
Assuring Safety-Critical Machine Learning Enabled
Systems: Challenges and Promise

Alwyn E. Goodloe
NASA Langley Research Center

Hampton, Va. USA
a.goodloe@nasa.gov

Abstract—Machine learning is increasingly being used in
safety-critical systems, where the public safety requires a
rigorous assurance process. We shall outline how assurance
processes work for conventional systems and identify the
primary difficulty in applying them to machine learning
enabled systems. We will then outline a path forward
including identifying where considerable basic research
remains.

Index Terms—safety-critical systems, assurance,
machine-learning, certification.

I. INTRODUCTION

Safety-critical systems, such as aircraft, automobiles,
and medical devices are systems whose failure could
result in loss of life, significant property damage, or dam-
age to the environment [1], [2]. The grave consequences
of failure have compelled industry and regulatory au-
thorities to adopt conservative design approaches and
exhaustive verification and validation (V&V) procedures
to prevent mishaps. In addition, strict licensing require-
ments are often placed on human operators of many
safety-critical systems. In practice, the verification and
validation of avionics and other safety-critical software
systems relies heavily on traceability to requirements and
system predictability. Currently, in civil aviation, nuclear
power, and similar highly regulated areas, there is no reg-
ulatory guidance for assuring artificial intelligence (AI)
and similar approaches that do not exhibit predictable
behavior at certification.

Technological advances such as the significant
progress in machine learning are enabling the devel-
opment of increasingly autonomous (IA) cyber-physical
systems (CPS) that modify their behavior in response
to the external environment and learn from their expe-
rience [3]. Machine learning (ML) is being employed
to enable autonomous systems that operate in the real
world, but many implementations lack the salient fea-
tures of traceability and predictability. Moreover, these

systems pose new dangers to public safety, especially
when they encounter unexpected objects or events [4]–
[8]. Hence, it will be necessary to assure system safety at
the same level as existing systems if they are not to im-
pose an unacceptable danger to public safety [9]. Efforts
are underway to write standards and guidelines to govern
the use of this technology such as the ANSI/UL 4600
Standard for Safety for the Evaluation of Autonomous
Products [10] and SAE G 34 Artificial Intelligence
in Aviation, but significant technical barriers must be
overcome.

In this paper, we shall provide a brief overview of
the processes and practices for assuring conventional
software enabled systems focusing on the domain of
civil aviation, which has an exemplary safety record.
We shall discuss the challenges of assuring machine
learning enabled systems and discuss some of the tools
and techniques that are being proposed for this task and
their drawbacks. Although it may seem an impossible
task to assure machine learning enabled safety-critical
systems within current assurance frameworks, we will
discuss how particular classes of problems are within
reach while others are likely to remain basic research
challenges for the foreseeable future.

II. ASSURING CONVENTIONAL SYSTEMS

Years of experience at building safety-critical software
systems such as aircraft and nuclear power systems have
yielded analysis, design, and development practices that
have produced extraordinarily safe systems such as the
current air transportation system. So much so that the
public demands that technological advances not lower
the level of safety they have come to expect. In this
section, we will give a high-level overview of design and
development processes used for civil transport aircraft.

Like all software systems development, engineering
safety-critical systems begins with ascertaining require-

ments, but in addition, there is a need for one or more
safety analyses such as:

• A process used to assess risk such as a hazard
analysis for the identification of different types of
hazards.

• A process to identify potential failure modes in a
system and their causes and effects.

In civil aviation, safety analyses are carried out whenever
there are changes made to the system. The functional
requirements and safety analyses together flow into the
system specification, system architecture, and design. A
functional specification precisely states what the system
is to do, usually in terms of a formal relation of system
output given a specified input. Hence it is also possi-
ble to deduce what constitutes undesired behavior. We
often define functional correctness as follows, given a
specification of initial conditions ψ and a specification
of system requirements φ and a system S, if ψ is true
and we execute S, then S will terminate in a state
where φ is true. If it is possible to write a functional
specification φ precisely stating what the system is to do,
it is also possible to deduce what constitutes undesired
behavior. When we can refine requirements into such a
specification we call them actionable specifications.

