New phase change materials for active photonics

Cosmin Constantin-Popescu1, Mikhail Shalaginov1, Fan Yang1, Hung-I Lin1, Sensong An1, Christopher Roberts2, Paul Miller2, Myungkoo Kang3, Kathleen Richardson3, Hualiang Zhang4, Clara Rivero-Baleine5, Hyun Jung Kim6, Tian Gu1, Steven Vitale2, Juejun Hu1

1Department of Materials Science and Engineering, Massachusetts Institute of Technology
2Lincoln Laboratory, Massachusetts Institute of Technology
3Department of Electrical & Computer Engineering, University of Massachusetts Lowell
4College of Optics and Photonics, University of Central Florida
5Missiles and Fire Control, Lockheed Martin Corporation
6NASA Langley Research Center

ABSTRACT

Phase change materials or PCMs are truly remarkable compounds whose unique switchable properties have fueled an explosion of emerging applications in electronics and photonics. Nonetheless, if we discount their use in optical discs, PCMs’ immense application potential in photonics beyond data recording has only begun to unfold in the past decade. While the material requirements for optical or electronic data storage have been succinctly summarized as five key elements “writability, archival storage, erasability, readability, and cyclability” decades ago, these requirements are not universally relevant to the diverse set of photonic applications now being explored. It also comes as no surprise that existing PCMs, which have been heavily vetted for data storage, are not necessarily the optimal compositions for different use cases in optics and photonics. PCMs with their attributes custom-tailored for specific applications are therefore in demand as phase-change photonics continue to expand. Here we discuss the PCM selection and design strategies specifically for photonic applications as well as our recent work developing active integrated photonic devices and metasurface optics based on new PCMs tailored for photonics.

Keywords: Phase change materials, reconfigurable photonics, endurance, reliability, integrated photonics, metasurfaces

1. PHOTONIC APPLICATIONS OF PCMS

We start by enumerating the attributes of PCMs which distinguish them from other active materials such as liquid crystals, transparent conducting oxides1, electrooptic polymers2, photorefractive media3, and phase transition materials exemplified by VO24. These defining material characteristics will ultimately shape the application landscape of PCMs5.

The foremost feature of PCMs is their nonvolatility. PCM devices only consume power when being actively switched, and once switching is complete, their optical states can be maintained passively without needing energy input. This trait qualifies PCM as the material of choice for photonic memories6–9. In addition, it is also advantageous in terms of energy consumption when constant modulation is not necessary. The examples include reflective displays (similar to electronic papers)10–14, self-holding optical switches used for signal routing (e.g. in data centers15 or wavelength division multiplexing networks16), reconfigurable optics such as zoom or autofocus lenses17–19, programmable photonic circuits20–25, optical limiters26, smart glazing27, and certain adaptive optical systems.

*hujuejun@mit.edu; phone 1-302-766-3083

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering.
The next salient characteristic of PCMs is the exceptionally large range of refractive index tuning, far greater than what can be obtained using electrooptic or thermo-optic effects. Furthermore, it has been shown that PCMs can offer giant index change without incurring optical absorption28–31, a crucial advantage over free-carrier based modulation. The large index contrast enables ultracompact integrated photonic switch devices32–38, active metasurfaces with full 2π optical phase coverage39–43, and nanophotonic devices with record large tunability44–47.

In addition to the large tuning range, PCMs are also amenable to multilevel setting, where the different levels can be accessed via pre-defined combinations of optical or electrical pulses48–51. The different levels are derived from either progressive phase transition where the two phases are spatially separated by a moving boundary52, or intermediate states of PCMs containing crystalline phases precipitated from an amorphous matrix across the entire PCM volume53. This feature not only boosts the information storage density in memories, but also facilitates in-memory computing and neuromorphic optical computing by mimicking the complex behavior of synapses and neural circuits54–59.

Last but not least, it is equally important to chart the potential shortcomings of PCMs which exclude them from certain application domains. For example, switching of PCMs typically involves high-temperature spikes (exceeding the melting point of PCMs at around 600 °C – albeit for a very short time), which places constraints on their compatibility with immediate surrounding materials60. Moreover, the associated energy dissipation overhead also means that PCMs are hardly competitive for ultrafast optical modulators where electrooptic and electroabsorption materials offer far superior performances. Similarly, exacerbated power consumption along with the limited cycle lifetime of PCMs likely disqualify them from applications where constant switching is demanded over an extended period.

