

Radiation and Fault Tolerance for Neuromorphic Computing

Rick Alena, Rev A. 5/18/2022

Space Radiation Summary LEO

- The solar wind emanating from the sun is a stream of energetic electrons and protons and ions that are the primary ionizing radiation contributions
- The Earth's magnetosphere significantly reduces radiation exposure and mutes the effects of solar flares out to 65K Km orbital altitude
- The radiation environment is highly dependent upon mission profile: for example geosynchronous orbits can see 50 times the radiation dose of a polar orbit due to reduction of atmospheric/magnetospheric shielding
- In LEO, the magnetosphere shields the Earth by creating trapped Van Allen radiation belts consisting of electrons and protons, which create a challenging radiation environment confined to specific regions
- Even for LEO, radiation dose can vary by a factor of 30 or more from a quiet sun to a solar flare
- Galactic Cosmic Rays (GCRs) are also present at very high energy, but at low rates
- Radiation effects on semiconductors are highly dependent upon particles species, energy and flux
- Therefore, radiation tolerance requirements will vary with mission profile and duration.

Space Radiation Summary (Cruise/Deep Space)

- Cruise or deep space is considered the region beyond 65K Km orbital altitude where the full force of the solar wind and solar flares create a much greater challenge for avionics
- For cruise phase, spacecraft see the full effect of the solar wind and solar flares as a result, deep space missions require hardened avionics, not COTS
- Beyond the Earth and Moon, radiation environment varies significantly, such as in the vicinity of Jupiter due to trapped radiation
- Any material shields the avionics by blocking low energy particles, but also causes secondary particle emissions with energies that directly affect semiconductors this effect is much greater in deep space
- Spacecraft avionics failures can occur in deep space due to a single high-energy solar flare

Annual Mission Radiation Dose (Rads Si) with 1mm AL Shielding								
Mission	Solar Protons	RAD	RAD	Total Dose				
	Total Protons	Rad/Day	Tot/Yr	Rads (Si)				
LEO ISS SPENVIS	6735			6735				
ISS-RAD		24	8760	8760				
CRUISE SPENVIS	18125			18125				
MSL-RAD Mars Cruise		45	16425	16470				
MSL-RAD Mars Surface		22	8030	8052				

Table Comparing LEO vs MARS Radiation Dose from SPENVIS Simulations and Mars Dosimeter

Space Radiation Effects on Avionics – Total Dose

- Total Integrated Dose (TID) is the tolerance in terms of delivered dose (Rads/Gys) before avionics performance characteristics are affected
 - TID degrades the gain and speed of semiconductor devices leading to functional failure.
 - TID can also result in complete failure due to Si crystal lattice damage.
 - TID changes threshold voltages for active devices
- Radiation-hard devices can tolerate 100K to 1 MRad of TID
- Radiation-tolerant devices can tolerate at least 30 KRad of TID
- Commercial devices generally can tolerate between 15 50 KRad TID
- Certain susceptible devices can fail at TID < 5 KRad
 - This is the level of radiation dose seen inside ISS over one year
- Therefore, EEE parts selection for TID is required for space missions

Space Radiation Effects on Avionics – Single Event Effects

- Single Event Effects (SEE) are caused by energetic particles creating unintended conductance paths in semiconductors leading to supply current spikes, device latch-up, program execution anomalies or data errors
- SEE rate is determined by incident radiation acting through the Linear Energy Transfer (LET) parameter of a given semiconductor device
 - Typical LET for latch-up should be >50 MeV-cm²/mg for critical space avionics
 - Typical LET for upset should be >20 MeV-cm²/mg
- Single Event Latch-up (SEL) can be either destructive or transient with different mitigation
 - Destructive latch-up destroys the semiconductor and results in functional failure
 - Transient latch-up can be cleared by power cycling the affected component
- Single Event Functional Interrupts (SEFI) occur when radiation results in a loss of function
- Single Event Upset (SEU) errors can result in anomalous program execution
 - Programs often crash, requiring reboot of the system
 - Programs can also produce transient execution errors, cleared by executing program again
- Single Event Upset (SEU) result in data errors in memories or processors
 - Data errors can be permanent or transient
 - Mitigation required for most memory types
- SEEs will occur in avionics and require appropriate mitigation techniques

Radiation Requirements and Fault Tolerance for Avionics

- Avionics shall meet the TID requirements for TID dose rate over entire mission duration
 - Integrate dose over mission profile and duration to determine TID requirement
 - Add shielding to reduce TID requirements
 - Select semiconductors with TID rating sufficient to meet mission requirements plus margin
- Avionics shall meet computational reliability requirements for the mission function performed
 - For human space flight-critical functions, double fault tolerance is required.
 - The same requirement is levied for aircraft
 - For life-critical functions, double fault tolerance is also required.
 - For mission-critical functions, single fault tolerance is usually required.
 - For non-critical functions, fault tolerance may not be required.

