications of this will be discussed later in Section 5.  304 

 305 

4. Land Surface Modeling 306 
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The methodology described above in Section 3 will be used to address our first main 307 

objective - the observation-based evaluation of the PC assumption. In contrast, land surface 308 

modeling, described here in Section 4, is central to addressing our second objective - the 309 

assessment of the PC assumption as a viable LSM calibration strategy. Our target LSM for this 310 

objective is the Noah with Multi-Parameterization options (Noah-MP) land model (Niu et al., 311 

2011).   312 

 313 

4.1 Noah-MP set-up 314 

All Noah-MP simulations are based on Version 7.2 of the NASA Land Information 315 

System (LIS) (Kumar et al., 2006) and 15-minute/0.125°-resolution Noah-MP v3.6 integrations 316 

between 1 April 2015 and 30 August 2020. Off-line Noah-MP forcing is based on the NLDAS-317 

2 meteorological dataset utilizing North American Regional Reanalysis variables for all fields 318 

except precipitation, which instead uses the NLDAS-2/CPCU precipitation dataset described in 319 

Section 2.3. Within each study basin, end-of-day (24 UTC) SSM (0-10 cm) and daily (0-24 320 

UTC) runoff totals (i.e., surface runoff plus baseflow) are spatially aggregated to generate a 321 

daily, basin-scale time series. Note that the 0-10 cm definition of SSM applied in Noah-MP is 322 

slightly deeper than the 0-5 cm depth assumed in the L4_SM product. The impact of this 323 

vertical discrepancy will be discussed below. 324 

 325 

4.2 Noah-MP configuration ensemble 326 

The Noah-MP LSM is unique in that it contains built-in options to utilize different 327 

physical approaches for the representation of land surface water and energy balance processes. 328 

Here, we leverage this flexibility to generate a 41-member ensemble of Noah-MP 329 
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configurations that reflects a range of approaches for representing the link between soil 330 

moisture and both runoff and evapotranspiration. Calibration results are based on selecting a 331 

single member of this ensemble, separately for each basin, that maximizes a particular 332 

calibration objective function (see Section 4.4 below). 333 

Given our emphasis on the representation of runoff, we start with the 16-member Noah-334 

MP configuration ensemble defined by Crow et al. (2019) via the systematic variation of Noah-335 

MP runoff processes. Within this ensemble, separate Noah-MP simulations are generated for all 336 

four Noah-MP runoff-physics packages described in Niu et al. (2011): the simplified 337 

groundwater (SIM GW) case, the simplified TOPMODEL (SIM TOP) case, the free-drainage 338 

(FD) lower-boundary assumption, and the surface runoff parameterization taken from the 339 

Biosphere Atmosphere Transfer Scheme (BATS).  340 

For each of these four baseline cases, Crow et al. (2019) selected, and systematically 341 

varied, one key parameter to further generate an ensemble of 16 different Noah-MP runoff 342 

configurations. For the SIM GW and SIM TOP cases, we selected the TOPMODEL f 343 

parameter, which describes the decay of saturated hydraulic conductivity with depth. For the 344 

FD case, we selected the REFKDT parameter, which modulates the impact of ASM on surface 345 

runoff. For the BATS case, we selected the exponential parameter (q), which links the top 2-m 346 

soil moisture and surface runoff. In total, four f variations in the SIM GW case, five f variations 347 

in the SIM TOP case, four REFKDT variations in the FD case, and three q variations in the 348 

BATS case were applied to generate the entire 16-member Noah-MP runoff-configuration 349 

ensemble. Table S.1 in the Supporting Information and Crow et al. (2019) provide additional 350 

details on this ensemble. 351 
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Given the overall dominance of evapotranspiration (ET) as a soil water loss mechanism, 352 

and the coupling between LSM representations of ET and runoff (Koster and Milly, 1997), the 353 

16-member Noah-MP runoff configuration ensemble of Table S.1 was augmented using an 354 

additional 25-member ET-configuration ensemble. The coupling relationship between soil 355 

moisture and ET is impacted by a range of LSM parameters and processes. However, as shown 356 

in Dong et al. (2020), SSM-ET coupling strength in Noah-MP is highly sensitive to the unitless 357 

parameter λ, which controls the nonlinear relationship between soil evaporation stress and SSM. 358 