The safety analysis will determine what faults the
system will be expected to sustain and still operate safely.
This is called the fault model of the system. Faults
and failures are often mitigated at the architectural level
by employing sufficient redundancy. Engineers have to
demonstrate traceability back to the original require-
ments and safety analyses at each refinement step of the
development process. These practices are often codified
in guidelines [11], [12]. Software implementations tend
to adhere to very conservative guidelines [13], [14]
that constrain non-determinism and ensure bounds on
resource consumption by disallowing dynamic memory
allocation and recursion. Although these restrictions may
constrain the design space, they make the task of assuring
such systems tractable.

The assurance processes for safety-critical systems
typically uses testing to demonstrate that the system
meets the requirements, that there is no unintended
behavior, and that the system tolerates specified faults.
Coverage metrics are used that measure how well test
inputs exercise the code. In particular, they aim to show
the degree to which the test inputs execute all branches of
the code. In civil aviation, the DO-178C [13] guidelines
require that the most critical software to undergo mod-
ified condition/decision coverage (MC/DC) testing [15],

where
• Each entry and exit point is invoked.
• Each decision takes every possible outcome.
• Each condition in a decision takes every possible

outcome.
In addition to testing, formal methods based tools are
increasingly being used for certification credit [16].

III. A 10,000 FOOT VIEW OF MACHINE LEARNING

When building conventional systems, one refines re-
quirements into an actionable specification that is then
refined into program logic and implemented in a pro-
gramming language. The resulting program consumes
data as input as it executes the program logic, which
often makes decisions based on that input. In contrast,
machine learning systems are constructed by providing
the system with examples that one can construe as a
model of what is to be built. In the case of supervised
learning, before the training begins the engineer selects
a set of hyperparameter values that control the learning
process. During training, model parameters are initial-
ized to some base value. These parameters get updated
based on the data sets drawn from examples and an opti-
mization algorithm. In short, the model is defined by the
model parameters that get updated as the system learns
and the hyperparameters influence this process. The
optimization process is intended to ensure that the system
“generalizes” well, that is, providing the right output to
input that was not given in the training data set. These
models are typically implemented in neural networks,
comprised of many layers of nodes with each node
acting like an linear regression model computing outputs
based on weights and a basis. Many neural networks
today are comprised of thousands of nodes arranged in
more than a hundred layers making them quite opaque.
While supervised learning is probably the most common
machine learning approach being proposed for safety-
critical systems, reinforcement learning is very popular
for solving planning problems. Reinforcement learning
performs learning during operational deployment based
on maximizing a reward function while interacting with
the environment and thus learning from experience. The
distinguishing feature of machine learning is that the data
is the algorithm and, as we will see, this is what makes
assurance so difficult.

Machine learning is often advertised as the approach
to use when you do not know how to specify the system
you want to build. Industrial use of machine learning
spans almost every domain from advertising to finance

to agriculture. The more cautious safety-critical systems
domain has been slower to adapt this technology espe-
cially those areas subject to strict regulatory oversight.
As we have seen in Section II these systems are typically
built using a requirements driven methodology that is
difficult to apply when requirements that can be refined
into actionable specifications are lacking. Yet the desire
to build autonomous systems that need functionality such
as perception, for which we currently do not know how
to write actionable specification, has driven engineers to
use machine learning as it is currently the option with
the best performance. The problem in adapting the con-
ventional assurance approaches is that other than large
data sets of examples what constitutes a specification?
Consider a machine learning based classifier for pictures
of birds. So you may have many gigabytes of examples,
but what exactly would constitute a specification of a
hummingbird or a cardinal?

