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10 Abstract: The spectral distribution of marine remote sensing reflectance, Rrs, is the 
11 fundamental measurement of ocean color science, from which a host of bio-optical and 
12 biogeochemical properties of the water column can be derived. Estimation of uncertainty in 
13 these derived properties is thus dependent on knowledge of the uncertainty in satellite-
14 retrieved Rrs (uc(Rrs)) at each pixel. Uncertainty in Rrs, in turn, is dependent on the propagation 
15 of various uncertainty sources through the Rrs retrieval process, namely the atmospheric 
16 correction (AC). A derivative-based method for uncertainty propagation is established here to 
17 calculate the pixel-level uncertainty in Rrs, as retrieved using NASA’s multiple-scattering 
18 epsilon (MSEPS) AC algorithm and verified using Monte Carlo (MC) analysis. The approach 
19 is then applied to measurements from the Moderate Resolution Imaging Spectroradiometer 
20 (MODIS) on the Aqua satellite, with uncertainty sources including instrument random noise, 
21 instrument systematic uncertainty, and forward model uncertainty. The uc(Rrs) is verified by 
22 comparison with statistical analysis of coincident retrievals from MODIS and in situ Rrs 
23 measurements, and our approach performs well in most cases. Based on analysis of an 
24 example 8-day global products, we also show that relative uncertainty in Rrs at blue bands has 
25 a similar spatial pattern to the derived concentration of the phytoplankton pigment 
26 chlorophyll-a (chl-a), and around 7.3%, 17.0%, and 35.2% of all clear water pixels (chl-a ≤ 
27 0.1 mg/m3) with valid uc(Rrs) have a relative uncertainty ≤ 5% at bands 412 nm, 443 nm, and 
28 488 nm respectively, which is a common goal of ocean color retrievals for clear waters. While 
29 the analysis shows that uc(Rrs) calculated from our derivative-based method is reasonable, 
30 some issues need further investigation, including improved knowledge of forward model 
31 uncertainty and systematic uncertainty in instrument calibration.  

32 1. Introduction

33 Ocean color products contain a certain degree of uncertainty resulting from imperfect 
34 calibration, sensor noise, uncertainty in ancillary data, and retrieval algorithms [1-5]. 
35 Providing retrieval-level uncertainty estimates within ocean color products has been 
36 recommended by Group on Earth Observations (GEO) and International Ocean-Colour 
37 Coordinating Group (IOCCG) within the quality assurance framework for earth observation 
38 and should be a general requirement of any satellite missions [3, 6]. Traditionally, uncertainty 
39 in remote sensing reflectance (Rrs) retrievals is derived through statistical comparison of 
40 satellite retrievals with collocated in situ measurements. Due to the limited availability of such 
41 matchups and their sparse distribution in space and time, statistical measures over all 
42 matching pairs or large groupings are typically used to gauge the uncertainty in the retrieved 
43 Rrs. Such derived uncertainties have at least three issues. First, the statistical measures 



44 represent an averaged value for the measurement conditions when and where the in situ data 
45 are collected. In practice, however, every pixel within the satellite image represents a different 
46 set of observing conditions, including radiant path geometry between the sensor, surface, and 
47 Sun, aerosol type and concentration, and surface conditions (e.g., Sun glint), and these 
48 different observational conditions result in different retrieval uncertainties. The averaged 
49 uncertainty doesn’t represent the value at a specific pixel. Second, in situ data have 
50 uncertainties [7, 8] that contribute to the perceived mismatch and are typically included in the 
51 statistical measures. Although it is possible to account for the in situ data uncertainties in 
52 evaluating the mismatch [9], accurate estimates of in situ data uncertainty are not always 
53 available. Last, the spatial and temporal differences between satellite retrievals and in situ data 
54 could result in additional uncertainty in the statistical measures. While in situ data are 
55 measured at one point, satellite values used in the matchup represent the measurement average 
56 over the satellite pixel footprint (e.g., ~1 km2), and are typically derived by averaging over 
57 even larger areas (e.g., 5×5 satellite pixels centered on the location of the in situ measurement, 
58 as recommended by [10]). Furthermore, the satellite and in situ measurements are rarely 
59 collected at exactly the same time, and within the matchup time window (e.g., 3 hours 
60 recommended by [10]) the optical properties could change, especially in coastal waters [11]. 
61 Together, these factors mean it is not an apples-to-apples comparison, and especially the 
62 effect from spatial and temporal differences is hard to quantify. The European Space 
63 Agency’s Ocean Color Climate Change Initiative program (OC_CCI) does provide pixel-level 
64 uncertainty in Rrs merged from various missions [12], as computed using the weighted 
65 average of the uncertainty within optical water classes associated with that pixel. As the 
66 uncertainty of each class is derived from the validation against in situ data, issues with the 
67 validation described above still exist. Furthermore, optical water classes do not capture 
68 spatiotemporal variations in some key drivers of variability in atmospheric correction (AC) 
69 uncertainty, such as geometry and atmospheric turbidity.

70 Given the issues with the validation against in situ data as a measure of uncertainty, several 
71 image-based approaches were developed to estimate uncertainty in satellite retrieved Rrs. For 
72 example, [13] used a bias-resistant algorithm for concentration of chlorophyll-a (chl-a) to 
73 determine Rrs with the highest quality, which was then used as a surrogate for “ground truth” 
74 to estimate Rrs uncertainty. Using coincident daily Rrs from two sensors or matching satellite 
75 retrieved and in situ Rrs, [14] established an approach based on collocation analysis to 
76 generate Rrs uncertainty associated with random effects. Using geostationary measurement 
77 from Geostationary Ocean Color Imager (GOCI) collected over the course of a day, and with 
78 the assumption that no detectable changes occur in the optical properties over waters with low 
79 productivity during the daytime period, uncertainty in Rrs is calculated as twice the standard 
80 deviation of multiple observations in one day [15]. Although some issues with validation 
81 using in situ data could be resolved by the image-based approaches, the uncertainty derived is 
82 either valid for a specific dataset or only includes the random uncertainty.  

83     Although there have been some studies on the pixel-level uncertainty in inherent optical 
84 properties (IOPs) [16, 17], few studies focus on Rrs, which is critical for calculating physical, 
85 biological and biogeochemical products, including IOPs. Uncertainty in Rrs is either neglected 
86 [16] or assumed constant [17], which is unrealistic [13]. These studies need a relatively 
87 realistic pixel-level uncertainty in Rrs. A derivative approach was developed to propagate 
88 sensor noise into uncertainty in Rrs [18], as retrieved from Ocean and Land Colour Instrument 
89 (OLCI) onboard Sentinel-3 using an AC algorithm for clear water [19]. A Monte Carlo (MC) 
90 approach was used to propagate sensor noise into uncertainty in Rrs [20], as retrieved from the 
91 standard NASA AC algorithm [21], which is based on the algorithm of Gordon &Wang 
92 (1994) [22] (GW94) but includes an iterative method to improve performance in highly 
93 productive or turbid waters. With the assumption that Rrs can be expressed as first-order 



94 approximation of top-of-atmosphere (TOA) radiance (Lt), Gillis et al. propagated sensor noise 
95 into Rrs [23], as retrieved using the Tafkaa AC algorithm [24]. Only sensor noise is included in 
96 those studies, while in reality there are other significant uncertainty sources that should be 
97 considered including instrument systematic uncertainties, ancillary data uncertainties, model 
98 uncertainties and assumptions in  the AC algorithms [3], some of which have been indicated 
99 to play a more significant role than sensor noise in Rrs uncertainty [25]. The AC algorithms 

100 used by [18, 23] are different from the algorithm used operationally by the Ocean Biology 
101 Processing Group (OBPG) at NASA for processing ocean color data. Since uncertainty 
102 propagation depends on the AC algorithm, the propagation method developed by [18, 23] 
103 cannot be directly applied to the NASA algorithm. MC approaches such as [20] provide a 
104 generalized mechanism for calculating pixel-level Rrs uncertainties for any algorithms, but 
105 they are computationally intensive and therefore impracticable for routine production.

106     OBPG has been distributing global ocean color products for more than two decades. While 
107 these products have been used widely, pixel-level uncertainties in Rrs have not yet been 
108 provided. OBPG is planning the next ocean color reprocessing using a Multiple-Scattering 
109 EPSilon AC algorithm (MSEPS) [25, 26], which has been shown to perform better than 
110 GW94 [27]. In this study, we will establish a derivative method to propagate instrument 
111 random noise, instrument systematic uncertainty, and forward model uncertainty through 
112 MSEPS, with the goal of generating and verifying pixel-level uncertainty in Rrs retrieved from 
113 MODIS and establishing a framework for computationally efficient generation of pixel-level 
114 Rrs uncertainties that can be applied for all ocean color missions processed and distributed by 
115 NASA.

116 2. Data and methodology

117 2.1. MODIS data

118 Uncalibrated (Level-1A) data from MODIS aboard the Aqua satellite were downloaded from 
119 NASA’s Ocean Biology Distributed Active Archive Center (OB.DAAC), and processed into 
120 calibrated and geolocated (Level-1B) data using the SeaDAS software package 
121 (seadas.gsfc.nasa.gov) and latest instrument calibration coefficients, as also distributed by the 
122 OB.DAAC.  

123 2.2. In situ data

124 Using the OB.DAAC’s in situ data archive and validation search utility tool (SeaBASS, 
125 https://seabass.gsfc.nasa.gov/search#val), coincident matchups spanning the years 2002-2019 
126 were collected between MODIS-Aqua Rrs retrievals and in situ data from three sources: 
127 Marine Optical Buoy (MOBY) [28], Acqua Alta Oceanographic Tower (AAOT) [29], and 
128 BOUée pour l'acquiSition d'une Série Optique à Long termE (BOUSSOLE) [30]. 

129 2.3. MSEPS atmospheric correction

130 The purpose of AC is to retrieve spectral water-leaving radiance, Lw, from observed radiance, 
131 Lt, at the top of the atmosphere (for a complete list of symbols describing the AC process, see 
132 Table A1 in Appendix A). The NASA standard atmospheric correction algorithm is detailed in 
133 [21]. Briefly, Lt can be expressed as:

134 𝐿𝑡 = (𝐿𝑟 + 𝐿𝑎 + 𝑡𝑣𝑟𝐿𝑓 + 𝑇𝐿𝑔 + 𝑡𝑣𝐿𝑤)𝑡𝑔 (1)
135 where Lr is the radiance resulting from multiple scattering by air molecules in the absence of 
136 aerosol, La is the radiance resulting from multiple scattering by aerosols including the 

https://seabass.gsfc.nasa.gov/search#val


137 interaction between air molecular and aerosol scattering, Lf is the radiance resulting from 
138 scattering by surface whitecaps, Lg is sun glint, T is the direct transmittance from surface to 
139 sensor, tvr and tv are the diffuse transmittance from surface to sensor with the former only 
140 including molecular scattering and the latter including molecular and aerosol scattering, and tg 
141 is two-way gas transmittance. Due to the known composition of air molecules, Lr can be 
142 accurately calculated using vector radiative transfer simulations that account for polarization, 
143 multiple scattering, and sea state to an uncertainty within 0.1% [31]. Lf is calculated using 
144 wind speed based on an empirical model [32, 33]. A sun glint coefficient is calculated using a 
145 statistical model [34] and then applied to a model developed by [35] to calculate Lg. Due to 
146 the high spatial and temporal variation of aerosol, it is challenging to calculate La, which is 
147 described briefly here for completeness.