Therefore, a broad range of SSM-ET coupling strengths can be captured by Noah-MP 359 

configurations utilizing a corresponding range (i.e., 1, 2, 3, 5, and 10) of λ values (Dong et al., 360 

2020). Therefore, each of these five baseline λ cases was run for the five separate baseline 361 

runoff-configuration cases introduced above (i.e., the baseline parameterizations for the SIM 362 

GW, FD, and BATS cases, plus two separate FD cases) to generate a 25-member ET-363 

configuration ensemble. For additional details on each configuration within the ET ensemble, 364 

see Table S.2 in the Supporting Information and Dong et al. (2020). 365 

This new 25-member ET-configuration ensemble is combined with our earlier 16-366 

member runoff-configuration ensemble to generate a final 41-member Noah-MP ensemble. All 367 

calibration results are based on the basin-wise selection of individual Noah-MP configurations 368 

within this new 41-member ensemble that maximize one of the objective functions discussed 369 

below in Section 4.4. Therefore, this ensemble effectively represents the parameter space for 370 

our calibration analysis. Naturally, there exists an extremely wide range of approaches for 371 

generating LSM configuration ensembles, and the selection of any single approach is inherently 372 

subjective. However, the most important consideration is whether the selected ensemble spans a 373 

sufficiently wide range of outcomes to serve as the basis for a robust calibration analysis. In this 374 
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regard, our 41-member ensemble appears adequate. Across all 617 study basins, the median 375 

range of Spearman rank correlation against USGS RC observations within our 41-member 376 

ensemble is 0.46. This range falls no lower than 0.13 for any single basin. Therefore, 377 

substantial and consistent performance spread is found in all basins between the best and worst 378 

Noah-MP configurations contained within our 41-member ensemble.  379 

 380 

4.3 Noah-MP spin-up 381 

All members of the final 41-member Noah-MP ensemble are spun-up individually from 382 

a cold start on 1 January 2010 until the start of our analysis on 1 April 2015. To demonstrate 383 

the adequacy of a five-year spin-up period, we examined Noah-MP configurations utilizing a 384 

groundwater model (i.e., SIM GW runoff physics) under the assumption that they possess the 385 

most stringent spin-up requirements. Noah-MP runoff and root-zone soil moisture results in 386 

these (groundwater model-based) configurations generally stabilized after about five years and 387 

were only marginally impacted by further increasing the model spin-up period from 5 to 15 388 

years. This is consistent with Crow et al. (2019) who found that a six-year spin-up period was 389 

adequate for examining the relationship between Noah-MP ASM and RC estimates. 390 

 391 

4.4 Noah-MP calibration strategies 392 

 This section provides a brief description of the LSM calibration strategies applied to the 393 

41-member ensemble of Noah-MP configurations described in Section 4.2 above. For our 394 

purposes, the term calibration refers to the selection of a single Noah-MP configuration from 395 

this ensemble, separately for each basin, by maximizing one of the three objective functions 396 

described below. The result being the definition of a single “calibrated” ensemble member for 397 
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each individual basin and each individual calibration strategy. Note that the defining 398 

characteristic of all three calibration strategies listed below is their exclusive reliance on the 399 

continuous L4_SM estimates. As a result, they can all be applied directly (i.e., without 400 

extrapolation) to any basin - even highly regulated ones lacking stream gauges. 401 

4.4.1 PC calibration strategy 402 

The key implication of the PC assumption is that basin-scale RC values, available only 403 

in gauged/unregulated basins, can be functionally replaced by ASM estimates from the L4_SM 404 

product. To examine this possibility, we define the following calibration objective function: 405 

F1 = Rs[ASML4, RCNOAHMP].        (4) 406 

Here, Rs is a Spearman-rank correlation operator; ASML4 is a set of end-of-day antecedent (see 407 