On the other hand, there are use cases where machine
learning is used to replace conventionally built applica-
tions because it exhibits superior performance charac-
teristics. For instance, a machine learning based aircraft
fuel management systems might use significantly fewer
computational resources than conventional solutions.

In addition to functional correctness, we often speak
of the software safety properties defined as “something
bad does not happen”. Typical traditional safety prop-
erties are floating point arithmetic overflows and buffer
overflows. Machine learning has its own basket of safety
properties. For instance, neural network based perception
classifiers have shown themselves to be sensitive to small
changes in an image that may not even be recognizable
to humans [17]. This phenomenon is called adversarial
attack and systems that exhibit adversarial robustness
do not exhibit such sensitive behavior. Moreover, there is
strong evidence that neural network based classifiers can
either be robust against adversarial attacks or accurate,
but not both [18]. One of the more popular formulations
of adversarial robustness [19] follows. Suppose the neu-
ral network N is a classifier associated with a given set
of labels L, a given input x is classified as label l ∈ L
denoted N(x). A neural network is said to be δ locally
robust at input x0 if small perturbations do not change
the classification:

∀x.||x− x0|| ≤ δ ⇒ N(x) = N(x0).

Such safety properties are actionable specifications and
are attractive because they are amenable to detection
by automated tools. One of the reasons adversarial
robustness has attracted so much attention is that it is one

of the few such properties for which we have actionable
specifications.

IV. ASSURANCE APPROACHES

A number of approaches have been proposed for
assurance of machine learning enabled systems. We will
briefly survey five of these and assess their strengths and
weaknesses.

A. Testing

Testing is the most well established approach used
in assuring systems and it definitely plays a role in
assuring machine learning enabled systems, but there are
challenges. Given that the specification for a machine
learning system is captured in the example data sets,
it is very difficult to create test oracles [20]. Typically,
a set of examples is held back from the training set
and later used to test the performance of the machine
learning system, but how the system responds to inputs
it has not seen before is not precisely defined so at best
there is some statistical argument to be made. There
are numerous efforts to apply techniques that have been
successful at testing conventional software [21], [22], but
their efficacy is still being evaluated.

It is difficult to see how coverage metrics used in
conventional software is easily transferred to this setting.
A common coverage criterion for neural networks is that
the test inputs are selected to ensure that all neurons are
activated. The branching in neural network implementa-
tions is not very sophisticated so achieving such coverage
is not difficult, but not very meaningful either.

Lacking neither actionable specifications nor good
coverage metrics, it is not possible to test that a system
performs its intended function and that there is no
unintended behavior. Thus it is not possible to perform
the kind of requirements based test driven assurance de-
scribed in Section II. Discovering a new testing approach
that provides the same level of confidence in assuring the
system remains the subject of research.

B. Formal Methods

The application of techniques from the formal meth-
ods community to the verification of machine learning
enabled systems is an active area of research. Consider a
neural network that implements a function y = f(x) for
a bounded input domain D. Given a correctness property
φ(x, y) the goal is to show

∀x ∈ D.y = f(x)⇒ φ(x, y).

Rather than a direct proof, the problem is reformulated
as a constraint problem [23] [24] . One approach is
to recast the problem as a mixed integer programming
problem [25]. An alternate approach is to recast the
problem to be resolved by a Satisfiability Modulo Theo-
ries (SMT) solver [26]. RelUPlex [27] and its successor
Marabou [28] are examples of this approach.

Abstract interpretation [29] is a static analysis tech-
nique that computes a sound and conservative over-
approximation of a program by relating the concrete
states of program to a more tractable abstract set of
states and then automatically proving that the abstract
program satisfies a given safety property. Researchers
at ETH Zurich have recently been investigating how
abstract interpretation can be applied to verifying neural
networks [30], [31]. In this work, neural networks are
represented as affine transformations guarded by logi-
cal constraints. Abstract interpretation tools have been
applied to verify adversarial robustness.