148     MSEPS is based on the relationship between aerosol reflectance, ρa, and aerosol optical 
149 thickness, τa:

150  ln (𝜌𝑎) = ∑𝑛
𝑖=0 𝑐𝑖 ( ln(τ𝑎) )𝑖 (2)

151 ci are calculated through least-square fitting of ln(τa) to ln(ρa) and stored in lookup tables 
152 (LUTs), which were generated for 80 aerosol models with eight relative humidity (rh) values 
153 and ten fine-mode fractions [36]. n is 2 for the MODIS band at 869 nm and 4 for other visible 
154 (VIS) and near infrared (NIR) bands. ρa(748) and ρa(869) are derived with the assumption that 
155 Lw is zero or can be accurately estimated [37], and thus epsilon (ε) can be calculated from 
156 Eq.(3).

157 𝜀 = 𝜌𝑎(748)
𝜌𝑎(869) (3)

158 Two rh values are selected from the LUTs that closely bracket the rh of a MODIS pixel, 
159 assuming rh1< rh < rh2. For each aerosol model i in the ten models that correspond to rh1 (or 
160 rh2), ρa(869) is converted to τa(869) using the model coefficients c through Eq.(2). Through 
161 the extinction coefficients, τa(869) is extrapolated to τa(748), which is then used to calculate 
162 ρa(748). Dividing ρa(748) by ρa(869), we can derive εi for model i. Two aerosol models with 
163 the corresponding εx, εy (x, y indicate aerosol model number, assuming εx< ε < εy) that closely 
164 bracket ε are selected. Using the coefficients c for models x and y, ρa(869) can be converted to 
165 τa(869). Given τa(869), τa at other bands can be calculated using extinction coefficients and 
166 then converted to ρa. ρa derived for models x and y are linearly interpolated using a ratio of 
167

𝜀 ― 𝜀𝑥
𝜀𝑦 ― 𝜀𝑥. Such interpolated ρa can be derived for rh1 and rh2, denoted by ρa1 and ρa2. The actual 

168 ρa over the MODIS pixel is linearly interpolated from ρa1 and ρa2 using a ratio of  
𝑟ℎ ― 𝑟ℎ1

𝑟ℎ2 ― 𝑟ℎ1
. 

169 After removing Lr, La, Lf, and TLg from Lt in Eq. (1), Lw can be derived and hereafter Rrs:

170 𝑅𝑟𝑠 = 𝐿𝑡 𝑡𝑔 ― 𝐿𝑟 ― 𝑇𝐿𝑔 ― 𝑡𝑣𝑟𝐿𝑓 ― 𝐿𝑎 𝑓𝑏 (𝑡𝑣𝐹0𝑡𝑠𝑐𝑜𝑠𝜃𝑠) (4)

171 where fb is bidirectional reflectance correction [38], ts is diffuse transmittance from Sun to 
172 surface, θ𝑠 is solar zenith angle, and F0 is extraterrestrial solar irradiance corrected for earth-
173 Sun distance. In effect, Rrs is water-leaving radiance normalized to the downwelling 
174 irradiance.

175 2.4. Uncertainty propagation through AC

176 The major categories contributing to Rrs uncertainties as shown by Eq. (4) are:
177        1. uncertainty in Lt due to instrument random noise (i.e., sensor noise); 
178        2. instrument systematic uncertainty (e.g., absolute calibration uncertainty); and
179        3. uncertainties in the forward model to calculate La, Lr, Lf, Lg, fb, tg, T, tvr, ts and tv. 



180 A derivative approach is used to propagate all those uncertainties into Rrs. 
181     In general, a variable y that is a function of variables xi can be expressed as:

182 𝑦 = 𝑓(𝑥1,  𝑥2 , …, 𝑥𝑛) (5)

183 The uncertainty in y (uc(y)) can be calculated from the uncertainty in xi (u(xi)) through 

184 𝑢2
𝑐(y) = ∑𝑛

i=1 ( ∂𝑓
∂𝑥𝑖

)
2

𝑢2(𝑥𝑖) + 2∑𝑛―1
i=1 ∑𝑛

j=i+1
∂𝑓
∂𝑥𝑖

∂𝑓
∂𝑥𝑗

𝑢(𝑥𝑖,𝑥𝑗) (6)

185 n is the number of variables. Following the definitions outlined in [39], u represents standard 
186 uncertainty and uc represents combined standard uncertainty. u(xi, xj) is the covariance of error 
187 in variables xi and xj. 

∂𝑓
∂𝑥𝑖

 is the partial derivative of y with respect to xi.    

188     To calculate uc(Rrs), partial derivatives of Rrs with respect to each term with known 
189 uncertainty on the right side of Eq.(4) (Lt, tg, Lr, TLg, tvr, Lf, La, tv, ts, and fb) are needed. For 
190 those terms, uncertainty in Lr results from the uncertainty in wind speed (ws) and surface 
191 pressure (pr). Uncertainty in tvr results from uncertainty in pr. Uncertainty in Lf results from 
192 the uncertainty in ws [40]. Uncertainty in tg results from uncertainty in gas concentration 
193 (including ozone (oz), water vapor (wv), nitrogen dioxide (no2)). Uncertainty in fb results from 
194 chl-a uncertainty. The uncertainty in the model of Lr, Lf, tg, Lg, fb, and tvr are included in the 
195 forward model uncertainty calculated through the system vicarious calibration (SVC) that is 
196 described in Appendix B, which is applied to Lt. Uncertainty in Lt, Lr, tvr, Lf, and tg can be 
197 calculated relatively straightforwardly without aerosol information. Grouping these terms 
198 together, Eq. (4) at band λ𝑖 can be rewritten as: 

199 𝑅𝑟𝑠(λ𝑖) = 𝐿𝑟𝑓𝑐(λ𝑖) ― 𝑇(λ𝑖)𝐿𝑔(λ𝑖) ― 𝐿𝑎(λ𝑖) 𝑓𝑏(λ𝑖) (𝑡𝑣(λ𝑖)𝐹0(λ𝑖)𝑡𝑠(λ𝑖)𝑐𝑜𝑠𝜃𝑠) (7)
200 where Lrfc is defined as:
201 𝐿𝑟𝑓𝑐 = 𝐿𝑡 𝑡𝑔 ― 𝐿𝑟 ― 𝑡𝑣𝑟𝐿𝑓 (8)

202 Uncertainty in T(λi) results from τa(λi) [35], denoted by 𝜏′𝑎(λ𝑖). Using La(NIR) (NIR refers to 
203 MODIS bands at 748 and 869 nm), La(λ𝑖), tv(λ𝑖), and ts(λ𝑖) are calculated through MSEPS, 
204 which deploys an iterative approach to account for the non-zero Lw(NIR).  

205 𝐿𝑎(𝑁𝐼𝑅) = 𝐿𝑟𝑓𝑐(𝑁𝐼𝑅) ― 𝑇(𝑁𝐼𝑅)𝐿𝑔(𝑁𝐼𝑅) ― 𝑡′𝑣(𝑁𝐼𝑅)𝐿𝑤(𝑁𝐼𝑅) (9)

206 where 𝑡′𝑣 and the corresponding uncertainty are from last iteration. For the first iteration, 𝑡′𝑣 is 
207 equal to tvr. Uncertainty in T(NIR) is from τa(NIR) [35], denoted by 𝜏′𝑎(𝑁𝐼𝑅), which is from 
208 last iteration and equals to a predefined value for first iteration. Lw(NIR) is extrapolated from 
209 Lw at red band using a spectral model that is a function of chl-a. So, uncertainty in Lw(NIR) 
210 results from chl-a uncertainty [37]. Since rh is used to select aerosol models and interpolate ρa, 
211 uncertainty in rh should be another uncertainty source. In summary from Eqs.(7) and (9), 
212 uncertainty in Rrs(λi) mainly results from Lrfc(NIR), Lrfc(λi), chl-a, 𝜏′𝑎(NIR), 𝜏′𝑎(λ𝑖), and rh. 
213 Since 𝜏′𝑎(NIR) and 𝜏′𝑎(λ𝑖) are perfectly correlated with 𝜏′𝑎(869) through the extinction 
214 coefficients, those two uncertainty variables can be represented by 𝜏′𝑎(869). A vector for 
215 uncertainty variables is defined as:
216 𝑋𝑖 = [𝐿𝑟𝑓𝑐(NIR), 𝐿𝑟𝑓𝑐(λ𝑖), chl ― a, 𝜏′𝑎(869),  rh ] (10)

217 To calculate uc(Rrs(λi)) using Eq.(6), the partial derivative of Rrs(λi) with respect to Xi (
∂𝑅𝑟𝑠(λ𝑖)

∂𝑋𝑖
) 

218 as well as uc(Xi) are needed. The calculation of  
∂𝑅𝑟𝑠(λ𝑖)

∂𝑋𝑖
 is detailed in Appendix A and uc(Xi) 

219 are calculated in Section 2.5. 
220     While Fig. 1 shows a general flow chart, the calculation of uc(Rrs) is detailed step by step as 



221 follows:
222 (1) With the input of MODIS L1B, GEO, and ancillary data, La(NIR) can be calculated 
223 after removing Lr, Lf, Lg, and Lw from Lt. Note Lw(NIR) is assumed zero for the first 
224 iteration that is used to account for non-zero Lw(NIR);
225 (2) Based on La(NIR), MSEPS is applied to calculate La, ts, tv, τa,  

∂𝐿𝑎

∂X , ∂𝑡𝑠

∂X , ∂𝑡𝑣

∂X , and  ∂τ𝑎

∂X ;

226 (3) Using ∂𝐿𝑎

∂X , ∂𝑡𝑠

∂X , and ∂𝑡𝑣

∂X ,  ∂𝑅𝑟𝑠

∂X  can be derived. Using La, ts, and tv, Rrs can be derived.

227 (4) ∂𝑅𝑟𝑠

∂X  and uc(X) are used to calculate uc(Rrs). Note for the first iteration, uc(chl-a) and 
228 𝑢𝑐(𝜏′𝑎(869)) are assumed 0;
229 (5) Rrs at red band is used as one criterion to determine if the iteration converges. 
230 Readers are referred to [37] for detailed convergence criteria; 
231 (6) If the iteration converges, Rrs and uc(Rrs) are output and the iteration stops; 
232 (7) If the iteration doesn’t converge, uc(Rrs) is used to calculate uc(chl-a) [17]. ∂τ𝑎

∂X  and 
233 uc(X) are used to calculate 𝑢𝑐(𝜏′𝑎(869)). uc(chl-a) and 𝑢𝑐(𝜏′𝑎(869)) are used for the 
234 next iteration. chl-a can be calculated from Rrs and then applied to calculate Lw(NIR). 
235 From Lw(NIR), La(NIR) is derived and another iteration starts. 
236

237
238 Fig.1. The flow chart for the calculation of uc(Rrs). For detailed convergence criteria of the 
239 iteration to account for non-zero Lw(NIR), readers are referred to [37].