Section 2.2) SSM estimates from the L4_SM product; and RCNOAHMP is a set of storm-scale RC 408 

estimates from a particular Noah-MP configuration (Section 4.2). If the PC assumption holds, 409 

selecting a single Noah-MP configuration that maximizes F1 will simultaneously maximize the 410 

correlation of Noah-MP RC estimates versus true values. Hereinafter, the application of (4) as a 411 

calibration objective function will be referred to as the “PC calibration” strategy. 412 

4.4.2. SSM calibration strategy 413 

As discussed in Koster et al. (2018), an alternative calibration strategy is maximizing: 414 

F2 = Rp[SSML4, SSMNOAHMP]        (5) 415 

where Rp is the Pearson correlation operator; SSML4 are end-of-day SSM (i.e., mean SSM 416 

within the final 3-hour window of the UTC day – see Section 2.2) estimates from the L4_SM 417 

product; and SSMNOAHMP are comparable end-of-day SSM values obtained from a given Noah-418 

MP configuration (Section 4.2). As a result, maximizing F2 within a particular basin selects 419 

Noah-MP configurations that maximize the temporal correlation between L4_SM and Noah-420 
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MP SSM estimates. Note that the complete record of daily SSM estimates is used in (5) - not 421 

just the sub-set of days when they describe ASM conditions for a new storm event. Hereinafter, 422 

the application of (5) as a calibration objective function will be referred to as the “SSM 423 

calibration” strategy. Since it represents an alternative, and more direct, application of L4_SM 424 

SSM estimates, the SSM calibration strategy presents a useful baseline for evaluating the PC 425 

calibration strategy.  426 

4.4.3 PC+SSM calibration strategy 427 

Combined calibration approaches are also possible including: 428 

F3 = Z(F1) + Z(F2)         (6) 429 

where Z is a normalization function defined as Z(X) = [X-mean(X)]/std(X)], and X is a set of 430 

(time-invariant) F1 or F2 values calculated across all potential Noah-MP configurations for a 431 

single basin. Hereinafter, the maximization of (6) will be referred to as the “PC+SSM 432 

calibration” strategy. 433 

 434 

4.5 Calibration evaluation 435 

The individual Noah-MP configurations selected via the maximization of (4)-(6) are 436 

assessed using two different evaluation metrics. The first metric is the Spearman rank 437 

correlation (Rs) between the storm-scale RC estimates of a particular Noah-MP configuration 438 

and observed RC values; this metric assesses the skill in detecting storm-to-storm variations in 439 

runoff efficiency. (Spearman rank correlation is used instead of Pearson correlation to 440 

accommodate the potential for modest levels of non-linearity in the relationship between ASM 441 

and RC.) Since Rs is blind to the presence of bias in Noah-MP RC estimates, the mean-442 

absolute-error (MAE) of the Noah-MP RC estimates is used as the second evaluation metric. 443 
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The resulting Rs and MAE RC evaluation metrics are normalized relative to the best- 444 

and worst-performing Noah-MP configurations found in each basin. For each basin i, each 445 

calibration function j (i.e., the PC, SSM, or PC+SSM calibration strategies), and each RC 446 

evaluation metric (i.e., Rs or MAE), we individually calculate the ratio:  447 

FC,i,j = (Ci,j  - Wi)/(Bi  - Wi)         (7) 448 

where Ci,j is the RC evaluation metric achieved in basin i through the maximization of 449 

calibration function j across the Noah-MP configuration ensemble, and Bi and Wi are the best 450 

(i.e., lowest MAE or highest Rs) and worst (i.e., highest MAE or lowest Rs) RC evaluation 451 

metrics, respectively, across the Noah-MP configuration ensemble for the same basin i.  452 

The endpoints Bi and Wi are calculated via direct comparison to observed RC values, 453 

whereas Ci,j reflects an evaluation metric obtained without access to streamflow observations - 454 

and instead relies wholly on L4_SM ASM estimates. Therefore, FC,i,j = 1 indicates that, even 455 

without access to observed RC, a given calibration approach j applied in basin i has accurately 456 

identified the single LSM configuration within the Noah-MP ensemble that optimizes a given 457 