These techniques work very well on small examples,
but getting any of these approaches to scale remains a
problem. As with testing, the biggest challenge is the
need for actionable specifications. One of the reasons
why so many research efforts focus on verifying the
same properties is that there are simply so few known
actionable specifications.

C. Runtime Verification

Runtime verification (RV) [32]–[34] is a verification
technique that has the potential to enable the safe op-
eration of safety-critical systems that are too complex
to formally verify or fully test. In RV, the system is
monitored during execution, to detect and respond to
property violations that take place during the actual mis-
sion. The Copilot runtime verification framework [35],
[36], developed by the author and colleagues at NASA,
targets the runtime verification of safety-critical systems
with a strong emphasis on certification [37]. Due to
the probabilistic behavior of machine learning, runtime
verification can help ensure that input that has never been
seen does not result in unsafe behavior. Within NASA
we have found that generating monitors from structured
English requirements [38] makes runtime verification
easier for working engineers.

Just as with testing and formal methods, there must
be actionable specifications to check. For instance, a
machine learning enabled autopilot may have a safety
property saying it must stay within a well-defined ge-
ofence and this can be checked at runtime, but it is not

possible to check that a classifier has properly detected
a Persian cat or a bluebird.

D. Explainability

Explainability of machine learning is often touted
as the missing piece complementing other assurance
practices by providing confidence that the system is
operating as intended or at least in a safe fashion.
Complicating this argument is the fact that explainability
means different things to different people meaning you
always have to ask “explain what and to who”?

The “black box”, common in aviation, is a well estab-
lished engineering artifact allowing experts to determine
the cause of accidents and incidents after the fact. Given
that machine learning may not always react to new situ-
ations in predictable ways and in the worst case can en-
danger the public safety, a similar recording device that
provides engineers with enough visibility to ascertain
why given certain inputs the machine learning system
behaved the way it did can provide valuable forensics
evidence when an accident or incident occurs [39]. Al-
though deploying such a black box is sound engineering
practice and the data could be used to improve the system
performance, this notion of explainability does not really
improve the assurance processes.

A second notion of explainability exposes technical
details to developers for the purpose of debugging. The
internal operation as well as details about input data are
presented to developers with expert knowledge during
testing to help them understand why the system may
not be performing as expected. While this helps the
developers improve the quality of the product, it is not
clear how it impacts assurance.

Another concept of explainability is targeted at users.
Say an autonomous vehicle is driving down the highway
and suddenly makes several lane changes and then exits
the highway. There might be an innocent explanation,
say, the vehicle detects a pothole and then is notified of
an accident further down the highway. On the other hand,
the machine learning system may not be performing in
a desired manner. This notion of explainability aims
to tell users what is going on using language they
can understand. Work toward this goal remains in the
realm of basic research and the hope is to eventually
produce machine learning systems that can explain to
users why they behave the way they do. The idea is to
improve trust in machine learning enabled systems, but
currently the given explanations are simply too technical
for non-experts. Moreover, it is well known trust is

often misplaced, for safety-critical systems it is more
important for the system to be trustworthy.

E. Licensing

In conventional safety-critical systems there is usually
a clear dividing line between automation and human
operator. The computing hardware and software undergo
certification while the human operator is required to
be licensed. Machine learning is often employed in
autonomous systems to replace functions that have tra-
ditionally been carried out by humans. There have been
a number of proposals to license the machine learning
enabled components of a system that are replacing
a human in an autonomous system. The idea seems
reasonable as there is often a set of well documented
skills and procedures that are expected to be mastered
and demonstrated on the licensing exam. Yet in addition,
there are often minimum age requirements intended to
ensure a level of maturity. More research is needed
to understand what life experiences contribute to being
“mature enough” and how they factor into handling off-
nominal situations. There is often mandatory appren-
ticeship or mentoring requirements that can sometimes
last years with candidates who cannot demonstrate an
ability to handle themselves in critical and seemingly
chaotic situations washing out of the program. How
to incorporate the human life experiences and general
maturity into a machine learning system is difficult
when we do not adequately understand what this means.
Similarly we do not have a good understanding of the
role an apprenticeship and mentor evaluation often plays
in the license process. Although a very valuable subject
for research, a number of complex questions need to be
sufficiently addressed before licensing AI safety could
play the same role it does in licensing humans.