240 2.5. Estimation of uncertainty sources for MODIS

241 Uncertainty in Lt comes from sensor noise and systematic error in instrument calibration. For 
242 MODIS, the sensor noise (χ) is modeled as:

243 χ(𝜆) = [𝐴0(𝜆) + 𝐴1(𝜆)𝐿𝑡(𝜆)]𝑆(𝜆) (11)

244 where A0 and A1 are derived from fitting the lab measured Lt and χ. The values are listed in 
245 Table 1. It should be noted that Lt is in the unit of W.m-2.μm-1.sr-1. As MODIS’ land bands 
246 with a spatial resolution of 500 m and 250 m are aggregated to 1000-m resolution to match the 
247 ocean bands, S is applied to correct for the spatial resolution difference [41], which is equal to 
248 2 and 4 for bands with spatial resolution of 500 m and 250 m respectively. 

249 The instrument systematic uncertainty is more difficult to quantify, but the largest source is 
250 the absolute instrument calibration that relates measured counts to radiance in geophysical 
251 units. For MODIS ocean color processing, NASA updates the prelaunch counts to radiance 
252 conversion using SVC approach [42]. In the SVC process, in situ measurements of Lw from 
253 MOBY are matched-up in time and space with satellite observations, and the coincident 
254 MOBY measurements are propagated to the TOA using forward model of the AC algorithm to 
255 derive an expected TOA radiance at each visible band. The ratio of expected TOA radiance to 
256 MODIS-observed Lt is a measure of the absolute calibration gain, and many such samples are 
257 collected and averaged over the mission lifetime to derive the mean SVC gain that effectively 
258 replaces the pre-launch calibration. We thus adopt here the uncertainty in SVC gain as a first-
259 order estimate of systematic uncertainty on Lt. It should be noted from Table 2 the low 
260 systematic uncertainty at bands 412-748 nm with respect to 869-nm band, which results from 
261 the low percentage of aerosol radiance in the TOA radiance. As the systematic uncertainty is 
262 mainly due to the uncertainty in aerosol radiance that is extrapolated from 869-nm band, the 
263 low percentage of aerosol radiance will result in a low systematic uncertainty.

264 While sensor noise is spectrally independent, uncertainty from SVC, as with systematic 
265 instrument calibration errors in general, will exhibit some level of spectral covariance that 
266 should be considered in the uncertainty propagation. Specifically, in the SVC process, 
267 MODIS 748-nm band is calibrated relative to the 869-nm band, and the VIS bands are 
268 calibrated relative to those two NIR bands. Due to the spectral dependence of the u(Lt), the 
269 covariance of error in Lt at VIS and at NIR bands should be included, i.e., u(Lt(λi), Lt(748)), 
270 u(Lt(λi), Lt(869)), and u(Lt(748), Lt(869)) should be included in calculating uc(Rrs(λi)). Using 
271 the correlation coefficient (r) between ρt at bands λi and 748 nm derived in Appendix C, 
272 u(Lt(λi), Lt(748)) can be calculated from:

273 𝑢(𝐿𝑡(𝜆𝑖), 𝐿𝑡(748)) = 𝑟(ρ𝑡(𝜆𝑖), ρ𝑡(748)) 𝑢(𝐿𝑡(𝜆𝑖)) 𝑢(𝐿𝑡(748)) (12)

274 u(Lt(λi), Lt(869)) and u(Lt(748), Lt(869)) are calculated using the same approach as Eq. (12). 
275 u(Lt) only includes the uncertainty from SVC. Xiong et al. indicate that the calibration 
276 uncertainty of MODIS reflective solar bands could meet their specified requirement of 2% 
277 [43], which is taken as the instrument systematic uncertainty on MODIS 869-nm band in this 
278 study. 

279       Forward model uncertainty is also difficult to estimate. It derives from algorithm 
280 assumptions and modeling errors in determining La, Lr, Lf, fb, and Lg, as well as ancillary data 
281 uncertainties and other unknown sources. Here we again take advantage of the SVC process 
282 and assume that the variance in the individual SVC gain samples provides an estimate of the 
283 total uncertainty on Lt, combined with the uncertainty in the in situ measurements after 
284 propagation to TOA. Thus, forward model uncertainties are derived by removing other terms 
285 from the standard deviation of the SVC gains, including (1) standard error of the mean SVC 
286 gain, (2) sensor noise, (3) uncertainty in ancillary data, and (4) uncertainty in MOBY Lw. For 



287 the uncertainty in ancillary data, we adopt the local temporal variability (i.e., the difference 
288 between the two temporal samples that bound the time of satellite observation) as a first-order 
289 estimate. The estimation of the forward model uncertainty is further detailed in Appendix B. 
290 Table 2 lists the instrument systematic uncertainty and the forward model uncertainty, 
291 expressed as a percentage of Lt. The high forward model uncertainty at band 748 nm is due to 
292 the fixed aerosol model used in the SVC [42], as the true aerosol type in the SVC region of the 
293 SPG (see Appendix B) may vary with time.  

294      Using the estimation of uncertainty sources described above, uc(X) can be calculated:
295 (1) uc(Lrfc). The partial derivative of Lrfc with respect to Lt, tg, Lr, tvr, and Lf are calculated 
296 based on Eq.(8). uc(Lt) is derived from multiplying Lt by the systematic uncertainty 
297 plus model uncertainty in Table 2 as well as adding sensor noise from Eq.(11). uc(tg) 
298 are calculated based on Eq.(6) using the partial derivative of tg with respect to gas 
299 concentration and the uncertainty in gas concentration. Similar approach is used to 
300 calculate uc(Lr), uc(tvr), and uc(Lf). Note that uc(Lr) results from uncertainty in ws and 
301 pr. uc(tvr) results from uncertainty in pr. uc(Lf) results from uncertainty in ws. 
302 (2) 𝑢𝑐(𝜏′𝑎(869)) and uc(chl-a). For the first iteration that is used to account for the non-
303 zero Lw(NIR), 𝜏′𝑎(869) and chl-a are assumed constant with uncertainty of zero. 
304 uc(Rrs) and uc(τa) derived from the ith iteration are then applied to calculate uc(chl-a) 
305 and 𝑢𝑐(τ𝑎(869)) used for the (i+1)th iteration.
306 (3) uc(rh). Calculated as the local temporal variability as described above.
307
308 Table 1. Coefficients in Eq.(11) for calculating sensor noise of MODIS.

412 443 469 488 531 547 555 645 667 678 748 869

A0 (10-3) 55.0 29.4 119.3 19.3 14.0 11.4 87.7 104.1 5.0 4.3 4.2 3.1

A1(10-5) 8.3 9.4 8.2 9.5 10.0 16.5 7.0 8.5 14.1 13.2 21.3 18.6

309
310 Table 2. Instrument systematic uncertainty (Sys) and forward model uncertainty (Mod).

412 443 469 488 531 547 555 645 667 678 748 869

Sys (%) 0.14 0.13 0.13 0.13 0.10 0.095 0.095 0.089 0.065 0.068 0.085 2.0

Mod (%) 1.0 0.94 0.91 0.86 0.68 0.62 0.60 0.49 0.37 0.38 1.27 0.0
311

312 2.6. Verification of uncertainty propagation using Monte Carlo analysis

313 Monte Carlo analysis is used to verify uc(Rrs) derived from the derivative method when only 
314 instrument random noise is included. A Gaussian random noise is generated as:
315 𝐿𝑛𝑜𝑖𝑠𝑒 = 𝑁(0,  

χ
𝐿𝑡

)𝐿𝑡 (13)
316 where χ is sensor noise calculated from Eq. (11). A random noise Lnoise is added to Lt, 
317 providing 𝐿′𝑡, which is defined as:

318 𝐿′𝑡 = 𝐿𝑡 + 𝐿𝑛𝑜𝑖𝑠𝑒 (14)

319 MSEPS is applied to 𝐿′𝑡 with the resulting Rrs denoted by 𝑅′𝑟𝑠. If a total of N samples of 𝑅′𝑟𝑠 
320 are generated, the root mean square error (RMSE) can be calculated as

321 RMSE = ∑𝑁
𝑖=1 𝑅′𝑟𝑠𝑖 ― 𝑅𝑟𝑠𝑖

2

𝑁
(15)

322 where Rrs is derived from applying MSEPS to Lt without sensor noise. This RMSE represents 
323 the uncertainty in Rrs resulting from sensor noise and is used to verify the corresponding 



324 uc(Rrs) derived from the derivative method.

325 2.7. Evaluation of uc(Rrs) using validation results  

326 Following the approach presented by [44, 45], uc(Rrs) is evaluated using the matchups between 
327 MODIS retrieved and in situ Rrs at MOBY, AAOT, and BOUSSOLE. By adding in quadrature 
328 uc(Rrs) from the derivative method, which represents uncertainty in MODIS retrieved Rrs, 
329 uncertainty in in situ Rrs, and the spatial and temporal difference between these two 
330 measurements, we calculate an expected discrepancy (∆D) between MODIS-retrieved and in 
331 situ Rrs. The uncertainty-normalized difference, ∆N, is defined as the ratio of actual retrieval 
332 difference to ∆D, i.e.,

333 ∆𝑁 = 𝑅𝑚
𝑟𝑠 ― 𝑅𝑓

𝑟𝑠
∆𝐷

(16)

334 where 𝑅𝑚
𝑟𝑠 and 𝑅𝑓

𝑟𝑠 represent MODIS-retrieved and in situ Rrs respectively. If the uncertainties 
335 in MODIS retrieved Rrs and in situ Rrs and the spatiotemporal mismatch effects are calculated 
336 appropriately, and the sample size is sufficient, the ensemble of ∆N should be close to a 
337 Gaussian distribution with mean 0 if there is no bias and variance 1. So we can first 
338 qualitatively evaluate uc(Rrs) by checking the probability density function (PDF) of ∆N against 
339 that of a Gaussian distribution. Taking this a step further, a total of N matchups is divided into 
340 n equally populated bins based on ∆D indexed from low to high. For each bin, the 68th 
341 percentile of absolute difference between retrieved and in situ Rrs, which is close to the 
342 standard deviation (1σ) for a Gaussian distribution, is plotted against the average ∆D. If ∆D is 
343 reasonable, the points should lie along the 1:1 line. Dividing all the matchups into n bins 
344 allows examination of the skill of uc(Rrs) to distinguish between low- and high-uncertainty 
345 conditions, as opposed to just population-average behavior.