RC evaluation metric. In the absence of meaningful calibration, all members of the ensemble 458 

will be equally likely, and, sampled across all basins i, FC,i,j will have a median value near 0.5 . 459 

Therefore, any net upward shift in the spatial distribution of Fc towards one can be regarded as 460 

a positive calibration outcome. 461 

 462 

5. Results 463 

5.1 Observation-based evaluation of the PC assumption 464 

In this section, we evaluate SRCS and the PC assumption using only observed RC and 465 

LS_SM data. Modeling results based on the calibration of the Noah-MP LSM are not discussed 466 
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of storm-scale RC variations to non-ASM factors (e.g., the time/space structure of precipitation 482 

events) as opposed to the spurious impact of attenuation bias from random errors in the 483 

underlying ASM and RC estimates. 484 

As described above, SRCSPC is the hypothetical value of SRCS that we would expect to 485 

sample, given attenuation bias from random errors in ASM and RC, if the PC assumption holds 486 

and the true rank correlation between ASM and RC is one. As a result, sampled SRCS values 487 

that are statistically indistinguishable from SRCSPC imply that the PC assumption is valid. In 488 

contrast, SRCS values significantly less than SRCSPC suggest that attenuation bias alone cannot 489 

explain the reduction of sampled SRCS below one. This implies that ASM variations cannot 490 

explain all observed storm-to-storm variability in RC, and additional factors – presumably 491 

related to dynamic land cover variations and/or the exact time/space structure of intra-storm 492 

precipitation – must also be considered when modeling the storm-scale RC response. Note that 493 

attenuation bias is conceptually distinct from sampling uncertainty in that it does not converge 494 

towards zero with increasing sample size. 495 
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Supporting Information) suggest that the impact of inter-day storm events, which could 512 

conceivably induce a spurious positive bias into SRCS (see Section 3.2), is negligible.  513 

The difference ΔSRCS = SRCSPC – SRCS quantifies the impact of non-ASM factors on 514 

RC temporal variability and, as such, provides a metric for evaluating the validity of the PC 515 

assumption. Figure 3a plots ΔSRCS for each basin in Figure 1. As discussed above, ΔSRCS 516 

values near zero support the PC assumption while ΔSRCS > 0 implies that factors other than 517 

ASM significantly influence RC. For reference, Figure 3b plots AI values for each basin. 518 

519 
  520 

521 

Figure 3. a) ΔSRCS and b) AI for our 617 study basins. Open circles in a) denote basins where 522 
ΔSRCS values are not significantly different from zero (at 95% confidence). AI is defined as 523 
mean-annual precipitation divided by mean-annual potential evapotranspiration. Therefore, 524 
lower AI values indicate generally drier conditions.  525 
 526 

ΔSRCS values in Figure 3a are generally statistically insignificant in the relatively 527 

humid areas of the northeastern U.S., the mid-Atlantic region, the upper Midwest, and along the 528 

spine of the Appalachian Mountains. This is consistent with the expectation that, for humid 529 

areas with (at least) modest levels of topographic variability, the dominant runoff mechanism is 530 

so-called “saturation-excess” runoff, and the most important factor driving storm-to-storm 531 

variations in RC is the fractional area of the basin saturated from below by a dynamic water 532 

table (Dunne and Leopold, 1978; Zhao et al., 1980). There is a close conceptual link between 533 
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this spatial saturation fraction and ASM (Castillo et al., 2003) and, therefore, little observed 534 

difference between SRCS and SRCSPC.  535 

However, over more arid areas, one would generally expect a lower water table, reduced 536 

surface saturation from below, and, therefore, relatively more emphasis placed on non-ASM 537 

factors, like the time/space structure of precipitation intensity, when describing storm-to-storm 538 

variations in RC (Zhang et al., 2011). This too is reflected in Figure 3a, where generally larger 539 

(positive) values of ΔSRCS are noted in more arid (i.e., AI < 0.4) and flatter areas of central 540 