V. A PATH FORWARD

We have established that the key feature enabling
the assurance of safety-critical systems is possessing
actionable specifications. It is critical not to abandon this
pillar of assuring safe systems for the sake of expediency.
Instead, we should focus on building those systems for
which we possess actionable specifications.

Within the domain of cyber-physical systems and
aerospace in particular, there are a significant number
of problems where machine learning can be applied
to applications possessing actionable specifications [40].
For instance, ACAS Xu [41] is an aircraft collision

avoidance system that not only sounds an alert when
a potential collision is detected, but gives horizontal and
vertical maneuver guidance. We know how to construct
collision avoidance systems via conventional means and
hence can construct actionable specifications that can be
used to construct test oracles or properties to check at
runtime. In some cases, we may not know how to obtain
an actionable specification of a machine learning compo-
nent itself, but can formulate an actionable specification
to ensure safe operation based on other components of
the system [40].

In autonomous systems, the most compelling use
cases for machine learning are areas such as perception
where there are no effective conventional solutions and
where the only form of specification is a large data set.
Although we currently do not know how to extract an
actionable specification from such a data set, there is
promising research. Mathematicians working in the area
of topological data analysis [42]–[44] are bringing to
bear powerful techniques from algebraic and differential
topology as well as differential and algebraic geometry
that allow us to compute geometric and topological in-
variants on the data. Persistent homology and distributed
persistent homology [45] have emerged as techniques
that help distinguish between actual features of high-
dimensional data sets from noise in the data. Although
the field is relatively new, the techniques have provided
valuable insight into the differences between deep and
shallow neural networks [46]. Given that in machine
learning the data is the algorithm, it would seem that data
invariants should be respected by the implementation
and thus constitute actionable specifications that can be
checked by testing, formal methods or at runtime. This
is promising and exciting basic research being supported
by NASA and other organizations, and will likely require
some time to achieve a technical readiness level to
transfer to industrial practice, but at present it appears to
be our best hope for obtaining actionable specifications
from large data sets.

VI. CONCLUSION

We have discussed how safety-critical systems are
designed and assured to ensure the protection of the
public safety and seen how machine learning poses a
challenge to traditional design methodology. We have
shown that when there are actionable specifications, it is
possible to adapt established approaches to assure these
systems. On the other hand, domains for which the only
specification is a large data set remain a challenge. While
topological data analysis shows promise to produce

actionable specifications from large data sets much basic
research remains to be done. Over seventy years ago,
Vannevar Bush authored his famous Frontiers of Science
report [47] that laid out the course from basic science
to applied science to industrial products. While there is
always a temptation on the part of leaders to demand
breakthroughs based on a schedule, this is one of those
cases where the processes must run their course.

REFERENCES

[1] John C. Knight, “Safety critical systems: Challenges and direc-
tions,” in Proceedings of the 24th International Conference on
Software Engineering, ser. ICSE ’02. ACM, 2002, pp. 547–
550.

[2] Nancy G. Leveson, Engineering a Safer World: Systems Think-
ing Applied to Safety. MIT Press, 2012.

[3] P. Laplante, D. Milojicic, S. Serebryakov, and D. Bennett, “Ar-
tificial intelligence and critical systems: From hype to reality,”
Computer, vol. 53, no. 11, pp. 45–52, 2020.

[4] A. P. Members, “AFE 87 - Machine Learning,” Aerospace
Vehicle Systems Institute, Tech. Rep., 2020.