346 3. Results

347 3.1. Evaluation of the derivative method against MC analysis for instrument random noise

348 Fig. 2 shows one example of uc(Rrs(443)) calculated from the derivative method for MODIS 
349 data over the South Pacific ocean with very clear waters. Only instrument random noise is 
350 included to compare with uncertainty derived from MC. We can see from Fig. 2 that 
351 uc(Rrs(443)) from these two methods shows a similar spatial pattern, higher at the edge than at 
352 the center of the swath. The higher uc(Rrs) at edges is due to the longer path length and higher 
353 relative contribution of path radiance to Lt, increasing the uncertainty in La, which is then 
354 propagated to Rrs. Higher Lt also means larger random noise as A1 in Eq. (11) is positive. Fig. 
355 3 shows the quantitative comparison of spectral uc(Rrs) derived from these two methods over 4 
356 pixels, ranging from high to low values. The spectral uc(Rrs) agree very well. The higher jump 
357 in uncertainty at 469 nm and 555 nm is due to the lower signal-to-noise ratio (SNR) at ocean 
358 signal levels for those bands, which were designed with a much higher dynamic range to 
359 support land applications. Fig. 4 shows the mean ratio between uc(Rrs) from the derivative 
360 method against that from MC over all valid pixels in Fig. 2. This is generally between 0.9 and 
361 1.1 across the VIS bands, with the derivative method tending to underestimate uc(Rrs) at blue 
362 bands compared with MC. Note that 2000 random samples were used for the MC calculations, 
363 as this seems sufficient to get stable results for this type of scene (Fig. 5). Figs.2-4 show that 
364 uc(Rrs) derived from the derivative method compares reasonably well with that from MC 
365 method, indicating the reliability of the derivative method when only instrument random noise 
366 is included in the uncertainty budget.
367



368369
370 Fig. 2. uc(Rrs(443)) derived by applying the derivative method and MC to MODIS data over South Pacific ocean on 
371 Apr. 19, 2017. Only instrument random noise is included. The ratio is calculated from dividing uc(Rrs(443)) from 
372 derivative method by that from MC. 

373
374 Fig. 3. Spectral uc(Rrs) from the derivative method compared with that from MC over pixels denoted by (a) ‘A’, (b) 
375 ‘B’, (c) ‘C’, and (d) ‘D’ in Fig. 2. Only instrument random noise is included in the calculation. 



376
377 Fig. 4. Mean ratio of derivative to MC uc(Rrs) over all the valid pixels in Fig. 2. Error bars indicate the standard 
378 deviations.

379
380 Fig. 5. Variation of uc(Rrs(443)) and uc(Rrs(547)) from instrument random noise, as a function of the number of 
381 random samples used in the MC calculation. The calculation is based on pixel ‘D’ in Fig. 2.

382 3.2. Evaluation of uc(Rrs) including all modeled uncertainty sources

383 3.2.1. Evaluation of spatial patterns

384 We first assess uc(Rrs) estimates, including all modeled uncertainty sources, through the 
385 expected spatial patterns. Fig. 6 shows one example of uc(Rrs) in absolute terms and expressed 
386 as relative uncertainty, δ (uc(Rrs)×100/ Rrs). uc(Rrs) is high at the edge of sun glint and over 
387 regions near thin clouds. The higher uc(Rrs(443)) than uc(Rrs(547)) results from the large 
388 sensor noise as well as the large systematic and forward model uncertainty (see Table 2). Note 
389 from Fig. 6b that some pixels in the circled area lack valid values due to the absence of an 
390 upper bounding aerosol model. As described in Section 2.3, a lower bounding aerosol model x 
391 (with the corresponding epsilon εx) and upper bounding aerosol model y (with the 
392 corresponding epsilon εy) are selected to interpolate ρa using a ratio of  

𝜀 ― 𝜀𝑥
𝜀𝑦 ― 𝜀𝑥 , where 𝜀 is 

393 calculated from Lrfc(748) and Lrfc(869), and εx and εy are calculated from Lrfc(869) using the 
394 coefficients in the LUTs. Model x (or y) is considered as the aerosol for this pixel when there 
395 is no upper bounding aerosol (or no lower bounding aerosol). Then, the ratio is assumed to be 
396 1 and La in other wavelengths is calculated from Lrfc(869) without using Lrfc(748), which 
397 means that the uncertainty in Lrfc(748) cannot be propagated to La, resulting in the 
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398 underestimation of uc(Rrs). Pixels without lower or upper bounding aerosol models are 
399 currently masked out until an improved implementation can be realized. 

400
401 Fig. 6. Spatial analysis of a MODIS scene over the Gulf of Mexico on May 6, 2017 showing (a) true-color image, (b) 
402 uc(Rrs(443)), (c) δ(Rrs(443)), (d) uc(Rrs(547)), and (e) δ(Rrs(547)). Uncertainty sources include instrument random 
403 noise, instrument systematic uncertainty, and forward model uncertainty. 

404  3.2.2. Closure analysis with results from validation against in situ data  

405 uc(Rrs) calculated using all uncertainty sources is further evaluated using the validation results 
406 derived from matchup comparison between MODIS retrieved Rrs and in situ measurements at 
407 MOBY, AAOT, and BOUSSOLE. Following the approach presented by [10], a spatial 
408 window of 5×5 pixels centered on the location of in situ data and time window of  3h were 
409 used to search matching pairs. A valid matching pair also requires spatial homogeneity with a 
410 coefficient of variation (i.e., ratio of standard deviation to mean over a 5×5 pixels region) 
411 smaller than 15%. For each matching pair, we have MODIS retrieved Rrs, in situ Rrs, and 
412 uc(Rrs). As described in Section 2.7, our approach requires knowledge of uncertainty in in situ 
413 Rrs and the spatial and temporal difference between MODIS retrieved and in situ Rrs to 
414 evaluate uc(Rrs).

415     MOBY includes three Lu sensors deployed at depths of 1 m (top), 5 m (middle), and 9 m 
416 (bottom), with the uncertainty in Lu measured by the top sensor increasing from 2.1% in blue 
417 wavelengths to 3.3% in red wavelengths, for good scans on good days [46]. Combining this Lu 
418 uncertainty with the environmental uncertainty (personal communication with Kenneth J 
419 Voss) as well as the uncertainty in downward irradiance just above the sea surface (Ed), we 
420 used a constant 5% uncertainty in MOBY Rrs at VIS bands in this study. For BOUSSOLE, 
421 Białek et al. show Rrs uncertainty of less than 4% in blue and green wavelengths and less than 
422 5% in red wavelengths [47], and we adopt those values here. The SeaPRISM system used to 
423 collect data at AAOT has an uncertainty of 5.3%, 4.8%, 4.6%, 4.9%, and 7.3% in wavelengths 
424 of 412 nm, 443 nm, 488 nm, 551 nm, and 667 nm respectively[48], and we adopt those values 



425 here for AAOT data. Note 4.9% is used for bands at 531 nm, 547 nm and 555 nm. 7.3% is 
426 used for bands at 667 nm and 678 nm. A temporal variation of 2%, 3%, 4% is indicated for 
427 normalized water-leaving radiance at 551nm, Lwn(551), at time difference of 0.5, 1.0, 1.5 h at 
428 AAOT [49]. As a result, we add a 3% per hour spectrally independent uncertainty to account 
429 for the time difference between satellite and in situ data at this site. Temporal variation is 
430 neglected at MOBY and BOUSSOLE due to the stability of the optical properties [50]. The 
431 standard deviation over the box of 5×5 pixels centered on the location of in situ data is used to 
432 represent the spatial variation between retrieved and in situ Rrs. Then, the ∆D for a given 
433 matchup is calculated by adding in quadrature uc(Rrs), uncertainty in in situ Rrs, and the spatial 
434 and temporal variability estimates. Because uncertainty is a measure of the statistical 
435 dispersion of retrievals relative to truth, the evaluation needs to be done on a statistical rather 
436 than pairwise basis. Fig. 7 shows two methods for this with the number of matchups listed in 
437 Table 3. The left column shows the PDF of normalized difference (Eq. 16) and the theoretical 
438 Gaussian distribution. These two distributions should ideally match if the uncertainty 
439 estimates are reliable [44]. Results are reasonable at band 443 nm at BOUSSOLE and at bands 
440 412 nm-531 nm at MOBY. Rrs at bands 547 nm and 555 nm at MOBY tend to be biased 
441 (PDFs not centered around zero) and ∆D estimates are overconfident (PDFs wider than 
442 expected). ∆D estimates are underconfident in red wavelengths at MOBY and BOUSSOLE 
443 (PDFs narrower than expected). Rrs in all wavelengths tends to be biased at AAOT, probably 
444 due to the different conditions (including water and aerosol) from that at the SVC site (i.e., 
445 MOBY). The different conditions complicate the calculation of La in the atmospheric 
446 correction, either because Lw(NIR) is not well represented or because the aerosol models are 
447 not able to properly model the actual aerosol condition. The right column shows binned ∆D vs. 
448 1σ of the absolute difference between retrieved and in situ Rrs within each bin. At least 100 
449 matchups are needed for each bin, for better statistical robustness. Please note the exception of 
450 412 nm and 667 nm at BOUSSOLE, with the former having one bin with 88 matchups and the 
451 latter having two bins with 81 matchups for each. There is only one bin with 65 matchups for 
452 678-nm band at AAOT. Overall, ∆D agrees reasonably well with 1σ points of absolute 
453 difference, especially at MOBY. This shows that the derivative method has skill in 
454 distinguishing relatively low-uncertainty cases from high-uncertainty cases and capturing the 
455 spectral dependence of uncertainty. The underestimate of ∆D at AAOT could be partly due to 
456 the approximation of temporal and spatial variation, which are challenging to quantify 
457 considering the complicated water environment in a transitional zone from coastal to open 
458 ocean. The underestimate of ∆D could also result from the bias shown in Fig. 7c. This 
459 hypothesis is supported by Fig. 8, which is the same as Fig. 7d, except for subtracting the 
460 mean Rrs bias (i.e., bias-correction) before calculating the absolute difference. In this case the 
461 points are much closer to the 1:1 line, suggesting some systematic error in the retrieval at this 
462 site but a reasonable estimate of dispersion.

463



464
465 Fig. 7. Evaluation of uc(Rrs) using matchup comparison between MODIS retrieved and in situ Rrs at MOBY (1st row), 
466 AAOT(2nd row), and BOUSSOLE (3rd row). The left column shows the PDF of uncertainty-normalized difference, 
467 with the black line representing theoretical Gaussian distribution with mean 0 and variance 1. The right column shows 
468 the ∆D versus 1σ absolute difference between retrieved and in situ Rrs; the 1:1 line is dashed.

469
470 Fig. 8. As Fig. 7d but subtracting mean Rrs bias at AAOT before calculating the absolute difference.
471
472 Table 3. Number of matchups between MODIS retrieved and in situ Rrs used in Fig. 7.