TID and Destructive SEL Mitigation Techniques

- Critical avionics must survive the radiation dose for a specific mission
 - Parts must be selected from components characterized for TID tolerance
 - For cruise/deep space missions, extra radiation tolerance is needed to cover solar flares
- Add shielding to increase TID rating
 - Shielding is VERY effective for reducing alpha and beta particle flux with low energy < 1MeV
 - Certain chips can be individually shielded with high-Z tantalum foil
- Shielding does not work for high energy particles due to creation of secondary particles
- Must eliminate destructive latch-up modes for all critical avionics
 - Must qualify critical parts for destructive latch-up modes under all environmental conditions
 - SOI fabrication uses dielectric insulation to increase TID and LET, increasing chip-level tolerance
 - Guard rings and substrate enhancement can produce similar benefits
 - De-rate components in terms of temperature range, timing margin and power dissipation
- <u>The avionics hardware must tolerate the full range of radiation dose expected during the</u> <u>given mission without destructive latch-up failure modes</u>

Radiation Fault Hardening and Detection Techniques

- Use radiation tolerant hardware platform adequate for desired mission environment
 - Use Error Detection and Correction (EDAC) in all memory
 - Triplicate certain memory such as Flash and FPGA circuits
 - All avionics components selected based on known radiation tolerance requirements
 - Significant derating of components and increased design margins are used
 - Incorporate power cycle functions to clear transient latch-ups and functional interrupts
- Add architectural features to DETECT transient SEU errors
 - Self-Checking Pair (SCP) as computational building blocks: disagreement triggers recovery
 - Watch-dog timer(s): initiate recovery if not inhibited by software within timeout interval
 - Voting architectures: multiple computational strings with software running same calculations, with the results compared in external logic; disagreement means that string has a fault
 - Memory scrubbing: background process ensures all memory is accessed and corrected within a given time interval

Radiation Fault Recovery Techniques

- Memory Recovery
 - Use Error Detection and Correction (EDAC) circuits for all memory corrects single bit errors and can be expanded to multiple bit errors
 - Triplicate memory elements and use parallel voting architectures
 - Apply memory scrubbing working with EDAC to clean up entire array
- Architectural features to address SEU errors
 - Voting architectures: multiple computational strings with software running same calculations, with the results compared in external logic requires 3 strings for single fault tolerance
 - Full power cycle: the entire computer system is shutdown and restarted cold
 - Reset after fault is detected, the computer is reset and restarts the software
 - Rollback after computational error is detected, the software redoes just the faulty computation
 - Checkpointing multiple strings perform the same computations in parallel, but comparison is at specific points in software execution
 - Hot backup: independent computer running different software follows the main computer and takes over upon fault detection (also used for covering software faults)
 - Selective power cycling after a fault is detected, only the affected component or subsystem is powercycled, which can reduce recovery time significantly

Example Radiation Tolerance for Specific Components

Component	TID	LET SEL	LET SEU	Comments
Virtex6 FPGA	100 Krad	37 MeV-cm2/mg	< 1 for config mem	40 nm CMOS
NOR Flash	15 Krad	47.5	2.8	CMOS, tolerant flash
GaAs RF	1 Mrad	immune	N/A	GaAs
SRAM	50	80	< 1	SEU LET can be low
Regulators	300	68	N/A	SEGR
Kintex Rad-Tol FPGA	120	80	6	20 nm CMOS
DDR3		35	1.3	Micron

- Radiation tolerance of commercial components varies widely, so actual radiation testing is needed for missions in higher radiation environments
- However, SEU susceptibility is generally very high, particularly for memory chips or embedded memory elements

Total Integrated Dose (TID) Mitigation

- TID effects are mitigated by shielding, device hardening and architecture
- Lowering the TID using 5 mm of aluminum shielding is standard practice for space avionics by eliminating low energy particles
- Tantalum foil is often used for additional shielding using a high-Z material applied directly to chip packages
- Chips can be hardened against TID by enhanced fabrication techniques:
 - Silicon-on-Insulator (SOI) substrate
 - Buried guard rings to control stray charge
 - Enhanced conductivity substrates
- Circuits can be hardened against TID by design
 - Using larger devices
 - Increased design margins wrt gain, threshold voltages
 - Increased spacing between circuit elements
 - Slower operation with increased timing margins