Next, we will expound on the design rules of PCMs for photonic applications. The section is organized according to the material attributes we surveyed in the preceding section. We will elucidate the underlying materials physics for each PCM attribute and identify suitable engineering routes to rationally optimize the PCM material and processing protocols.

2. REFRACTIVE INDEX CONTRAST BETWEEN TWO PHASES

The giant refractive index difference between the amorphous and crystalline phases of chalcogenide PCMs exemplified by GST-225 is one of the most striking properties of these materials61. In most other materials, for instance Si, rearrangement of the same set of atoms does not produce a pronounced change of electronic polarizability. Thus, the refractive index of Si (in spectral regions away from the band gap where absorption loss is low) only has a weak dependence on the material’s crystalline state, yielding a small index change Δn of the order of 0.1 upon amorphous-crystalline transition. Therefore, the enormous index contrast characteristic of PCMs implies a fundamental modification of PCM’s electronic structure accompanying the phase transformation.

![Figure 1. A map identifying material systems with metavalent bonding as a signature of PCMs. The green dots label compositions with large property contrasts. Image courtesy of Lencer et al.62.](image-url)
electrons are tightly localized between the atomic pairs forming the covalent bond. In contrast, in the crystalline state, the ‘resonant bonding’ is conducive to electron delocalization, giving rise to significantly enhanced electron polarizability and hence much higher refractive index. First-principle calculations68-70 and extended X-ray fine structure (EXAFS) measurements68-70 further corroborated the presence of bonding configuration change during the phase transformation process. The term ‘resonant bonding’, however, causes unnecessary confusion with interatomic bonding in benzene or graphene formed by delocalized \(\pi\) electrons81. A different term, metavalent bonding, is coined to specifically describe the bonds found in crystalline PCMs22,73. The bonding nature is also regarded as unique fingerprints for identification of PCMs62,73. Figure 562 gives an example of a map which can be used to identify potential PCM compositions with large optical contrasts based on chemical nature of the constituent elements. Specifically, these PCMs in general exhibit small ionicity and a limited degree of hybridization, where the ionicity and hybridization parameters are defined following Lencer \textit{et al.}62. As can be seen from Fig. 1, the screening criterion favors compounds comprising heavy non-metallic elements including Te, Sb, Ge, Bi, Sn, etc. Since heavy-element compounds tend to have small band gap energies, this criterion inevitably introduces a trade-off between refractive index contrast and optical opacity when looking for PCMs operating at near-IR or visible wavelength ranges.

3. OPTICAL LOSS IN PCMS

Concerning optical loss engineering in PCMs, there are two diverging objectives depending on the specific application needs. Applications including optical data storage, reflective free-space optical devices, and on/off optical switches benefit from maximizing the absorption contrast between the two phases. In optical analog computing and photonic memory devices, optical absorption is used to encode numerical values, and therefore a large absorption contrast is likewise favorable24,75. These applications thus require PCMs with low loss in the amorphous state, and high absorption in the crystalline state. In contrast, for other use cases such as programmable photonic circuits and active transmissive optics, low losses in both phases are desirable to realize phase-only modulation66,77. In this section, we will discuss practical routes to engineer PCM’s loss properties in both phases.

Optical absorption in PCMs exemplified by GST-225 is dominated by band-to-band transition in the short wavelength domain for both phases, and free carrier absorption at the long wavelength end for the crystalline phase. The band gap of PCMs is most conveniently tuned by modifying the stoichiometry or elemental substitution. One example of band gap change in the \((\text{GeTe})_x(\text{Sb}_2\text{Te}_3)_y\) pseudobinary system with different stoichiometries has been reported78. The increase of the crystalline phase band gap with higher GeTe fraction is ascribed to augmented Peierls-like distortion, which opens up the band gap and at the same time leads to carrier localization. The carrier localization effect also tends to weaken the metavalent bonding character in the crystalline PCM phase, which implies a trade-off between increasing band gap and attaining large refractive index contrast. The trade-off similarly exists for elemental substitution. Substitution with lighter elements, for example Te by S or Se29,31,79-85, enlarges the material band gap. However, the lighter elements increase ionicity of bonds when combined with other non-metallic PCM constituents, and thus according to Fig. 1 diminishes the metavalent bonding contribution and refractive index contrast.