412 443 488 531 547 555 667 678

MOBY 470 470 470 470 470 470 466 470

AAOT 863 887 698 369 899 814 222 65

BOUSSOLE 88 231 240 119 163
473
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474 3.2.3. Comparison with uncertainty estimates from other studies  

475 Hu et al. calculated uncertainty in Rrs as the standard deviation of the difference between 
476 MODIS retrieved and reference Rrs [13]. The reference Rrs for a given chl-a level (with ±2% 
477 range to find enough pixels for statistical analysis) is derived by averaging all the Rrs that 
478 produce chl-a from two algorithms matching within 5%, where one of the algorithms has been 
479 shown to be highly resistant to spectrally correlated bias in Rrs. Fig. 9 shows the comparison 
480 between uc(Rrs) derived from the derivative method and the uncertainty presented by Hu et al. 
481 MODIS data over the North Atlantic and South Pacific subtropical gyres during Dec. 3-10, 
482 2019 are used to calculate uc(Rrs). We can see from Fig. 9b that uncertainty from these two 
483 approaches both show a higher value for chl-a level of 0.05 mg/m3 than that for chl-a level of 
484 0.03 mg/m3. While uncertainty from these two approaches show a similar spectral pattern that 
485 is decreasing with wavelength, uncertainty derived from the derivative method is higher than 
486 that from Hu et al. at bands 412 nm and 443 nm. These two compare reasonably well at 488 
487 nm, 531 nm, and 547 nm. The lower uncertainty in Hu et al. is likely primarily due to the 
488 uncertainty in the reference Rrs and spatial/temporal variations between specific Rrs and 
489 reference Rrs, which are not accounted for. The uncertainty in Hu et al. only captures the 
490 model uncertainty and noise, not the instrument systematic uncertainties. Differences between 
491 the AC algorithms (MSEPS for this study vs. GW94 for Hu et al.) and the assumptions in the 
492 derivative method could also contribute to the difference in the uncertainty from these two 
493 approaches. 

494     Another approach has been presented by [14], which uses coincident Rrs data between 
495 different satellite missions and between satellite missions and in situ measurements. Fig. 10 
496 shows the comparison of the uncertainty derived from averaging uc(Rrs) over all the matchups 
497 described in Section 3.2.2 with that presented by Mélin et al. at MOBY and AAOT. While 
498 Fig. 10 shows that these two compare reasonably well at MOBY, uncertainty derived from the 
499 derivative method tends to be lower than that from Mélin et al. especially at AAOT. The 
500 higher value from Mélin et al. may be partly due to the contribution from the spatiotemporal 
501 variation between MODIS retrieved and in situ Rrs. The difference may also result from 
502 different AC algorithms used for generating Rrs (again MSEPS vs. GW94) and the 
503 assumptions in the uncertainty estimate techniques between those studies. Please note from 
504 Fig. 10b the lower uc(Rrs) from the derivative method than uncertainty in in situ Rrs [48], 
505 which means that uc(Rrs) is probably underestimated. The underestimation may result from the 
506 forward model uncertainty that is estimated at MOBY which is representative of open ocean. 
507 However, the forward model uncertainty is likely larger in coastal waters as AAOT than that 
508 in open ocean due to the complexity in atmosphere (e.g., presence of absorbing aerosol) and 
509 water optical properties (e.g., bidirectional reflectance correction).

510
511 Fig. 9. Comparison between uc(Rrs) and uncertainty estimates from [13] over (a) North Atlantic subtropical gyre, and 
512 (b) South Pacific subtropical gyre. The numbers in the legend refer to chl-a. Derivative_0.05 is calculated by 
513 averaging uc(Rrs) over all the pixels in the region with chl-a in the range of 0.05×(1±2%). The other values are from 
514 Table 3 in Hu et al. MODIS data from Dec. 3-10, 2019 are used to calculate mean uc(Rrs) for derivative method. 



515
516 Fig. 10. Comparison between uc(Rrs) and the uncertainty estimates from Mélin et al. at (a) MOBY, and (b) AAOT. 
517 uc(Rrs) is derived by averaging over all the matchups described in Section 3.2.2. Uncertainty values for Mélin et al. are 
518 estimated from Fig. 9 in [14]. Uncertainty in in situ Rrs at AAOT is from [48].

519 3.3. Global uc(Rrs) maps

520 Fig. 11 shows 8-day global uc(Rrs) and δ at 412, 443, 488, 531, and 547 nm, as well as chl-a 
521 calculated with the OCI algorithm [51]. δ at 412, 443, and 488 nm show a similar spatial 
522 pattern to chl-a. This spatial pattern results from chl-a absorption. The low Rrs due to chl-a 
523 absorption results in a high δ over waters with high chl-a and vice versa for waters with low 
524 chl-a. The increased atmospheric turbidity could also increase the uc(Rrs) in coastal regions. 
525 This spatial pattern is not obvious at bands 531 nm and 547 nm as these bands are only 
526 weakly dependent on chl-a. uc(Rrs) doesn’t show as much spatial variability as δ, which is also 
527 presented by [14]. It should be noted that the 8-day uc(Rrs) is simply the average uncertainty in 
528 each bin over that period and does not represent the uncertainty in an 8-day (Level-3) Rrs 
529 mean. Fig. 12 shows the cumulative distribution function (CDF) of δ over clear water pixels 
530 (chl-a ≤ 0.1 mg/m3) with valid data in Fig. 11. Overall, around 7.3%, 17.0%, and 35.2% of all 
531 the valid pixels with clear waters have δ ≤ 5% at bands 412 nm, 443 nm, and 488 nm 
532 respectively, which is a common goal of ocean color retrievals for clear waters [52]. Those 
533 percentage numbers are different from the conclusion reached by [13, 14] that the goal of 5% 
534 is fulfilled at blue bands over clear waters. The difference is primarily due to the methods 
535 used to generate uc(Rrs). Those methods have different assumptions. The difference could also 
536 be due to the different satellite data used to generate the Rrs uncertainty. While MODIS global 
537 data during Dec. 3-10, 2019 are used in this study, Hu et al. (2013) use data over the North 
538 Atlantic and South Pacific subtropical gyres in 2006 and Melin et al. (2016) use global data 
539 during 2003-2007.



540
541 Fig. 11. 8-day Rrs uncertainty in both absolute (left column) and relative term (right column), calculated from the 
542 derivative method, and chl-a calculated using Rrs retrieved using MSEPS from MODIS data during Dec. 3-10, 2019. 
543 Gray means land and black means no valid data.



544
545 Fig. 12. Cumulative distribution function (CDF) of δ at bands 412 nm, 443 nm, 488 nm, 531 nm, and 547 nm for all 
546 the pixels with valid data and with chl-a ≤ 0.1 mg/m3 in Fig. 11. 

547 4. Discussions and Conclusions 

548 We present and perform an initial evaluation of a derivative-based method to calculate the 
549 uncertainty in Rrs retrieved from MSEPS atmospheric correction algorithm. Distinct from the 
550 (diagnostic) uncertainty products derived from statistics of validation against in situ data, 
551 which represent an overall summary uncertainty for an entire dataset, this (prognostic) method 
552 estimates a pixel-level uncertainty. It accounts for uncertainty sources including instrument 
553 random noise, instrument systematic uncertainty, and forward model uncertainty.

554       We first assessed the derivative method by comparing estimates considering only 
555 instrument random noise with Monte Carlo analysis, which showed reasonable (within 10% 
556 on average) spatial and spectral agreement. We then performed a deeper closure analysis, 
557 comparing MODIS uc(Rrs) against statistical analysis of matchups between MODIS Rrs 
558 retrievals and coincident in situ measurements at MOBY, AAOT, and BOUSSOLE, while 
559 also accounting for uncertainties in in situ measurements and effects of spatial and temporal 
560 sampling differences. The closure analysis demonstrates the capability of the derivative 
561 method at characterizing the relative magnitude and spectral dependence of Rrs uncertainty. 
562 However, the uncertainty is systematically overestimated or underestimated at some 
563 wavelengths and sites, showing the need for a better understanding of the uncertainty model 
564 and contributions from in situ data and spatial/temporal variation.

565       uc(Rrs) presented above includes multiple uncertainty sources, which may raise questions 
566 about the contribution from each source. MODIS scene from Fig. 6 is used to examine the 
567 contribution from instrument random noise, instrument systematic uncertainty and forward 
568 model uncertainty to uc(Rrs). Results indicate that instrument random noise is generally a 
569 much smaller contribution than either instrument systematic or forward model uncertainty 
570 sources. It is not trivial to further disentangle the instrument systematic and forward model 
571 uncertainty due to considerable spectral covariance between the terms.

572      While sensor noise is reasonably well understood, the other sources involve simplifications 
573 and assumptions including uncertainty in Lt, calibration for band 869 nm, and MOBY Lw. For 
574 the uncertainty in Lt, only sensor noise and systematic error are accounted for in this study, 
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575 but there could be other sources, e.g., structured errors[53] that haven’t been quantified. The 
576 calibration uncertainty on MODIS 869-nm band is assumed to be 2% in this study. The effect 
577 from this assumption is assessed by calculating the mean ratio and standard deviation of 
578 uc(Rrs) assuming a 2.5% vs. 2% calibration uncertainty for that band over all the valid pixels 
579 in Fig. 6. The resulting changes in uncertainty are 1.20± 0.06 at band 443 nm and 1.40± 0.07 
580 at band 547 nm. The uncertainty in MOBY Lw is estimated at between 2.3%-4.4% in the blue-
581 red wavelengths using Lu uncertainty presented by [46] and the environmental uncertainty 
582 (personal communication with Kenneth J Voss). The effect of uncertainty in MOBY Lw is 
583 evaluated by comparing uc(Rrs) derived using those values with that derived using a 5% 
584 constant uncertainty. The mean ratio of the former to the latter (and standard deviation) of 
585 uc(Rrs) over all the valid pixels in Fig. 6 is 1.28± 0.051 at band 443 nm and 1.11±0.20 at band 
586 547 nm. The effect is more significant at 443 nm than at 547 nm, due to the small Lw(547) at 
587 MOBY.

588 While the evaluations using MC and validation results indicate the derivative method 
589 established in this study can provide reasonable uc(Rrs), some issues need further 
590 investigation, including the need for more specific quantitative knowledge of the uncertainty 
591 in ancillary data, calibration at the 869-nm band, uncertainty in in situ measurements at 
592 MOBY. Forward model uncertainty is affected by the uncertainty in in situ Lw at MOBY, 
593 which is significant at blue bands. Despite this, the method shows significant progress towards 
594 providing useful pixel-level Rrs uncertainty estimates and can be updated as our knowledge of 
595 the contributing terms improves.