Single Event Effects – SEL Mitigation

- SEE effects create anomalous currents in various circuits of the chip due to particleinduced charge paths
 - These anomalous currents are often the first detectable symptom of radiation effects
 - Charge paths consist of electrons and hole pairs created in the Silicon due to passage of a radiation particle
 - A high-energy particle can induce multiple secondary particle emissions from any material surrounding the active circuit shielding, chip package and bulk silicon
- Anomalous charge paths lead to Single-Event-Latchup, either transient or permanent
 - Permanent SEL is caused by forward bias of a circuit to either the supply or substrate resulting in local overheating and permanent device damage
 - Permanent SEL fault modes should be avoided for any space avionics
 - Transient SEL is caused by similar conditions, but does not result in permanent damage
 - Transient SEL often requires a power cycle to clear the latchup condition
- SEL is countered by substrate enhancement, guard rings and circuit design
- SEL rate is determined by the Linear Energy Transfer (LET) parameter:
 - Typical LET for latch-up should be >50 MeV-cm²/mg for critical space avionics
 - SEL can occur in relatively benign orbits due to GCRs and solar flares

Single Event Effects – SEFI Mitigation

- SEE effects can also alter the state of any register or flip-flop used on a chip
 - This effect is transient
- When a bit upset changes a state machine register, the state machine will malfunction
 - The state machine can produce anomalous output, but only for one cycle
 - The state machine can hang and requires a power cycle to clear
- Typical example is the controller for DRAM
 - Documented SEFI modes for certain DRAM chips
 - Controller hangs, preventing access to entire memory chip
 - Memory chip has to be power-cycled for recovery
 - Complex detection and power-cycling schemes can be employed
- SEFI can be countered by using DICE flip-flops or TMR for state machines
- SEFI rate is determined by the Linear Energy Transfer (LET) parameter:
 - Typical LET for SEFI should be >50 MeV-cm²/mg for critical space avionics
 - SEFI can occur in relatively benign orbits due to GCRs and solar flares but at very low rates

Single Event Effects – Memory SEU Mitigation

- Generally, the most radiation sensitive component in computational systems is memory
 - There are many memory caches in computational systems and all are vulnerable to changes
 - DRAM requires the use of Error Detection and Correction (EDAC) in hardware for space use
 - EDAC needs to cover multiple bit flips, particularly for high-density DRAM
 - Processor cache memory is most vulnerable and can only be protected within the chip. This is seldom done
 - Configuration memory in FPGAs can have SEU LET < 1 Mev-cm2/mg, a critical vulnerability
- Non-volatile memory (NVM) is also sensitive to loss of data and bit flips
 - Memory element itself can be directly affected floating gate of EEPROM Flash
 - Industry is developing radiation hard NVM like MRAM or memristors
- Interleaving of rows and columns helps to cover multiple-bit flips
- For soft memory, EDAC and TMR is often used i.e. flash memory used for boot
- Radiation-hard memories remain an elusive goal and memory radiation tolerance often lowers rating of entire subsystem

Single Event Effects – Processors and FPGA Mitigation

- Processors can suffer SEUs in caches, registers or buffer memory
- For critical computational functions, basic self-checking pairs (SCP) are used as the computational building block
 - If the two do not agree on output, then entire SCP is considered as producing a fault
 - The SCP architecture can cover on-chip cache data errors pair will not agree
- The configuration memory in FPGAs is implemented as SRAM and are the softest elements within the FPGA
 - Either use different FPGA technology for space or move to ASIC.
 - Configuration memory scrubbing is often used
 - Many FPGAs allow use of triple modular redundancy (TMR) for all logic circuits
- FPGAs also have internal Flash and SRAM memory blocks
 - Radiation hardness tends to follow similar types of chips
 - Internal blocks can be covered with EDAC or parity or TMR
- FPGAs can access external DRAM
 - Use EDAC circuitry and good DRAM parts

Architectural Fault Mitigation Techniques for Neuromorphic Computing (NMC)

- Start with a radiation tolerant hardware platform:
 - Memory used for defining weights of neuron connections (synapses) needs to be protected
 - Vulnerability may be highest during learning (programming) of the weights
 - Component selection based on mission requirements, with significant derating and increased margins
- Add architectural features to address transient SEU errors in NMC hardware
 - Parallel processing approach: (triplication on NMC chip)
 - Multiple neural strings with exact same weights and inputs should produce exactly the same outputs
 - Can compare results in external logic requires 3 or more strings
 - Requires 3-4 times the hardware, but execution speed remains the same
 - Sequential processing approach (supervised by host)
 - Performing the same operation multiple times using the same weights and inputs should produce the same outputs
 - Compare at least 3 runs to determine correctness
 - Does not require more hardware, just 3X computational time
 - Memory scrubbing background process ensure all NMC weight memory is accessed and corrected within a given time interval
 - Checkpointing multiple strings perform the same computations in parallel, but comparison is at specific points in NMC execution
 - Rollback after computational error is detected, the software redoes just the faulty computation
 - Power cycling and reset when all else fails

