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Abstract Cloud and convective parameterizations strongly influence uncertainties in equilibrium climate
sensitivity. We provide a proof-of-concept study to constrain these parameterizations in a perturbed parameter
ensemble of the atmosphere-only version of the Goddard Institute for Space Studies Model E2.1 simulations
by evaluating model biases in the present-day runs using multiple satellite climatologies and by comparing
simulated 8'*O of precipitation (§'°0,), known to be sensitive to parameterization schemes, with a global
database of speleothem &'30 records covering the Last Glacial Maximum (LGM), mid-Holocene (MH) and
pre-industrial (PI) periods. Relative to modern interannual variability, paleoclimate simulations show greater
sensitivity to parameter changes, allowing for an evaluation of model uncertainties over a broader range of
climate forcing and the identification of parts of the world that are parameter sensitive. Certain simulations
reproduced absolute 5180p values across all time periods, along with LGM and MH 8180p anomalies relative
to the PI, better than the default parameterization. No single set of parameterizations worked well in all climate
states, likely due to the non-stationarity of cloud feedbacks under varying boundary conditions. Future work
that involves varying multiple parameter sets simultaneously with coupled ocean feedbacks will likely provide
improved constraints on cloud and convective parameterizations.

Plain Language Summary Equilibrium climate sensitivity (ECS) is a key climate metric that
quantifies the rise in global mean surface temperature in response to doubling of atmospheric CO,. Changes in
hydroclimate, temperature extremes, and other aspects of future climate projections are closely tied to a model's
ECS. For decades, ECS range has remained wide despite improvements from using multiple lines of evidence.
One persistent source of this spread is related to cloud and convective processes, which occur at scales too
small to be explicitly resolved, and thus require parameterizations to be represented in climate models.

These parameterizations directly influence water isotopes by modulating simulated clouds and atmospheric
circulation, and thus can be used to constrain model processes and identify model biases. In this work, we
demonstrated that paleoclimate simulations are more parameter sensitive than the modern, highlighting the
potential of past climates in discriminating cloud and convective parameterizations. Using satellite- and
proxy-model comparisons, we identified the top performing parameterizations which differ for each time period
likely due to varying cloud feedbacks under diverse climatic forcing. Overall, our results provide a framework
for fine-tuning model representations using combined paleoclimate and satellite data, offering a unique
opportunity to assess model uncertainties over a broader range of climate variability.

1. Introduction

Cloud and convective processes vary at scales significantly smaller than a general circulation model (GCM) grid
box, requiring them to be parameterized on simulated grid-scale variables (Boucher et al., 2013). Because such
parameterizations employ different assumptions (Lopez, 2007), representation of cloud and convective effects in
climate models inherently hold large uncertainties. Cloud and convective parameterizations, aside from aerosol
schemes and aerosol-cloud interactions (Meehl et al., 2020), are considered the leading source of inter-model
spread in equilibrium climate sensitivity (ECS) estimates (Dufresne & Bony, 2008; Sherwood et al., 2014;
Webb et al., 2015; Zelinka et al., 2020) and consequently the broad range of future climate projections (Flato
et al., 2013; Sherwood et al., 2014). The latest generation of climate models participating in Coupled Model
Intercomparison Project Phase 6 (CMIP6) have an average ECS value of 3.9°C and range from 1.8°C to 5.6°C
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(Zelinka et al., 2020), which is higher and more variable than the CMIP5 models (i.e., mean of 3.3°C and range of
1.5°C—4.5°C (Flato et al., 2013; Knutti et al., 2017)) and estimates from the Intergovernmental Panel on Climate
Change Assessment Report 6 (i.e., mean of 3°C with a very likely range of 2°C-5°C (Hausfather et al., 2022;
IPCC, 2021)).