CONUS.  541 

Isolated negative ΔSRCS values in northeast and northwest CONUS (see Figure 3a) are 542 

difficult to explain physically and likely reflect sampling errors in SRCS estimates, which tend 543 

to be larger in northern CONUS basins due to the masking of storm events for snow and frozen 544 

soil and/or the possible regional overestimation of L4_SM or CPCU precipitation errors in the 545 

statistical models we applied to estimate SRCSPC.  546 

Figure 4 summarizes the overall spatial relationship between basin ΔSRCS and AI. For 547 

AI > 0.4, ΔSRCS values are often indistinguishable from zero and therefore roughly consistent 548 

with the PC assumption. However, for AI < 0.4, ΔSRCS values trend significantly positive, 549 

which indicates that the PC assumption is invalid for relatively arid conditions.  550 

Observed outliers in the relationship between ΔSRCS and AI can often be associated 551 

with the presence of unusual land surface or geological characteristics in the basin. For 552 

example, multiple basins with ΔSRCS values well above the general ΔSRCS versus AI trend 553 

line in Figure 4 contain very deep glacial soil deposits (either sand or loess) or complex karst 554 

sub-surface geology (see symbol labelling in Figure 4). Both characteristics tend to dampen the 555 

streamflow response to individual storm events and, therefore, reduce SRCS and increase 556 
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ΔSRCS. Conversely, outliers located well below the ΔSRCS versus AI trend line are frequently 557 

characterized by a high-degree of anthropogenic stream channelization and/or very-large 558 

topographic variability – characteristics that generally enhance the magnitude of streamflow 559 

response to storm events. Such enhancement tends to increase SRCS and, as a result, decrease 560 

ΔSRCS. Therefore, while AI explains a substantial fraction of observed ΔSRCS spatial 561 

variability, land surface and geologic characteristics also play an important role.  562 

               563 

Figure 4. ΔSRCS versus AI values for our 617 study basins. Labelling identifies unusual land 564 
surface and geologic conditions in basins that can be visually identified as outliers. The green 565 
trend line represents median values within a 0.05-wide moving window applied along the 566 
abscissa. Dashed horizontal lines indicate 95% confidence intervals around the null hypothesis 567 
that ΔSRCS equals zero. Note that lower values of AI indicate generally drier conditions. 568 
 569 

5.2 Noah-MP calibration results 570 

Despite considerable scatter, results in Figures 4 suggest that the PC assumption is 571 

potentially applicable for AI > 0.4. In such areas, it may be possible to calibrate LSMs by 572 

maximizing the temporal rank correlation between LSM-estimated RC and the L4_SM-based 573 

ASM in lieu of RC observations – see (4). Such an approach is particularly attractive in 574 

ungauged or heavily regulated basins where meaningful RC observations are not available. 575 
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 Figure 5 examines this possibility by comparing Noah-MP RC calibration results for the 576 

PC, SSM, and PC+SSM calibration strategies introduced Section 4.4. Specifically, the figure 577 

shows box-and-whisker plots for the fractional calibration metric FC defined in (7) across all 578 

617 study basins for both the Rs and MAE RC evaluation metrics.  579 

         580 

Figure 5. Box-and whisker-plots (summarizing minimum, maximum, median, and inter-581 
quartile spread values) for the basin-to-basin variation of Noah-MP FC results for all three 582 
calibration strategies (i.e., PC, SSM, and PC+SSM) and the a) Spearman correlation (Rs) and b) 583 
MAE RC evaluation metrics.  584 
 585 

As demonstrated by the concentration of Noah-MP Rs FC values near one in Figure 5a, 586 

the PC calibration strategy consistently identifies a Noah-MP configuration for each basin that 587 

has high storm-to-storm Spearman rank correlation with observed RC values. In this regard, the 588 

PC calibration strategy is clearly superior to the direct SSM calibration strategy. However, the 589 

PC calibration strategy is markedly less successful in identifying Noah-MP configurations that 590 

exhibit low RC MAE (Figure 5b). Note that MAE FC values for the PC strategy in Figure 5b 591 

demonstrate only a small net positive shift towards unity. Relative to the PC calibration 592 
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strategy, the combined PC+SSM calibration strategy provides modestly better MAE results 593 