[5] D. Amodei, C. Olah, J. Steinhardt, P. F. Christiano,
J. Schulman, and D. Mané, “Concrete problems in ai
safety,” ArXiv, vol. abs/1606.06565, 2016. [Online]. Available:
https://arxiv.org/pdf/1606.06565.pdf

[6] R. McAllister, Y. Gal, A. Kendall, M. Van Der Wilk, A. Shah,
R. Cipolla, and A. Weller, “Concrete problems for autonomous
vehicle safety: Advantages of bayesian deep learning,” in Pro-
ceedings of the 26th International Joint Conference on Artificial
Intelligence, ser. IJCAI’17. AAAI Press, 2017, pp. 4745–4753.

[7] J. Faria, “Machine learning safety: An overview,” in Proceed-
ings of the Safety-critical Systems Symposium 2018 (SSS’18),
02 2018.

[8] K. R. Varshney, “Engineering safety in machine learning,” 2016.
[9] N. R. Council, Autonomy Research for Civil Aviation: Toward

a New Era of Flight. The National Academies Press, 2014.
[10] “Ansi/ul 4600: Standard for safety for the evaluation of

autonomous products.” [Online]. Available: https://ulse.org/
UL4600

[11] SAE International, “Guidelines and methods for conducting
the safety assessment process on civil airborne systems and
equipment,” SAE International, 1996, aRP 4761.

[12] ——, “Guidelines For Development Of Civil Aircraft and
Systems,” SAE International, 2010, aRP4754A.

[13] RTCA, “Software considerations in airborne systems and equip-
ment certification,” RTCA, Inc., 2011, RCTA/DO-178C.

[14] MIRA Ltd, MISRA-C:2004 Guidelines for the use of the C
language in Critical Systems, MIRA Std., 2004.

[15] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K.
Rierson, “A practical tutorial on modified condition/ decision
coverage,” NASA, Tech. Rep. NASA/TM-2001-210876, 2001.

[16] “Formal methods supplement to do-178c and do-278a,” RTCA,
Inc., 2011, RCTA/DO333.

[17] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in 3rd International Confer-
ence on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[18] D. Su, H. Zhang, H. Chen, J. Yi, P.-Y. Chen, and Y. Gao, “Is
robustness the cost of accuracy? – a comprehensive study on
the robustness of 18 deep image classification models,” 2018.

[19] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochender-
fer, “Towards proving the adversarial robustness of deep neural
networks,” in Proceedings First Workshop on Formal Verifica-
tion of Autonomous Vehicles, Turin, Italy, 19th September 2017,
ser. Electronic Proceedings in Theoretical Computer Science,
L. Bulwahn, M. Kamali, and S. Linker, Eds., vol. 257. Open
Publishing Association, 2017, pp. 19–26.

[20] Dusica Marijan and Arnaud Gotlieb and Kumar Ahuja Mohit,
“Challenges of Testing Machine Learning Based Systems.” San
Francisco, CA, USA: IEEE, 2019.

[21] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: automated
whitebox testing of deep learning systems,” Commun. ACM,
vol. 62, no. 11, pp. 137–145, 2019.

[22] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and
R. Ashmore, “Deepconcolic: testing and debugging deep neural
networks,” in Proceedings of the 41st International Conference
on Software Engineering: Companion Proceedings, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019, J. M. Atlee, T. Bul-
tan, and J. Whittle, Eds. IEEE / ACM, 2019, pp. 111–114.

[23] C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. J.
Kochenderfer, “Algorithms for verifying deep neural networks,”
2019. [Online]. Available: https://arxiv.org/abs/1903.06758

[24] R. Bunel, I. Turkaslan, P. H. Torr, P. Kohli, and M. P. Kumar,
“Piecewise linear neural networks verification: A comparative
study,” 2018. [Online]. Available: https://openreview.net/forum?
id=BkPrDFgR-

[25] M. Akintunde, A. Lomuscio, L. Maganti, and E. Pirovano,
“Reachability analysis for neural agent-environment systems,”
in Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Sixteenth International Conference, KR 2018,
Tempe, Arizona, 30 October - 2 November 2018, M. Thielscher,
F. Toni, and F. Wolter, Eds. AAAI Press, 2018, pp. 184–193.