Next let’s turn our attention to free carrier absorption (FCA), which is the main loss contributor in the mid- and long-wave infrared. Crystalline Ge-Sb-Te PCMs are degenerate p-type semiconductors with high concentrations of holes which are responsible for the FCA. The high concentration of holes, often in the order of \(10^{20} \text{ cm}^{-3}\), stems from large amounts of excess vacancies present in PCM structures86-88. Here the term ‘excess vacancies’ is used to distinguish these self-doping defects from their stoichiometric counterparts, since the stoichiometric vacancies are inherent to the crystalline structure of cubic (rock salt) Ge-Sb-Te compounds, where Te atoms occupy one set of the face-centered cubic sublattices while Ge, Sb, and stoichiometric vacancies occupying the other89-91. First-principle calculations reveal that the formation energy of these non-stoichiometric defects, in particular Ge vacancies, is small87,92. As a result, the concentration of excess vacancies can reach the order of \(10^{20} \text{ cm}^{-3}\) when PCM crystals are formed from a melt-quench process, leading to degenerate p-type conduction. The high free carrier concentration of crystalline PCMs in the Ge-Sb-Te family produces Drude-like FCA with an absorption coefficient scaling quadratically with wavelength. The ensuing large absorption contrast at long wavelength regimes empowers applications in the mid- and far-infrared such as adaptive thermal camouflage and infrared beam shaping83-85.

The free carrier absorption can be tuned by either modulating the free carrier concentration through PCM composition tuning and/or engineering the free carrier mobility. As an example of how the free carrier concentration varies with PCM composition, the \((\text{GeTe})_x(\text{Sb}_2\text{Te}_3)_y\) pseudobinary system, which
translates to minimal FCA in the infrared78. In general PCM compositions with large band gaps also tend to manifest small free carrier density.

Engineering the carrier mobility represents another technique to regulate FCA in crystalline PCMs. Crystalline chalcogenide PCMs typically exhibit hole mobility in the range of $0.1 - 10 \text{ cm}^2/\text{V}\cdot\text{s}$29,96. Within this low mobility regime, FCA approximately scales linearly with carrier mobility. A practical method to tailor the carrier mobility in PCMs and thereby FCA is to leverage disorder-induced carrier localization. For instance, substitution of Te with Se in Ge\textsubscript{2}Sb\textsubscript{2}Se\textsubscript{x}Te\textsubscript{5-x} alloys has been found to lower the hole mobility by more than two orders of magnitude, and carrier localization due to mixed sequences of Se/Te atomic planes has been suggested as a possible mechanism for the mobility depression29. Carrier mobility in crystalline PCMs can also be modulated simply by heat treatment without compositional change. For instance, cubic GST-225 formed at lower annealing temperatures holds large amounts of randomly distributed vacancies. This structural disorder triggers Anderson localization of holes which suppresses their mobility. With further heat treatment, vacancy ordering takes place and carrier mobility rises because of delocalization. The mobility dependence on heat treatment temperature of GST-225 has been validated with direct field effect measurement96, showing an order of magnitude mobility change within a $40 \degree\text{C}$ annealing temperature window.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{Optical constants of Ge\textsubscript{2}Sb\textsubscript{2}Se\textsubscript{4}Te\textsubscript{1} as functions of transient heat treatment condition}
\end{figure}

The ability to tune carrier mobility and hence optical absorption in PCMs via heat treatment offers a facile route for controlling both their index of refraction n and absorption k. This capability is illustrated in Fig. 297, which presents the measured evolution of n and k for thin film Ge\textsubscript{2}Sb\textsubscript{2}Se\textsubscript{4}Te\textsubscript{1} at $2 \mu\text{m}$ wavelength after transient heat processing using an on-chip resistive heater53. The optical property evolution can be divided into two separate regimes. At temperatures below $350 \degree\text{C}$, the refractive index steadily grows with rising annealing temperature with only a minor increase in optical absorption. This is attributed to progressive crystallization of the material, and the data points within the intermediate temperature range correspond to mixtures of amorphous and crystalline phases. Beyond $350 \degree\text{C}$, the refractive index increase is minimal, signaling that the crystallization transformation is mostly complete. Meanwhile, the absorption becomes much more pronounced presumably due to vacancy ordering in the PCM. The result indicates a powerful method to independently tune the refractive index and absorption of PCMs, a coveted capability for many active photonics applications.