(compare the MAE FC results for PC and PC+SSM in Figure 5b) while simultaneously 594 

preserving its good Rs performance (Figure 5a). 595 

Noah-MP calibration results in Figure 5 are based on utilizing our entire study period (1 596 

April 2015 to 30 August 2020) as both a training and a testing period. Naturally, such overlap 597 

raises concerns about overfitting. However, because all three calibration approaches, as well as 598 

the B and W values used to derive FC in (7), are equally impacted by any potential overfitting, 599 

Noah-MP calibration results plotted in Figure 5 change very little when re-generated for the 600 

case of applying mutually exclusive training and testing periods. For reference, Figures S.2 and 601 

S.3 in the Supporting Information provide alternative, but still highly consistent, versions of 602 

Figure 5 generated for separate training and testing periods.  603 

604 

 605 606 

Figure 6. Maps and histograms of Noah-MP FC results obtained for the PC+SSM calibration 607 
strategy based on the a) Rs and b) MAE RC evaluation metrics.  608 

 609 

Spatial maps of Noah-MP RC Rs and MAE calibration results (as summarized by FC) 610 

are shown in Figure 6 for the PC+SSM calibration strategy. With a few exceptions, Figure 6a 611 

illustrates consistently high Fc results for the Spearman rank evaluation of Noah-MP RC 612 

simulations after PC+SSM calibration. Note that some of the, relatively few, poorly performing 613 
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basins (identified in red in Figure 6a) were previously labeled as outliers in Figure 4 (e.g., 614 

highly karst basins in the panhandle region of Florida and basins with extremely deep glacial 615 

sand deposits in Michigan). This underscores the challenge of dealing with highly unusual local 616 

geology in any calibration strategy not based on local streamflow observations. Conversely, it is 617 

surprising that RC Rs results for the PC+SSM strategy are not more clearly degraded in semi-618 

arid regions (e.g., west-central CONUS; Figure 6a), where the PC assumption is known to be 619 

tenuous (see Figures 3-4). Given the uncertain physical basis of these results, apparently 620 

successful calibration in semi-arid regions should be viewed skeptically.  621 

 622 

5.3 Role of RC bias 623 

Despite the overall improvement noted in Figure 5b for the PC+SSM calibration 624 

strategy versus the PC strategy, RC MAE values in many basins remain mediocre (grey-625 

shaded) or poor (red-shaded) following PC+SSM Noah-MP calibration (Figure 6b). MAE 626 

metric values can be degraded (i.e., increased) by a variety of fit issues including additive bias, 627 

multiplicative bias, and poor correlation against true values. As a result, it is worth considering 628 

which component of RC MAE is driving these relatively poor results. Additional analysis (see 629 

Figure S.4 in the Supporting Information) demonstrates that poor RC MAE FC results for the 630 

PC+SSM calibration strategy are strongly linked to the presence of long-term, basin-specific 631 

RC biases in Noah-MP configurations identified as optimal by the PC+SSM calibration 632 

strategy.  633 

 Figure 7 plots the spatial pattern of long-term RC bias in Noah-MP configurations 634 

selected by the PC+SSM calibration strategy. A continuous area of negative RC bias is seen in 635 

the northern half of CONUS while a positive RC bias dominates in southern CONUS. The 636 
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large-scale spatial coherence of this bias pattern suggests that it may be possible to parameterize 637 

an additional RC bias-sensitive term using known regional climate or land cover characteristics 638 

and add it onto the existing objective function in (6). However, the (correlation-based) PC and 639 

PC+SSM calibration strategies considered here are not sensitive to bias and therefore cannot 640 

meaningfully contribute to such a term. Instead, alternative, bias-sensitive analysis techniques 641 

(e.g., long-term water balance calculations) will be required. 642 

                            643 

Figure 7. RC bias in Noah-MP configurations identified as optimal by the SSM+PC calibration 644 
strategy. Note that the spatial pattern of RC bias drives the mediocre RC MAE results in Figure 645 
6b.  646 
 647 