[26] L. de Moura, B. Dutertre, and N. Shankar, “A tutorial on
satisfiability modulo theories,” in Computer Aided Verification,
W. Damm and H. Hermanns, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 20–36.

[27] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J.
Kochenderfer, “Reluplex: An efficient SMT solver for
verifying deep neural networks,” in Proceedings of the 29th
International Conference on Computer Aided Verification (CAV
’17), ser. Lecture Notes in Computer Science, R. Majumdar
and V. Kuncak, Eds., vol. 10426, no. 1. Springer, Jul.
2017, pp. 97–117, heidelberg, Germany. [Online]. Available:
http://www.cs.stanford.edu/∼barrett/pubs/KBD+17.pdf

[28] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus,
R. Lim, P. Shah, S. Thakoor, H. Wu, A. Zeljić, D. L.
Dill, M. J. Kochenderfer, and C. Barrett, “The marabou
framework for verification and analysis of deep neural
networks,” in Proceedings of the 31st International Conference
on Computer Aided Verification (CAV ’19), ser. Lecture
Notes in Computer Science, I. Dillig and S. Tasiran,
Eds., vol. 11561. Springer International Publishing, 2019,
pp. 443–452, new York, New York. [Online]. Available:
http://www.cs.stanford.edu/∼barrett/pubs/KHI+19.pdf

[29] P. Cousot and R. Cousot, “Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints.” in POPL ’77: Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages. ACM Press, 1977, pp. 238–252.

[30] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov,
S. Chaudhuri, and M. Vechev, “AI2: Safety and robustness
certification of neural networks with abstract interpretation,” in
Security and Privacy (SP), 2018 IEEE Symposium on, 2018.

https://arxiv.org/pdf/1606.06565.pdf
https://ulse.org/UL4600
https://ulse.org/UL4600
https://arxiv.org/abs/1903.06758
https://openreview.net/forum?id=BkPrDFgR-
https://openreview.net/forum?id=BkPrDFgR-
http://www.cs.stanford.edu/~barrett/pubs/KBD+17.pdf
http://www.cs.stanford.edu/~barrett/pubs/KHI+19.pdf

[31] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An abstract
domain for certifying neural networks,” Proc. ACM Program.
Lang., vol. 3, no. POPL, pp. 41:1–41:30, Jan. 2019.

[32] A. Goodloe and L. Pike, “Monitoring distributed real-time sys-
tems: A survey and future directions,” NASA Langley Research
Center, Tech. Rep. NASA/CR-2010-216724, July 2010.

[33] E. Bartocci, Y. Falcone, A. Francalanza, and G. Reger, “In-
troduction to runtime verification,” in Lectures on Runtime
Verification - Introductory and Advanced Topics, ser. Lecture
Notes in Computer Science, E. Bartocci and Y. Falcone, Eds.
Springer, 2018, vol. 10457, pp. 1–33.

[34] Y. Falcone, K. Havelund, and G. Reger, “A tutorial on runtime
verification,” in Engineering Dependable Software Systems, ser.
NATO Science for Peace and Security Series, D: Information
and Communication Security, M. Broy, D. A. Peled, and
G. Kalus, Eds. IOS Press, 2013, vol. 34, pp. 141–175.

[35] “Copilot,” https://copilot-language.github.io, Accessed Aug 01,
2021.

[36] I. Perez, F. Dedden, and A. Goodloe, “Copilot 3,” NASA
Langley Research Center, Tech. Rep. NASA/TM–2020–220587,
April 2020.