596 Appendix A. Calculation of partial derivative of Rrs 

597 As described in Section 2.3, aerosol calculation starts with La(748) and La(869) (Eq.(9)), from 
598 which La at all bands are derived using MSEPS. During the AC process, the partial derivative 
599 of La(λ), tv(λ), ts(λ), and τa(λ) with respect to Lrfc(NIR), 𝜏′𝑎(869), chl-a, and rh can be derived, 

600 denoted by 
∂𝐿𝑎(𝜆)

∂𝐿𝑟𝑓𝑐(𝑁𝐼𝑅) , 
∂𝐿𝑎(𝜆)

∂𝜏′𝑎(869) , 
∂𝐿𝑎(𝜆)
∂𝑐ℎ𝑙𝑎

, and ∂𝐿𝑎(𝜆)
∂𝑟ℎ  (the same notation is adopted for the 

601 derivative of tv(λ), ts(λ), and τa(λ) by replacing La(λ)). Then, the partial derivatives of Rrs with 
602 respect to Lrfc(NIR), 𝜏′𝑎(869), chl-a, and rh can be derived:

603 ∂𝑅𝑟𝑠(𝜆)
∂𝐿𝑟𝑓𝑐(𝑁𝐼𝑅) =

―∂𝐿𝑎(𝜆)
∂𝐿𝑟𝑓𝑐(𝑁𝐼𝑅) 𝑓𝑏(𝜆) [𝑡𝑣(𝜆)𝑡𝑠(𝜆)𝐹0(𝜆)𝑐𝑜𝑠𝜃𝑠] ― ∂𝑡𝑠(𝜆)

∂𝐿𝑟𝑓𝑐(𝑁𝐼𝑅)

604 𝐿𝑟𝑓𝑐(𝜆) ― 𝑇𝐿𝑔(𝜆) ― 𝐿𝑎(𝜆) 𝑓𝑏(𝜆) 𝑡2
𝑠(𝜆)𝑡𝑣(𝜆)𝐹0(𝜆)𝑐𝑜𝑠𝜃𝑠 ― ∂𝑡𝑣(𝜆)

∂𝐿𝑟𝑓𝑐(𝑁𝐼𝑅)

605 𝐿𝑟𝑓𝑐(𝜆) ― 𝑇𝐿𝑔(𝜆) ― 𝐿𝑎(𝜆) 𝑓𝑏(𝜆) 𝑡2
𝑣(𝜆)𝑡𝑠(𝜆)𝐹0(𝜆)𝑐𝑜𝑠𝜃𝑠             (A1a)

606 ∂𝑅𝑟𝑠(𝜆)
∂𝜏′𝑎(869)

=
―∂𝐿𝑎(𝜆)

∂𝜏′𝑎(869)
𝑓𝑏(𝜆) [𝑡𝑣(𝜆)𝑡𝑠(𝜆)𝐹0(𝜆)𝑐𝑜𝑠𝜃𝑠] ―

∂𝑡𝑠(𝜆)
∂𝜏′𝑎(869)

607 𝐿𝑟𝑓𝑐(𝜆) ― 𝑇𝐿𝑔(𝜆) ― 𝐿𝑎(𝜆) 𝑓𝑏(𝜆) 𝑡2
𝑠(𝜆)𝑡𝑣(𝜆)𝐹0(𝜆)𝑐𝑜𝑠𝜃𝑠 ―

∂𝑡𝑣(𝜆)
∂𝜏′𝑎(869)

608 𝐿𝑟𝑓𝑐(𝜆) ― 𝑇𝐿𝑔(𝜆) ― 𝐿𝑎(𝜆) 𝑓𝑏(𝜆) 𝑡2
𝑣(𝜆)𝑡𝑠(𝜆)𝐹0(𝜆)𝑐𝑜𝑠𝜃𝑠 ―

609
∂𝑇𝐿𝑔(𝜆)

∂𝜏′𝑎(869)
𝑓𝑏(𝜆) [𝑡𝑣(𝜆)𝑡𝑠(𝜆)𝐹0(𝜆)𝑐𝑜𝑠𝜃𝑠]                                                           (A1b)

610 ∂𝑅𝑟𝑠(𝜆)
∂𝑐ℎ𝑙𝑎

= ―∂𝐿𝑎(𝜆)
∂𝑐ℎ𝑙𝑎

𝑓𝑏(𝜆) [𝑡𝑣(𝜆)𝑡𝑠(𝜆)𝐹0(𝜆)𝑐𝑜𝑠𝜃𝑠] ― ∂𝑡𝑠(𝜆)
∂𝑐ℎ𝑙𝑎

611 𝐿𝑟𝑓𝑐(𝜆) ― 𝑇𝐿𝑔(𝜆) ― 𝐿𝑎(𝜆) 𝑓𝑏(𝜆) 𝑡2
𝑠(𝜆)𝑡𝑣(𝜆)𝐹0(𝜆)𝑐𝑜𝑠𝜃𝑠 ― ∂𝑡𝑣(𝜆)

∂𝑐ℎ𝑙𝑎

612 𝐿𝑟𝑓𝑐(𝜆) ― 𝑇𝐿𝑔(𝜆) ― 𝐿𝑎(𝜆) 𝑓𝑏(𝜆) 𝑡2
𝑣(𝜆)𝑡𝑠(𝜆)𝐹0(𝜆)𝑐𝑜𝑠𝜃𝑠 + ∂𝑓𝑏(𝜆)

∂𝑐ℎ𝑙𝑎

613 𝐿𝑟𝑓𝑐(𝜆) ― 𝑇𝐿𝑔(𝜆) ― 𝐿𝑎(𝜆) [𝑡𝑣(𝜆)𝑡𝑠(𝜆)𝐹0(𝜆)𝑐𝑜𝑠𝜃𝑠]                                                               (A1c)



614 ∂𝑅𝑟𝑠(𝜆)
∂𝑟ℎ

= ―∂𝐿𝑎(𝜆)
∂𝑟ℎ

𝑓𝑏(𝜆) [𝑡𝑣(𝜆)𝑡𝑠(𝜆)𝐹0(𝜆)𝑐𝑜𝑠𝜃𝑠] ― ∂𝑡𝑠(𝜆)
∂𝑟ℎ

615 𝐿𝑟𝑓𝑐(𝜆) ― 𝑇𝐿𝑔(𝜆) ― 𝐿𝑎(𝜆) 𝑓𝑏(𝜆) 𝑡2
𝑠(𝜆)𝑡𝑣(𝜆)𝐹0(𝜆)𝑐𝑜𝑠𝜃𝑠 ― ∂𝑡𝑣(𝜆)

∂𝑟ℎ
616 𝐿𝑟𝑓𝑐(𝜆) ― 𝑇𝐿𝑔(𝜆) ― 𝐿𝑎(𝜆) 𝑓𝑏(𝜆) 𝑡2

𝑣(𝜆)𝑡𝑠(𝜆)𝐹0(𝜆)𝑐𝑜𝑠𝜃𝑠             (A1d)

617 Based on Eq.(7), the partial derivative of Rrs(λ) with respect to Lrfc(λ) can be calculated as 

618 ∂𝑅𝑟𝑠(𝜆)
∂𝐿𝑟𝑓𝑐(𝜆) = 𝑓𝑏(𝜆) [𝑡𝑣(𝜆)𝑡𝑠(𝜆)𝐹0(𝜆)𝑐𝑜𝑠𝜃𝑠]  (A2)

619
620 Table A1. Glossary of symbols

Symbol Description Unit
λ Wavelength nm

VIS Visible bands nm
NIR Near infrared bands nm

SWIR Shortwave infrared bands nm
Lt top-of-atmosphere (TOA) radiance received by the sensor mW.cm-2.μm-1.sr-1

𝐿𝑡
𝑡 Predicted Lt in the vicarious calibration mW.cm-2.μm-1.sr-1

Lw Water-leaving radiance mW.cm-2.μm-1.sr-1

Lwn Normalized water-leaving radiance mW.cm-2.μm-1.sr-1

Lr Radiance from air molecular scattering mW.cm-2.μm-1.sr-1

La Radiance from aerosol scattering mW.cm-2.μm-1.sr-1

Lf Radiance from foam scattering mW.cm-2.μm-1.sr-1

Lg Sun glint mW.cm-2.μm-1.sr-1

Lu Up-welling radiance mW.cm-2.μm-1.sr-1

tv Diffuse transmittance for view path Unitless
tvr Diffuse transmittance for view path without aerosol Unitless
ts Diffuse transmittance for sun path Unitless
T Beam transmittance for view path Unitless
tg Transmittance for solar and sensor view paths from gas Unitless
τa aerosol optical thickness Unitless
ε Epsilon Unitless
F0 Extraterrestrial solar irradiance corrected for earth-sun distance mW.cm-2.μm-1

Ed Downward irradiance mW.cm-2.μm-1

Rrs Remote sensing reflectance sr-1

𝑅𝑚
𝑟𝑠 MODIS Retrieved Rrs sr-1

𝑅𝑓
𝑟𝑠

In situ Rrs sr-1

ρt TOA reflectance Unitless
𝜌𝑎 Aerosol multiple scattering reflectance Unitless
𝜌𝑎𝑠 Aerosol single scattering reflectance Unitless
rh Relative humidity Unitless
ws wind speed m/s
σ Standard deviation

chl-a Chlorophyll-a concentration mg/m3

uc Combined standard uncertainty
u Standard uncertainty
δ Relative uncertainty %

∆D Expected discrepancy of Rrs sr-1

∆N Uncertainty-normalized difference Unitless
θs Solar zenith angle Degree
θv Sensor view zenith angle Degree
χ Sensor noise mW.cm-2.μm-1.sr-1

fb Bidirectional reflectance correction Unitless
fp Polarization correction Unitless
g Vicarious calibration gain Unitless
r Band-to-band correlation coefficient between ρt Unitless

621
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624 Appendix B. Estimation of instrument systematic uncertainty and forward model 
625 uncertainty

626 In order to quantify instrument systematic uncertainty and forward model uncertainty, we 
627 need to go through the SVC process following the approach presented by [42]. Due to a 
628 stable aerosol loading and negligible Lw(NIR), South Pacific Gyre (SPG) region was 
629 selected to calibrate the 748-nm band. As the pixels used for calibration are required to be 
630 free of sun glint, the predicted 𝐿𝑡

𝑡(748) can be expressed as:

631 𝐿𝑡
𝑡(748) = 𝐿𝑟(748) + 𝐿𝑎(748) + 𝑡𝑣(748)𝐿𝑓(748) 𝑡𝑔(748)𝑓𝑝(748) (B1)

632 where fp is polarization correction factor [54]. La(748) is extrapolated from Lrfc(869) using the 
633 aerosol model determined by the time series of aerosol measurements over SPG. The partial 
634 derivatives of La(748) and tv(748) with respect to Lrfc(869) can be derived during the 
635 extrapolation of Lrfc(869) to La(748), denoted by 

∂𝐿𝑎(748)
∂𝐿𝑟𝑓𝑐(869) and 

∂𝑡𝑣(748)
∂𝐿𝑟𝑓𝑐(869) , from which the 

636 partial derivative of 𝐿𝑡
𝑡(748) can be expressed as:

637 ∂𝐿𝑡
𝑡(748)

∂𝐿𝑟𝑓𝑐(869) = 𝑡𝑔(748)𝑓𝑝(748)[
∂𝐿𝑎(748)

∂𝐿𝑟𝑓𝑐(869) + 𝐿𝑓(748)
∂𝑡𝑣(748)

∂𝐿𝑟𝑓𝑐(869) ]  (B2a)
638 The partial derivative of 𝐿𝑡

𝑡(748) with respect to Lr(748), Lf(748), and tg(748) can be written 
639 as:

640 ∂𝐿𝑡
𝑡(748)

∂𝐿𝑟(748) = 𝑡𝑔(748)𝑓𝑝(748) (B2b)

641 ∂𝐿𝑡
𝑡(748)

∂𝐿𝑓(748) = 𝑡𝑣(748)𝑡𝑔(748)𝑓𝑝(748) (B2c)

642 ∂𝐿𝑡
𝑡(748)

∂𝑡𝑔(748) = [𝐿𝑟(748) + 𝐿𝑎(748) + 𝑡𝑣(748)𝐿𝑓(748)]𝑓𝑝(748) (B2d)

643 Combining Eq.(B2) with uc(Lrfc(869)), uc(Lr(748)), uc(Lf(748)), and uc(tg(748)), the 
644 uncertainty in 𝐿𝑡

𝑡(748) can be derived, denoted by 𝑢𝑐(𝐿𝑡
𝑡(748)). It should be noted that the 

645 uncertainty in Lt(869) used to calculate uc(Lrfc(869)) only include sensor noise, which is a 
646 limitation of this approach considering the possibility of a systematic error component in 
647 Lt(869). A vicarious calibration gain sample (gi) can be derived from: 
648 gi(748) =𝐿𝑡

𝑡(748)
𝐿𝑡(748) (B3)

649 where 𝐿𝑡(748) is the measured value with the uncertainty coming from sensor noise. 
650 Combining the partial derivative of gi with respect to 𝐿𝑡

𝑡(748) and 𝐿𝑡(748) derived from 
651 Eq.(B3) with 𝑢𝑐(𝐿𝑡

𝑡(748)) and u(Lt(748)), the uncertainty in gi can be derived, denoted by 
652 uc(gi(748)).