5.4 Sensitivity to methodological changes 648 

5.4.1 Storm-event threshold size 649 

 We re-generated Figures 1-3 after raising the storm-event threshold Pmin from 10 to 20 650 

mm d-1 (not shown). Increasing Pmin sharply reduces the number of basins (from 617 to 296) 651 

with at least 50 storm events that are not impacted by snow or frozen soil. However, within 652 

these 296 basins, which tend to be concentrated in south-central and southeastern CONUS, the 653 

median SRCS results for the Pmin = 10 mm d-1 and 20 mm d-1 cases are equal to within two 654 
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decimal places (0.74). As a result, there is currently no empirical indication that the PC 655 

assumption weakens for larger values of Pmin.  656 

Nevertheless, it is unreasonable to expect the PC assumption to hold indefinitely as Pmin 657 

is raised without limit. Regardless of underlying ASM levels, storm-scale RC values will 658 

eventually converge to unity for extremely intense precipitation events (e.g., Pmin approaching 659 

or exceeding the expected annual maximum for daily precipitation in a single basin). Note that 660 

the relatively short historical record of our analysis places a severe restriction on our ability to 661 

sample such extreme events. Further raising Pmin to 30 mm d-1, for example, results in only 36 662 

basins with an adequate storm sample size. Therefore, results presented here cannot be 663 

extrapolated to characterize basin response to major flooding events.  664 

5.4.2 Vertical support of Noah-MP SSM estimates 665 

As noted above, the vertical support of Noah-MP SSM estimates (0-10 cm) is deeper 666 

than the corresponding 5-cm SSM estimates provided by the L4_SM product. The application 667 

of a deeper (i.e., > 5 cm) surface soil layer is a common concession in LSMs to numerical 668 

difficulties posed by balancing water within excessively thin soil layers. It is possible that this 669 

vertical mismatch partially undermines the performance of the SSM calibration strategy posed 670 

in (5). However, given the inherent difficulty of matching temporal scales of variability 671 

expressed in SSM products obtained from different sources (Shellito et al., 2020), the apparent 672 

robustness of the PC and PC+SSM calibration strategies to reasonable variations in surface soil 673 

layer depth, and thus temporal SSM memory, is encouraging and likely necessary for their 674 

practical application.  675 

5.4.3 Baseflow separation 676 
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All calibration results presented above are based on bulk streamflow observations 677 

and/or total (i.e., surface + baseflow) runoff estimates provided by Noah-MP. However, owing 678 

to the particular importance of predicting fast streamflow response to rainfall, it is common in 679 

hydrologic analysis to first remove the baseflow contribution to streamflow. Therefore, a 680 

relevant question is whether the, generally good, RC calibration results reflected in Figure 5 for 681 

the PC and PC+SSM calibration strategies remain relevant for an application focused only on 682 

the fast storm response due to surface runoff. 683 

To remove baseflow from the USGS streamflow observations, we applied the USGS 684 

Hydrologic Separation [HYSEP; Sloto and Crouse, 1996] baseflow separation technique using 685 

(non-integer) saturation time scales derived from (1) but without the application of the CEIL 686 

operator. Note that Noah-MP already separately calculates both surface and baseflow runoff 687 

components. Here, unlike above, we based Noah-MP storm-scale runoff estimates on only 688 

surface runoff. We then re-generated Figure 5 for this surface-only runoff case, with results 689 

shown in Figure 8. A comparison of the two figures reveals no apparent degradation in 690 

calibrated RC results associated with considering only surface runoff contributions. In fact, 691 

MAE results for the PC+SSM calibration strategy appear to be marginally improved following 692 

the removal of baseflow. As a result, the PC or PC+SSM calibration strategies appear to be 693 

equally effective at constraining RC estimates based on either surface-only (Figure 8) or total 694 

(surface + baseflow; Figure 5) runoff. 695 

 696 

 697 
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        698 

Figure 8. Same as Figure 5 except for only the surface runoff response. 699 

 700 

6. Summary and conclusions 701 

Robust external constraints are needed for LSM-based simulation of streamflow in 702 

ungauged and/or heavily regulated basins that lack representative streamflow observations. 703 

