An Overview of NASA Sustainable Aviation

Dr. James D. Heidmann, NASA Glenn Research Center Manager, Advanced Air Transport Technology Project September 6, 2022

www.nasa.gov

a second

ULTRA-EFFICIENT TRANSPORT

FUTURE AIRSPACE

HIGH-SPEED COMMERCIAL FLIGHT

www.nasa.gov |

Four Transformations for Sustainability, Greater Mobility, and Economic Growth

U.S. Aviation Climate Action Plan

Global Context for Sustainable Aviation

U.S. aviation goal is to achieve **net-zero greenhouse gas emissions by 2050.**

U.S. Aviation Climate Action Plan is aligned with

- U.S. economy-wide goal
- International Civil Aviation Organization
- Air Transport Action Group

The U.S. is working with the global community to achieve net-zero greenhouse gas emissions by 2050 using a common basket of measures.

Aviation Pillars for a Sustainable Future

Global Aviation Industry GOAL: net-zero carbon emissions by 2050

Sustainable Flight National Partnership

Next-Generation Capability on the Path to Net-Zero Greenhouse Gas Emissions by 2050

Advance engine efficiency and emission reduction

Enable integrated trajectory optimization

Advance airframe efficiency and manufacturing rate

Enable use of 100% sustainable aviation fuels

Achieve net-zero greenhouse emissions by 2050 through 25-30% energy efficiency improvements in next-generation transports, 100% sustainable aviation fuel, and optimal trajectories.

Subsonic Transport Technologies

NASA

Ensure U.S. industry is the first to establish the new "S Curve" for the next 50 years of transports

Transonic Truss-Braced Wing 5-10% fuel burn benefit

Small Core Gas Turbine 5-10% fuel burn benefit

Electrified Aircraft Propulsion ~5% fuel burn and maintenance benefit

High-Rate Composite Manufacturing 4x-6x manufacturing rate increase

Subsonic Transports: Integrated Technology Development

Sustainable Aviation Fuels

Enable the use of 100% sustainable aviation fuels (SAF) and reduce climate impact

Scope

 Support adoption of high-blend ratio sustainable aviation jet fuels

Benefits

- Reduced aviation environmental impact
- Reduced uncertainty for climate impact of aviation-induced cloudiness
- Improved efficiency/emissions with drop-in synthetic and biofuels

Approach

• Characterize high-blend sustainable aviation jet fuel emissions on ground and in flight

Future SAF Research Plans in Development

NASA AACES 2050 Studies

ALTERNATIVE

FUEL

Advanced Aircraft Concepts for Environmental Sustainability

 H_2

Hydrogen

Tools & Methods for Reduced Lifecycle Cost & Environmental Impact

RFI Released 5/19/22, RFP Fall 2022, Awards Early CY23