653 Based on g(748) calculated by averaging all gi(748), VIS are vicariously calibrated using 
654 in situ Lw at MOBY. The uncertainty in Lw is derived from the uncertainty in Lu presented by 
655 [46] and the environmental uncertainty during the propagation of Lu to Lw. Pixels used for 
656 calibration are again required to be free from sun glint, so 𝐿𝑡

𝑡(𝑉𝐼𝑆) can be expressed as:

657 𝐿𝑡
𝑡(VIS) = 𝐿𝑟(VIS) + 𝐿𝑎(VIS) + 𝑡𝑣(VIS)𝐿𝑓(VIS) + 𝑡𝑣(VIS)𝐿𝑤(VIS) 𝑡𝑔(VIS)𝑓𝑝(VIS) (B4)

658 With the assumption of negligible Lw(NIR), La(NIR) are equal to Lrfc(NIR) and then applied to 
659 calculate La(λ) using MSEPS, from which the partial derivative of La(λ) and tv(λ) with respect 
660 to Lrfc(NIR) can be calculated, denoted by 

∂𝐿𝑎(VIS)
∂𝐿𝑟𝑓𝑐(𝑁𝐼𝑅) and  

∂𝑡𝑣(VIS)
∂𝐿𝑟𝑓𝑐(𝑁𝐼𝑅). The derivative of 𝐿𝑡

𝑡(VIS) 
661 with respect to Lrfc(NIR) can be derived as:



662 ∂𝐿𝑡
𝑡(VIS)

∂𝐿𝑟𝑓𝑐(𝑁𝐼𝑅) = ∂𝐿𝑎(VIS)
∂𝐿𝑟𝑓𝑐(𝑁𝐼𝑅) + 𝐿𝑤(VIS) + 𝐿𝑓(VIS) ∂𝑡𝑣(VIS)

∂𝐿𝑟𝑓𝑐(𝑁𝐼𝑅)
𝑡𝑔(VIS)𝑓𝑝(VIS) (B5a)

663 The derivative of 𝐿𝑡
𝑡(λ) with respect to Lr(λ), Lf(VIS), Lw(VIS), tg(VIS) can be expressed as:

664 ∂𝐿𝑡
𝑡(𝑉𝐼𝑆)

∂𝐿𝑟(𝑉𝐼𝑆) = 𝑡𝑔(𝑉𝐼𝑆)𝑓𝑝(VIS) (B5b)

665 ∂𝐿𝑡
𝑡(𝑉𝐼𝑆)

∂𝐿𝑓(𝑉𝐼𝑆) = ∂𝐿𝑡
𝑡(𝑉𝐼𝑆)

∂𝐿𝑤(𝑉𝐼𝑆) = 𝑡𝑣(𝑉𝐼𝑆)𝑡𝑔(𝑉𝐼𝑆)𝑓𝑝(VIS) (B5c)

666 ∂𝐿𝑡
𝑡(𝑉𝐼𝑆)

∂𝑡𝑔(𝑉𝐼𝑆) = [𝐿𝑟(𝑉𝐼𝑆) + 𝐿𝑎(𝑉𝐼𝑆) + 𝑡𝑣(𝑉𝐼𝑆)𝐿𝑓(𝑉𝐼𝑆) + 𝑡𝑣(𝑉𝐼𝑆)𝐿𝑤(𝑉𝐼𝑆)]𝑓𝑝(VIS)  (B5d)

667 Combining Eq.(B5) with uc(Lrfc(NIR)), uc(Lr(VIS)), uc(Lf(VIS)), and u(Lw(VIS)), the 
668 uncertainty in 𝐿𝑡

𝑡(𝑉𝐼𝑆) can be calculated, denoted by 𝑢𝑐(𝐿𝑡
𝑡(𝑉𝐼𝑆)). Using the same 

669 approach as that for 748 nm, gi(VIS) and uc(gi(VIS)) can be derived. Standard deviation, σ, 
670 is derived from all gi at each band. The standard error (SE) is derived from:

671 𝑆𝐸 =
σ
𝑁  (B6)

672 where N is the number of vicarious calibration gain samples, which are 221 and 63 for 748 
673 nm and VIS bands respectively. The forward model uncertainty is derived from subtracting 
674 in quadrature uc(g) and SE from σ. uc(g) is derived by averaging those N uc(gi).

675 Appendix C. Correlation between ρt

676 As the 748-nm band is calibrated against the 869-nm band, and VIS bands are calibrated by 
677 NIR bands, covariance exist between ρt(VIS) and ρt(NIR) and between ρt(748) and ρt(869). 
678 Following the approach presented by [18], the correlation coefficients between ρt(VIS/748) 
679 and ρt(869) and between ρt(VIS) and ρt(748) are calculated using vicariously calibrated ρt over 
680 a box of 5×5 pixels in the SPG (26.5°-27.5°S, 124.5-123.5°W) with very clear waters. A valid 
681 box requires that all pixels are free of level 2 ocean color flags indicating processing problems 
682 (https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/ ) and the coefficient of variation of Rrs at 412 
683 nm, 443 nm, and 488 nm is smaller than 1% (i.e. spatial stability). Using those 25 ρt, 
684 correlation coefficients between different bands can be derived. Table C1 lists the mean 
685 correlation coefficients over around 500 MODIS granules during 2002-2019. The correlation 
686 coefficients are used to calculate the covariance u(Lt(λi), Lt(748)), u(Lt(λi), Lt(869)), and 
687 u(Lt(748), Lt(869)) based on Eq.(12), which should be included when calculating uc(Rrs(λi)). It 
688 should be noted here that the correlation between ρt is assumed to be a good approximation of 
689 inter-band error correlation.
690
691 Table C1. Correlation coefficients between ρt at VIS and NIR bands.

r 412 443 488 531 547 555 667 678 748

748 0.51 0.59 0.74 0.85 0.87 0.81 0.97 0.97 1.0

869 0.45 0.53 0.68 0.80 0.82 0.76 0.94 0.95 0.97

692

693 Funding. NASA Terra and Aqua Senior Review for MODIS algorithm maintenance and the NASA PACE Project.

694 Acknowledgements. We acknowledge NASA’s Ocean Biology Distributed Active Archive Center for making 
695 available all the in situ data and MODIS data used in our analysis. We also thank the in situ data collection teams (and 
696 Principal Investigators) from MOBY (K. Voss), AAOT (G. Zibordi), and BOUSSOLE (D. Antoine) for the 
697 collection, processing, and quality control of those datasets. We further wish to acknowledge K. Voss for helpful 

https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/


698 discussion and insight into the uncertainties on the MOBY measurements. 

699 Disclosures. The authors declare no conflicts of interest.

700 Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
701 be obtained from the authors upon reasonable request.

702 References

703 1. M. Defoin-Platel and M. Chami, "How ambiguous is the 
704 inverse problem of ocean color in coastal waters?," 
705 Journal of Geophysical Research: Oceans 112(2007).
706 2. D. Antoine, F. d'Ortenzio, S. B. Hooker, G. Bécu, B. 
707 Gentili, D. Tailliez, and A. J. Scott, "Assessment of 
708 uncertainty in the ocean reflectance determined by three 
709 satellite ocean color sensors (MERIS, SeaWiFS and MODIS-
710 A) at an offshore site in the Mediterranean Sea (BOUSSOLE 
711 project)," Journal of Geophysical Research: Oceans 
712 113(2008).
713 3. IOCCG, "Uncertainties in Ocean Colour Remote Sensing,"  
714 (International Ocean Colour Coordinating Group, 
715 Dartmouth, Canada, 2019).
716 4. F. Mélin, P. Colandrea, P. D. Vis, and S. E. Hunt, 
717 "Sensitivity of Ocean Color Atmospheric Correction to 
718 Uncertainties in Ancillary Data: A Global Analysis With 
719 SeaWiFS Data," IEEE Transactions on Geoscience and Remote 
720 Sensing 60, 1-18 (2022).
721 5. P. De Vis, F. Mélin, S. E. Hunt, R. Morrone, M. Sinclair, 
722 and B. Bell, "Ancillary Data Uncertainties within the 
723 SeaDAS Uncertainty Budget for Ocean Colour Retrievals," 
724 Remote Sensing 14, 497 (2022).
725 6. N. Fox, "A guide to expression of uncertainty of 
726 measurements "  (GEO, 2010).
727 7. C. D. Mobley, "Estimation of the remote-sensing 
728 reflectance from above-surface measurements," Applied 
729 Optics 38, 7442-7455 (1999).
730 8. S. B. Hooker and S. Maritorena, "An Evaluation of 
731 Oceanographic Radiometers and Deployment Methodologies," 
732 Journal of Atmospheric and Oceanic Technology 17, 811-830 
733 (2000).
734 9. F. Mélin, "From Validation Statistics to Uncertainty 
735 Estimates: Application to VIIRS Ocean Color Radiometric 
736 Products at European Coastal Locations," Frontiers in 
737 Marine Science 8(2021).
738 10. S. W. Bailey and P. J. Werdell, "A multi-sensor approach 
739 for the on-orbit validation of ocean color satellite data 
740 products," Remote Sensing of Environment 102, 12-23 
741 (2006).
742 11. M. Zhang, C. Hu, J. Cannizzaro, M. G. Kowalewski, and S. 
743 J. Janz, "Diurnal changes of remote sensing reflectance 
744 over Chesapeake Bay: Observations from the Airborne 
745 Compact Atmospheric Mapper," Estuarine, Coastal and Shelf 
746 Science 200, 181-193 (2018).