4. CYCLE LIFETIME (ENDURANCE)

While exceptions exist where PCMs only need to be switched once or a small number of times throughout their life cycle (e.g. in post-fabrication trimming98 or transient devices for photonic testing purposes99), being able to switch PCMs reversibly and reproducibly over many cycles is an essential attribute for most of their applications100. The issue of PCM cycle lifetime or endurance has been extensively investigated in electronic phase change memory devices. There are two failure modes: SET-stuck failure (SSF) and RESET-stuck failure (RSF, also called open failure)101,102. The former refers to phase change memory cells being stuck in the SET (high electrical conductance) state, and RSF is the opposite case where the cell becomes effectively open-circuit. The specific failure mechanisms that have been identified include103: phase segregation induced by electromigration and incongruent melting which is mainly responsible for SSF104–106; void formation at the PCM-electrical contact interface due to electromigration and cyclic stress which accounts for RSF106–108;
interdiffusion between PCM and adjacent materials60,109, and surface oxidation when the PCM is not suitably encapsulated110.

The failure mechanisms witnessed in electronic memories are nonetheless not necessarily relevant to photonic applications given the different switching mechanisms employed. In photonics, it is customary that a PCM volume considerably larger than that in today’s deeply scaled electronic memory cells must be switched. An important implication of the large PCM volume is that the material cannot be properly switched by directly passing an electric current through PCM as it is done in memory cells due to the filamentation effect97,111: a thin wire of PCM that initially crystallizes becomes an electrical current conduit with significantly higher conductivity than the surrounding amorphous matrix, preventing uniform crystallization of the entire PCM volume. Since the size of a filament is orders of magnitude smaller than the wavelength, the modulation of optical properties is negligible. For this reason, PCMs are usually optically switched via laser pulses112 or electrothermally switched using micro-heaters in photonics applications. The absence of an electric field in both optical and electrothermal switching schemes means that electromigration – perhaps the most prominent cause of failure in electronic memories – is not relevant to PCM-based photonic devices. This leaves incongruent melting, cyclic stress, interdiffusion and surface oxidation as possible failure mechanisms in photonic devices. Additionally, we note that interdiffusion and surface oxidation can be effectively prevented by selecting appropriate encapsulation materials for PCMs.

![Figure 3. (a) Pseudobinary GeTe-Sb\textsubscript{2}Te\textsubscript{3} phase diagram; (b) Sb-Te binary phase diagram. Images courtesy of ASM International.](image)

The origin of incongruent melting is revealed by examining the phase diagram of the GeTe-Sb\textsubscript{2}Te\textsubscript{3} pseudobinary system (Fig. 3a). During heating and cooling cycles, GST-225 passes through a two-phase region between 632 °C (solidus temperature) and 648 °C (liquidus temperature). Within this region, GST-225 can spontaneously separate into two phases, an Sb-rich liquid phase and a Ge-rich solid phase. When a temperature gradient is present, the phase separation can lead to directional solidification and elemental segregation113. A possible way to mitigate incongruent melting is to ensure that the entire PCM volume is heated to above the liquidus temperature during re-amorphization with adequate dwelling time such that any Ge-rich solid phase formed can be dissolved into the liquid phase in every cycle. Indeed, it has been found that melting can ‘heal’ elemental segregation in phase change memory cells108. Minimizing temperature non-uniformity in the re-amorphization process is also critical against incongruent melting, as it prevents directional solidification and also ensures that the entire PCM can be uniformly heated to avoid both regions below liquidus temperature and hot spots that can damage the PCM. This can be accomplished by shaping the beam profile in laser switching, and geometric optimization of micro-heaters in electrothermal switching53. Another solution is to use alternative PCM compositions that remain single-phase during thermal cycling. For example, the Sb-Te phase diagram (Fig. 3b) suggests two compositions fulfilling the single-phase criterion: Sb\textsubscript{2}Te\textsubscript{3} and Sb\textsubscript{7}Te\textsubscript{3}114.

Cyclic stress originates from both thermal stress and the large volume change of PCMs during phase transition (6.5% between amorphous and crystalline phases of GST-225). Cyclic stress has been associated with void formation in PCMs even in the absence of an electric field115. The voids, driven by electromigration116, eventually coalesce at the PCM-electrode interface, resulting in an open circuit aka RSF107. The impact of cyclic stress on longevity of PCM-based photonic devices, however, has not been systematically studied. Unlike in electronic memories, it is anticipated that the voids likely only have a minor effect on optical properties of PCMs given their small size (~ 10 nm). Moreover, since PCM is not part of the current path, it may be possible to heal the voids in a cyclic laser or electrothermal switching process106, which
would not be interrupted by open-circuit failure as in memory cells. On the other hand, cyclic stress could degrade structural integrity of photonic devices, especially considering that the PCM volume being switched is much larger for most photonic applications. The stress effect can be mitigated through selection of PCM compositions with a small volume change between phases107,117. On the contrary, PCM compositions with large volume change during crystallization, for instance GeTe which shows \(\sim 10\% \) contraction upon crystallization117, are known to generate severe mechanical damage during cyclic switching.

