

Wide Band Gap Radiation Detectors for Deep Space Science

J.D. Wrbanek, S.Y. Wrbanek NASA Glenn Research Center, Cleveland, Ohio USA

Outline

- SmallSat Platform Technology Challenges
- GRC Technology R&D
- Benefits of WBG Detectors
- SPAGHETI: Deep-Space CubeSat
- WBG LET Detectors
- Future Concept: CFIDS
- Summary
- Acknowledgements

Metri sunt necesse Malum

"Measurements are necessary evils"

SmallSat Platform Technology Challenges

- Need to develop a radiation detector system to fly on small satellite platforms (such as CubeSats) to reduce cost, development time of missions
 - Design point: 1U CubeSat volume, mass for detector system (10 cm x 10 cm x 10 cm, 1 kg) on a deep space platform
 - CubeSats currently flown LEO applications, but future is in Deep Space
- High radiation particle influx from multiple directions (spherical 4π solid angle)
 - Current radiation detector technologies need temperature compensation
 - SmallSat platform size (<100 kg), power limits instrumentation systems
 - More complex systems require new technology
- Solution is the development of new robust, low power, thermally stable solid state radiation detector technology for omni-directional measurements in a compact space radiation detector system
 - Wide band gap (WBG) semiconductors, micro-optics technologies

GRC Advanced Radiation Detector Technology Research and Development

- GRC Expertise and Facilities in:
 - Harsh Environment Thin Films
 - SiC Devices & Harsh Environment Packaging
 - Micro-Optics

8/11/2022

- Space-Based Instrumentation
- These strengths are combined into an in-house Radiation Instrumentation Research effort

MISSE 7 SiC JFET & Ceramic Packaging (arrow) on a Rad-Hard Electronics Board for ISS flight

In-House Microsystems Fabrication

CERES Thin Film Microbolometer Testing and Packaging

Benefits of WBG Detectors: Lower Power and More Robust

Detector	Active Area	Mass	Volume	Voltage	Dark Current	Minimum Power Draw	Amplitude Signal to Noise	Maximum Operating Tempera- ture	Temperature Sensitivity of Dark Current	
<u>LET</u> :										
SOA: Si PIN	1 cm²	0.5 g	185 mm³	100 V	5 nA	0.5 μW	1x10 ⁵	60°C	20%/°C	
SOA: Si(Li)	30 cm ²	35 g	15 cm³	300 V	5 μΑ	1.5 mW	8x10 ³	60°C	30%/°C	
Proposed: SiC	2 cm²	0.5 g	113 mm ³	100 V	5 nA	0.5 μW	1x10 ⁵	120°C	0.1%/°C	>
<u>Scintillator</u> Coincidence/Anticoincidence:										
SOA: PMT	20 cm ²	170 g	180 cm³	1000 V	5 nA	5 μW	4x10 ⁵	50°C	0.2%/°C	
SOA: APD	9 mm²	3 g	200 mm³	30 V	5 nA	0.15 μW	8x10 ⁴	85°C	30%/°C	
Proposed: GaP	4.8 mm²	5 g	170 mm³	5 V	20 pA	0.1 nW	3x10 ⁵	125°C	0.5%/°C	>
<u>Cherenkov</u> <u>Detector:</u>										
SOA: PMT	20 cm ²	170 g	180 cm ³	1000 V	5 nA	5 μW	4x10 ⁵	50°C	0.2%/°C	
Proposed: ZnO	2 mm²	11 g	0.80 cm ³	10 V	5 nA	0.05 μW	4x10 ⁴	125°C	0.05%/°C	>

SPAGHETI: Deep-Space CubeSat

 SPAGHETI would explore the transient variations in ion flux anisotropy in deep space and near the lunar surface

 SPAGHETI was a proposed SmallSat mission for an Artemis 1 launch on a 6U CubeSat bus

SPAGHETI: Deep-Space CubeSat

- Each stack would have 2 LET detectors separated by a moderator to allow energy and ion species resolution
- Each detector stack would be directionally sensitive with an 80° field of view and a geometric factor of 0.84 cm²·sr
- Detector insensitivity to temperature changes would allow compact, low-power operation

WBG LET Detector Stacks (Charged Particle Telescope)

SPAGHETI: Deep-Space CubeSat

- GRC-led proposal to Heliophysics Technology and Instrument Development for Science (HTIDeS) program
 - Low lunar orbit (2086×1779 km) using lodine lon thruster for corroboration with LRO/CRaTER data
 - Accelerated Technology Development to Flight for High-Payoff Science
- NASA GSFC / Catholic University of America, University of New Hampshire as Science Team
- Morehead State University selected as CubeSat bus provider via pre-proposal competitive process
 - The Aerospace Corporation, Busek as subsystem providers
- Pre-proposal COMPASS review sessions at GRC with partners to ensure technical awareness of risks
- Ultimately SPAGHETI as-proposed was not funded for flight
 - Technology development could proceed at a less-fevered pace