747 12. T. Jackson, S. Sathyendranath, and F. Mélin, "An improved 
748 optical classification scheme for the Ocean Colour 
749 Essential Climate Variable and its applications," Remote 
750 Sensing of Environment 203, 152-161 (2017).
751 13. C. Hu, L. Feng, and Z. Lee, "Uncertainties of SeaWiFS and 
752 MODIS remote sensing reflectance: Implications from clear 
753 water measurements," Remote Sensing of Environment 133, 
754 168-182 (2013).
755 14. F. Mélin, G. Sclep, T. Jackson, and S. Sathyendranath, 
756 "Uncertainty estimates of remote sensing reflectance 
757 derived from comparison of ocean color satellite data 
758 sets," Remote Sensing of Environment 177, 107-124 (2016).
759 15. J. Concha, A. Mannino, B. Franz, and W. Kim, 
760 "Uncertainties in the Geostationary Ocean Color Imager 
761 (GOCI) Remote Sensing Reflectance for Assessing Diurnal 
762 Variability of Biogeochemical Processes," Remote Sensing 
763 11, 295 (2019).
764 16. Z. Lee, R. Arnone, C. Hu, P. J. Werdell, and B. Lubac, 
765 "Uncertainties of optical parameters and their 
766 propagations in an analytical ocean color inversion 
767 algorithm," Applied Optics 49, 369-381 (2010).
768 17. L. I. W. McKinna, I. Cetinić, A. P. Chase, and P. J. 
769 Werdell, "Approach for Propagating Radiometric Data 
770 Uncertainties Through NASA Ocean Color Algorithms," 
771 Frontiers in Earth Science 7(2019).
772 18. N. Lamquin, A. Mangin, C. Mazeran, B. Bourg, V. 
773 Bruniquel, and O. F. D'Andon, "OLCI L2 Pixel-by-Pixel 
774 Uncertainty Propagation in OLCI Clean Water Branch,"  
775 (ESA, 2013), p. 51.
776 19. D. Antoine and A. Morel, "A multiple scattering algorithm 
777 for atmospheric correction of remotely sensed ocean 
778 colour (MERIS instrument): Principle and implementation 
779 for atmospheres carrying various aerosols including 
780 absorbing ones," International Journal of Remote Sensing 
781 20, 1875-1916 (1999).
782 20. B. A. Franz and E. M. Karaköylü, "PACE OCI Signal to 
783 Noise Performance Requirement: Assessment and 
784 Verification Approach for Ocean Color Science,"  (Goddard 
785 Space Flight Cente, Maryland, 2018).
786 21. C. Mobley, J. Werdell, B. Franz, Z. Ahmad, and S. Bailey, 
787 "Atmospheric Correction for Satellite Ocean Color 
788 Radiometry," (NASA Goddard Space Flight Cente, 
789 Maryland,2016).
790 22. H. R. Gordon and M. Wang, "Retrieval of water-leaving 
791 radiance and aerosol optical thickness over the oceans 
792 with SeaWiFS: a preliminary algorithm," Applied Optics 
793 33, 443-452 (1994).
794 23. D. B. Gillis, J. H. Bowles, M. J. Montes, and W. J. 
795 Moses, "Propagation of sensor noise in oceanic 
796 hyperspectral remote sensing," Optics Express 26, A818-
797 A831 (2018).
798 24. B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, 
799 "Atmospheric correction algorithm for hyperspectral 



800 remote sensing of ocean color from space," Applied Optics 
801 39, 887-896 (2000).
802 25. A. Ibrahim, B. A. Franz, Z. Ahmad, and S. W. Bailey, 
803 "Multiband Atmospheric Correction Algorithm for Ocean 
804 Color Retrievals," Frontiers in Earth Science 7(2019).
805 26. Z. Ahmad and B. A. Franz, "Uncertainty in aerosol model 
806 characterization and its impact on ocean color 
807 retrievals,"  (Goddard Space Flight Center, Maryland, 
808 2018).
809 27. Z. Ahmad and B. A. Franz, "Ocean color retrieval using 
810 multiple-scattering epsilon values," in International 
811 Ocean Color Science Meeting 2015,  (2015).
812 28. D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. 
813 Broenkow, and C. Trees, "Validation of atmospheric 
814 correction over the oceans," Journal of Geophysical 
815 Research: Atmospheres 102, 17209-17217 (1997).
816 29. G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. 
817 Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, 
818 G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, 
819 "AERONET-OC: A Network for the Validation of Ocean Color 
820 Primary Products," Journal of Atmospheric and Oceanic 
821 Technology 26, 1634-1651 (2009).
822 30. D. Antoine, P. Guevel, J.-F. o. Dest?, G. B?cu, F. Louis, 
823 A. J. Scott, and P. Bardey, "The ?BOUSSOLE? Buoy?A New 
824 Transparent-to-Swell Taut Mooring Dedicated to Marine 
825 Optics: Design, Tests, and Performance at Sea," Journal 
826 of Atmospheric and Oceanic Technology 25, 968-989 (2008).
827 31. M. Wang, "A refinement for the Rayleigh radiance 
828 computation with variation of the atmospheric pressure," 
829 International Journal of Remote Sensing 26, 5651-5566 
830 (2005).
831 32. H. R. Gordon and M. Wang, "Influence of oceanic whitecaps 
832 on atmospheric correction of ocean-color sensors," 
833 Applied Optics 33, 7754-7763 (1994).
834 33. D. Stramski and J. Piskozub, "Estimation of Scattering 
835 Error in Spectrophotometric Measurements of Light 
836 Absorption by Aquatic Particles from Three-Dimensional 
837 Radiative Transfer Simulations," Appl. Opt. 42, 3634-3646 
838 (2003).
839 34. C. Cox and W. Munk, "Measurement of the Roughness of the 
840 Sea Surface from Photographs of the Sun?s Glitter," J. 
841 Opt. Soc. Am. 44, 838-850 (1954).
842 35. M. Wang and S. W. Bailey, "Correction of sun glint 
843 contamination on the SeaWiFS ocean and atmosphere 
844 products," Applied Optics 40, 4790-4798 (2001).
845 36. Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, 
846 J. Werdell, E. P. Shettle, and B. N. Holben, "New aerosol 
847 models for the retrieval of aerosol optical thickness and 
848 normalized water-leaving radiances from the SeaWiFS and 
849 MODIS sensors over coastal regions and open oceans," 
850 Applied Optics 49, 5545-5560 (2010).
851 37. S. W. Bailey, B. A. Franz, and P. J. Werdell, "Estimation 
852 of near-infrared water-leaving reflectance for satellite 



853 ocean color data processing," Optics Express 18, 7521-
854 7527 (2010).
855 38. A. Morel, D. Antoine, and B. Gentili, "Bidirectional 
856 reflectance of oceanic waters: accounting for Raman 
857 emission and varying particle scattering phase function," 
858 Applied Optics 41, 6289-6306 (2002).
859 39. JCGM, "Evaluation of measurementdata — Guide to the 
860 expression of uncertainty in measurement,"  (2008).
861 40. M. Stramska and T. Petelski, "Observations of oceanic 
862 whitecaps in the north polar waters of the Atlantic," 
863 Journal of Geophysical Research: Oceans 108, n/a-n/a 
864 (2003).
865 41. X. Xiong, J. Sun, X. Xie, W. L. Barnes, and V. V. 
866 Salomonson, "On-Orbit Calibration and Performance of Aqua 
867 MODIS Reflective Solar Bands," IEEE Transactions on 
868 Geoscience and Remote Sensing 48, 535-546 (2010).
869 42. B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. 
870 McClain, "Sensor-independent approach to the vicarious 
871 calibration of satellite ocean color radiometry," Applied 
872 Optics 46, 5068-5082 (2007).
873 43. X. Xiong, J. Sun, A. Wu, K.-F. Chiang, J. Esposito, and 
874 W. Barnes, Terra and Aqua MODIS calibration algorithms 
875 and uncertainty analysis, SPIE Remote Sensing (SPIE, 
876 2005), Vol. 5978.
877 44. A. M. Sayer, Y. Govaerts, P. Kolmonen, A. Lipponen, M. 
878 Luffarelli, T. Mielonen, F. Patadia, T. Popp, A. C. 
879 Povey, K. Stebel, and M. L. Witek, "A review and 
880 framework for the evaluation of pixel-level uncertainty 
881 estimates in satellite aerosol remote sensing," Atmos. 
882 Meas. Tech. 13, 373-404 (2020).
883 45. G. Zibordi, M. Talone, and F. Mélin, "Uncertainty 
884 Estimate of Satellite-Derived Normalized Water-Leaving 
885 Radiance," IEEE Geoscience and Remote Sensing Letters 19, 
886 1-5 (2022).
887 46. S. Brown, S. Flora, M. Feinholz, M. Yarbrough, T. 
888 Houlihan, D. Peters, Y. S. Kim, J. Mueller, B. C. 
889 Johnson, and D. Clark, The marine optical buoy (MOBY) 
890 radiometric calibration and uncertainty budget for ocean 
891 color satellite sensor vicarious calibration, SPIE Remote 
892 Sensing (SPIE, 2007), Vol. 6744.
893 47. A. Białek, V. Vellucci, B. Gentil, D. Antoine, J. 
894 Gorroño, N. Fox, and C. Underwood, "Monte Carlo–Based 
895 Quantification of Uncertainties in Determining Ocean 
896 Remote Sensing Reflectance from Underwater Fixed-Depth 
897 Radiometry Measurements," Journal of Atmospheric and 
898 Oceanic Technology 37, 177-196 (2020).
899 48. M. Gergely and G. Zibordi, "Assessment of AERONET-OC LWN 
900 uncertainties," Metrologia 51, 40-47 (2013).
901 49. G. Zibordi, J.-F. Berthon, F. Mélin, D. D'Alimonte, and 
902 S. Kaitala, "Validation of satellite ocean color primary 
903 producet at optically complex coastal sites: Northern 
904 Adriatic Sea, Northern Baltic Proper and Gulf of 
905 Finland," Remote Sensing of Environment 113 2574-2591 



906 (2009).
907 50. G. Zibordi and F. Mélin, "An evaluation of marine regions 
908 relevant for ocean color system vicarious calibration," 
909 Remote Sensing of Environment 190, 122-136 (2017).
910 51. C. Hu, Z. Lee, and B. Franz, "Chlorophyll aalgorithms for 
911 oligotrophic oceans: A novel approach based on three-band 
912 reflectance difference," Journal of Geophysical Research: 
913 Oceans 117, n/a-n/a (2012).
914 52. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, 
915 and C. R. McClain, "An overview of SeaWiFS and ocean 
916 color,"  (Goddard Space Flight Center, Greenbelt, MD, 
917 1992).
918 53. J. Mittaz, C. J. Merchant, and E. R. Woolliams, "Applying 
919 principles of metrology to historical Earth observations 
920 from satellites," Metrologia 56, 032002 (2019).
921 54. G. Meister, E. J. Kwiatkowska, B. A. Franz, F. S. Patt, 
922 G. C. Feldman, and C. R. McClain, "Moderate-Resolution 
923 Imaging Spectroradiometer ocean color polarization 
924 correction," Applied Optics 44, 5524-5535 (2005).
925

926