[37] A. Goodloe, “Challenges in high-assurance runtime verifica-
tion,” in Leveraging Applications of Formal Methods, Verifi-
cation and Validation: Foundational Techniques - 7th Inter-
national Symposium, ISoLA 2016, Imperial, Corfu, Greece,
October 10-14, 2016, Proceedings, Part I, 2016, pp. 446–460.

[38] I. Perez, A. Mavridou, T. Pressburger, A. Goodloe, and D. Gi-
annakopoulou, “Automated translation of natural language re-
quirements to runtime monitors,” in Tools and Algorithms for
the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, Part I, ser.
Lecture Notes in Computer Science, D. Fisman and G. Rosu,
Eds., vol. 13243. Springer, 2022, pp. 387–395.

[39] G. Falco, B. Shneiderman, J. Badger, R. Carrier, A. Dahbura,
[45] E. Solomon, A. Wagner, and P. Bendich, “From Geometry

to Topology: Inverse Theorems for Distributed Persistence,”

D. Danks, M. Eling, A. Goodloe, J. Gupta, C. Hart, M. Jirotka,
H. Johnson, C. Lapointe, A. J. Llorens, A. K. Mackworth,
C. Maple, S. E. Pálsson, F. Pasquale, A. F. T. Winfield, and
Z. K. Yeong, “Governing AI safety through independent audits,”
Nat. Mach. Intell., vol. 3, no. 7, pp. 566–571, 2021.

[40] D. Cofer, I. Amundson, R. Sattigeri, A. P. C. Boggs, E. Smith,
L. Gilham, T. Byun, and S. Rayadurgam, “Run-time assurance
for learning-enabled systems,” in NASA Formal Methods: 12th
International Symposium, NFM 2020, Moffett Field, CA, USA,
May 11–15, 2020, Proceedings. Berlin, Heidelberg: Springer-
Verlag, 2020, p. 361–368.

[41] M. P. Owen, A. Panken, R. Moss, L. Alvarez, and C. Leeper,
“ACAS Xu: Integrated Collision Avoidance and Detect and
Avoid Capability for UAS,” in 2019 IEEE/AIAA 38th Digital
Avionics Systems Conference (DASC), 2019, pp. 1–10.

[42] H. Edelsbrunner and J. Harr, Computational Topology:An In-
troduction. AMS Press, 2010.

[43] F. Chazal and B. Michel, “An introduction to topological
data analysis: Fundamental and practical aspects for data
scientists,” Frontiers in Artificial Intelligence, vol. 4,
2021. [Online]. Available: https://www.frontiersin.org/articles/
10.3389/frai.2021.667963

[44] G. Carlsson, “Topology and data,” Bulletin of The American
Mathematical Society - BULL AMER MATH SOC, vol. 46, pp.
255–308, 04 2009.
in 38th International Symposium on Computational Geometry
(SoCG 2022), ser. Leibniz International Proceedings in Infor-
matics (LIPIcs), X. Goaoc and M. Kerber, Eds., vol. 224.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp.
61:1–61:16.

[46] G. Naitzat, A. Zhitnikov, and L.-H. Lim, “Topology of
deep neural networks,” 2020. [Online]. Available: https:
//arxiv.org/abs/2004.06093

[47] V. Bush, “Science–the endless frontier : a report to the president
on a program for postwar scientific research.” National Science
Foundation, 1980.

https://copilot-language.github.io
https://www.frontiersin.org/articles/10.3389/frai.2021.667963
https://www.frontiersin.org/articles/10.3389/frai.2021.667963
https://arxiv.org/abs/2004.06093
https://arxiv.org/abs/2004.06093

	Introduction
	Assuring Conventional Systems
	A 10,000 foot View of Machine Learning
	Assurance Approaches
	Testing
	Formal Methods
	Runtime Verification
	Explainability
	Licensing

	A Path Forward
	Conclusion
	References