From the analysis above, it appears that there is no fundamental limit to realizing PCM-based photonic devices with cycle lifetime comparable or even exceeding state-of-the-art in phase change memories. Indeed, cycle lifetime exceeding \(1.5 \times 10^8 \) has been reported in electrothermally switched devices made of \(\text{Sb}_2\text{Te}_3 \)118,119 – notably a PCM stoichiometry meeting the single-phase condition we set forth above. From a practical perspective, the much larger PCM switching volume in photonic devices could introduce elevated temperature non-uniformity, which should be mitigated through beam profile shaping in laser switching, and heater design optimization in electrothermal switching53.

5. SWITCHING SPEED AND DESIGN TRADE-OFFS

In terms of speed, the bidirectional switching process of PCMs is asymmetric. Speed of the crystallization process is limited by crystallization rate of the PCM and critically depends on the PCM chemistry. Since amorphization must be adequately rapid to kinetically bypass crystallization, amorphization is \textit{necessarily} faster than crystallization in the same device, and thus engineering the switching speed of PCM devices is often synonymous with controlling crystallization kinetics of the PCM. Speed of the amorphization process is only bound by thermal time constant of the PCM component, which is primarily dictated by geometric dimensions of the PCM component and is largely independent of the PCM composition.

To engineer the switching speed of PCMs, it is instructive to revisit the key structural signature that accounts for the rapid nucleation kinetics in GST-225: the presence of crystalline precursors (ABAB rings in the case of GST-225) in the amorphous phase. These precursors not only catalyze the formation of crystalline nuclei, but also hint structural similarity between the amorphous and crystalline phases which lowers the interface energy and barrier to nucleation. In GST-225, the ABAB rings undergo spontaneous formation and dissolution swiftly within a picosecond timescale120,121. This statistical fluctuation underpins the stochastic nature of crystallization in GST-225 and necessity of an incubation period during crystallization cycles to warrant nuclei formation122. Stabilization of the precursor structures can thus expedite crystallization kinetics. This concept culminated in the discovery of \(\text{Sc}_{0.2}\text{Sb}_2\text{Te}_3 \) (SST), where Sc doping stabilizes the four-fold ring structure and crystalline seeds (atomic clusters consisting of the four-fold rings) against thermal fluctuation120. Sub-nanosecond crystallization was realized in SST capitalizing on the abundance of nucleation sites.

The same principle can be implemented in the contrary direction to slow down the crystallization kinetics and increase the reversible switching volume of PCMs, a useful trait especially for free-space photonic applications. A case-in-point is AIST, a growth-dominant PCM. Recrystallized AIST has an A7 structure with a broad distribution of atomic ring size123. Unlike GST-225 where the four-fold ABAB rings act as crystalline precursors, nucleation in AIST necessarily involves ring reconstruction and bond interchange, which results in sluggish nucleation kinetics: the incubation delay in AIST is in the order of tens of microseconds versus nanoseconds in GST-225124.

Finally, we notice that the growth-dominant crystallization behavior in selected PCMs provides a potential solution to break the speed-thickness trade-off97. The concept exploits the very high crystal growth velocity in growth-dominant PMs exemplified by AIST: growth rates as high as several m/s have been measured in AIST125. As an example, the main PCM element can be connected to a crystalline zone located outside the active switching zone. The zone allows the PCM element to sidestep the nucleation period to achieve fast crystallization. During re-amorphization, the connection between the crystalline zone and the PCM element can be more rapidly quenched to sever the crystal growth path, thereby preventing crystallization in the PCM element due to the slower cooling rate it experiences.

6. SUMMARY

Here we have analyzed the performance metrics of PCMs in the context of photonic applications, elaborated on material design guidelines to engineer PCMs for these applications, and reviewed emerging PCM systems which envision a diverse collection of device innovations. It is certainly our hope that the insights will inspire the design and development of new optical PCMs (O-PCMs) as well as novel device architectures to fully unleash their potential in photonics. We foresee that high-throughput \textit{ab initio} computational methods126,127, combinatorial PCM synthetic approaches128, and wafer-scale PCM characterization platforms will significantly expedite material discovery and validation.
ACKNOWLEDGEMENTS

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001, and by the NSF under award number 2132929. The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

REFERENCES

[20] Bogaerts, W., Pérez, D., Capmany, J., Miller, D.A.B., Poon, J., Englund, D., Morichetti, F., and Melloni, A,