While the potential for remote sensing to provide such constraints is widely acknowledged, the 704 

formulation of general physical principles to underlie these constraints remains elusive. Here, 705 

we hypothesize that the rank correlation between storm-to-storm variations in ASM and RC is 706 

unity (i.e., the PC assumption) and examine if this assumption can serve as a useful calibration 707 

principle for obtaining adequate LSM estimates of RC within ungauged basins. 708 

Within a substantial fraction (> 60%) of lightly regulated, median-scale basins in the 709 

central and eastern United States, there is indeed no significant evidence that time-varying 710 

processes other than ASM significantly impact storm-to-storm variations in RC (Figure 2). This 711 
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is particularly true for relatively humid (AI > 0.4) basins. To this end, Figures 3a and 4 suggest 712 

that, at least over the eastern half of CONUS, the PC assumption is commonly valid.  713 

The apparent magnitude of the rank correlation between ASM and RC suggests utilizing 714 

high-quality, spatially continuous ASM estimates provided by the L4_SM product, in lieu of 715 

RC observations, as a LSM calibration target in ungauged and/or heavily regulated basins that 716 

lack suitable streamflow observations. This approach, summarized in (4) as the “PC calibration 717 

strategy”, successfully identifies Noah-MP configurations with relatively good (i.e., high) RC 718 

Rs results (Figure 5a). Such a strategy is robust for a range of storm-event rainfall thresholds 719 

(i.e., 10-20 mm d-1) and for hydrological applications focused on either total (i.e., surface + 720 

baseflow) runoff or surface-only runoff (Figure 8). However, the PC calibration strategy is 721 

generally blind to bias in RC estimates – which degrades RC MAE results for its selected 722 

Noah-MP configurations (Figures 5b). RC MAE results can be marginally improved by 723 

including an SSM-based correlation term in the calibration objective function – via the 724 

“PC+SSM” calibration strategy summarized in (6) (Figure 5b). However, the correlation-based 725 

calibration strategies we consider here cannot provide a full solution to this bias issue.  726 

There are also geographic limitations to the confident application of the PC assumption. 727 

However, these limitations are intuitively associated with known climate and land cover 728 

characteristics (Figure 4) – raising hopes that basins where the PC assumption does not hold 729 

can be readily identified and masked. We focus on medium-scale (i.e., 200 to 10,000 km2) 730 

basins for the verification of the PC assumption due to the difficulty of defining discrete storm 731 

events and screening for streamflow regulation in larger basins. Nevertheless, once verified, we 732 

are not aware of any barriers to applying a PC-based calibration strategy to larger basins. 733 

Analogously, while the PC assumption can only be verified in lightly regulated basins, there is 734 
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no reason why in-channel streamflow regulation, in and of itself, should imperil its application 735 

to runoff calibration. Finally, given that the integration of SMAP brightness temperature 736 

information into the SMAP_L4_SM products has been shown to significantly improve SSM 737 

estimation skill in data-poor regions (Dong et al., 2019; Reichle et al., 2021b), we are confident 738 

that PC-based calibration strategies can be broadly applied in areas outside of CONUS. 739 

However, future work will be needed to confirm this speculation. 740 

Naturally, the evaluation of LSM runoff physics is a multi-objective exercise that 741 

requires multiple metrics. While high RC correlation is necessary for adequate LSM 742 

correlation, it is certainly not sufficient. For example, additional work is required to define a 743 

bias-aware term for (6) that adequately penalizes Noah-MP configurations associated with 744 

biased RC estimates (Figure 7). Potential approaches for deriving this term include the 745 

application of remotely sensed ET products (obtained, for example, from thermal-infrared 746 

remote sensing) or the use of improved river-stage height estimates expected from the 747 

upcoming NASA Surface Water Ocean Topography mission (Biancamaria et al., 2016). 748 

Likewise, a much longer historical analysis period is required to assess performance for 749 

extreme rainfall events likely to cause flooding. Lacking this, care should be taken when 750 

applying our proposed calibration approaches to LSMs tasked with flash flood forecasting. 751 
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