COMPASS SPAGHETI Study

Morehead State U. SPAGHETI Bus as-proposed

- Typically silicon-based PIN diodes or lithiumdrifted silicon wafers (Si(Li)), high bias voltage, thermally sensitive
- <u>Goal</u>: Replace silicon detectors with more robust, temperature-stable low-noise silicon carbide detectors
- Smaller SiC detectors studied as part of AEVA (2005-2007) and ETDP/D (2009-2011), AES (2012) for dosimetry
- Large-area detectors (2 cm², 350 µm thick) using high-purity, semi-insulating (HPSI) SiC wafers with low-Z FEP absorber between detectors
- GEANT models show a 4-fold coincidence can resolve LET for high energy protons and electrons

Prototype Dosimeter with SiC detector (arrow)

HPSI 4H-SiC wafer with device pads

GEANT Model with 4-fold coincidence

- Proof-of-concept SiC LET detectors developed under a Center Innovation Fund (CIF) award competed through NASA STMD
- As-Built Detector Specs:
 - High Purity Semi-Insulating (HPSI) 4H-SiC
 - Active Area: 200 mm²
 - Active Thickness: 0.348 mm
 - Top Contact (Anode): 2000 Å Pt/Ti
 - Bottom Contact (Cathode): 7000 Å Pt/TaSi/Ti
 - Die Size: 325 mm² square
 - Package Size: 4.13 cm dia. x 1.25 cm
 - Capacitance: 65±5 pF
 - Leakage: 4.5 nA at 100 VDC bias

- Checked response at high gain and low gain on multichannel analyzer for gamma, alpha (He-4) peaks of Pu-239 sources
 - Response time limited to 36 counts per second (27.78 ms/count)
 - Should stop 8 MeV/u ions and less; measure E, calculate LET (=E/x)
 - − Observed peaks down to 26.3 keV or LET ≥ 75.7 eV/ μ m
 - Noise floor ≈ 60 eV/µm (20.7 keV), Uncertainty ±30 eV/µm, dE/E = 20% in air
 - Estimate of minimally ionizing proton (3 GeV p) LET = 543 eV/ μ m in SiC (detectable)
- Characteristic Proof of Concept validation of key parameters

- Improvements to the detector design currently underway through Individual Research and Development (IRAD) effort
 - Goal is to clean up signal, demonstrate functionality as a SiC Charged Particle Telescope
 - Phase I designed, fabricated, packaged and tested four LET detectors singly and configured as telescope pairs, documenting improved performance and stable operation of the telescope design
 - Phase II currently underway to accommodate smaller connectors and measure a spectra
- Phase I Telescope Specs:
 - Telescope Size: 4.375 cm dia. x 3.50 cm tall
 - Aperture Size: 200 mm²
 - Geometric Factor: 0.5 sr·cm²
 - Field of View: 62°
 - Detector: HPSI 4H-SiC, 1000Å Pt/Ti (anode), 1000Å Ni/Ti (cathode)
 - Die Size: 1.778 cm x 1.778 cm square
 - Capacitance: 56.7 ± 1.5 pF
- Future plans beyond Phase II include integrating charge amplifiers into the package and accelerator beam line tests

SiC Charged Particle Telescope

M 10.0µs A Ch1 J

2.00 V

12

NASA

Future Concept: Compact Full-Field Ion Detector System (CFIDS)

- Mapping of heavy ions > 100 MeV/amu
 - Integrated system with solid-state Cherenkov detector and large area detectors in surrounding wedges
- High radiation flux rates for 10+ year missions
 - Precision rad-hard, thermally stable wide band gap detectors used
- Low noise, multi-directional measurements at single locations
 - Compact, spherical detector system

Space radiation detector with spherical geometry

 Technology covered by U.S. Patents 7,872,750 (January 18, 2011) and 8,159,669 (April 17, 2012)

www.nasa.gov

Future Concept: Compact Full-Field Ion Detector System (CFIDS)

 CFIDS comprised of a spherical Cherenkov detector surrounded by stacked LET detectors with absorbers, Coincidence/Anticoincidence detectors

Summary

- NASA GRC is leveraging expertise in harsh environment thin films, SiC devices & harsh environment packaging, micro-optics, and spacebased instrumentation to advance radiation detector technology
- SPAGHETI was proposed using wide-band gap radiation instrumentation in a Deep Space CubeSat to allow in-situ studies of SEP and GCR interactions in lunar environments
- Large-area radiation detectors based on wide-band gap silicon carbide are under development and have been demonstrated bench tests
- Application of wide band gap semiconductors as radiation detectors holds the promise of improved low-power, robust detectors for a Compact Full-Field Ion Detector System for Deep Space CubeSats

8/11/2022

SiC Materials & Devices Workshop 2022

Acknowledgements

- GRC Sponsors:
 - GRC Space Science Projects Office (Tibor Kremic, Carol Tolbert)
 - GRC Space Technology Projects Office (Fred Elliot)
 - GRC Innovation and Integration Office (Mark Kilkenny (retired), Gary Horsham)
- Detector Fabrication:
 - Elizabeth McQuaid (GRC), José Gonzalez, W. Trevor John (HX5)
- SPAGHETI Collaboration Team:
 - Gustave Fralick (GRC-retired); Nathan Schwadron (University of New Hampshire); Pamela Clark, Benjamin Malphrus, Roger McNeil (Morehead State University); Michael Collier (GSFC); J. Bern Blake, Bill Crain (The Aerospace Corporation)