Paleoclimate evidence provides additional constraints on ECS by offering an independent test of climate model
performance. Colder and warmer intervals of well-known forcings and fairly stable climate states relative to the
present instrumental period such as the Last Glacial Maximum (LGM; 21 ka or kilo-years before present) and
the mid-Pliocene warm period (mPWP; 3.3-3.0 Ma or million years before present) indicate an ECS range of
1.5°C-5°C with a maximum likelihood of 2.5°C (Sherwood et al., 2020). Based on temperature changes provided
by paleorecords and known responses to climate forcings during these time periods, these joint yet independent
paleoconstraints on ECS argue against extreme estimates of 1.2°C and greater than 6°C (Sherwood et al., 2014;
Zhu & Poulsen, 2020). In another example, proxy-model comparison using the Community Earth System Model
version 2 — one such model that reports an ECS greater than 5°C in the CMIP6 models — reveals that their simu-
lated LGM cooling is excessive and not realistic relative to proxy reconstructions and previous model simula-
tions, highlighting the cloud feedback-related source of their overestimated ECS (Zhu et al., 2021). While these
studies demonstrate the strong potential of past climates in constraining ECS, evaluating the uncertainties directly
related to cloud and convective parameterizations remains limited to a qualitative ruling out of high ECS.

A perturbed parameter ensembles (PPE) experiment, which creates different versions of a climate model by
systematically changing a parameter value within a reasonable range, is particularly useful in assessing the degree
to which uncertainties are explained by parameter choices. Typically, clouds and convective parameterizations
are chosen based on the bias score between climate model output and observational datasets, usually derived
from satellite remote sensing platforms that began observing ~3 decades ago (Galewsky et al., 2016; Mauritsen
et al., 2012). However, in the context of future climate change, these observational datasets only offer a fraction
of the range of climate change projected over the next 100 years. Finding ways to constrain these choices on a
broader variety of climates is thus desirable. Moreover, in a traditional PPE approach, models are not typically
re-tuned into radiative balance after altering a single tuning parameter (Schmidt et al., 2017), which may have
important implications in resolving or revealing biases from previous compensating errors (Collins et al., 2011).
However, not much is known whether this tuning approach after each parameter change is preferable especially
when considering a broader range of climate states.

Widely observed through satellites and preserved on various paleoclimate archives, water isotopes provide
a common means to understand present and past climates. Water isotopes serve as integrative tracers of the
hydrologic cycle due to molecular differences in mass that drive fractionation during water phase changes. In
the atmosphere, the variability in the oxygen isotopic composition of precipitation (5”‘Op) is driven by several
local and non-local processes including the origin and initial isotopic composition of the water vapor in an air
parcel, amount of rainout, evaporation of rainfall, seasonality and temperature history, and mixing with other
air parcels (Dansgaard, 1964; Galewsky et al., 2016; Gat, 1996; Noone, 2008). Increasingly incorporating water
isotopes in model simulations has significantly advanced our understanding of the mechanisms that govern
their variability across broader spatiotemporal scales (Galewsky et al., 2016).

Previous studies have demonstrated the sensitivity of water isotope ratios to perturbations in cloud and convec-
tive parameterizations in isotope enabled GCMs, signifying their utility in evaluating model performance and
potentially identifying model biases (Bolot et al., 2013; Bony et al., 2008; Field et al., 2014; Lee et al., 2009;
Nusbaumer et al., 2017; Schmidt et al., 2005). For example, excessive diffusive advection and high convection
frequency were shown to cause significant model biases in the isotope enabled Laboratoire de Météorologie
Dynamique Zoomed version 4 (Risi et al., 2012), and Community Atmosphere Model version 5 (Nusbaumer
et al., 2017), models, respectively. In the atmosphere-only version of Goddard Institute for Space Studies (GISS)
Model E2, water isotopes were found to be more sensitive to parameter changes than traditional diagnostics such
as precipitation and temperature, likely related to cumulus entrainment strength (Field et al., 2014). These models
were compared against modern water isotope observations from satellites (e.g., Aura Tropospheric Emission
Spectrometer (TES) (Worden et al., 2007); Scanning Imaging Absorption Spectrometer for Atmospheric Cartog-
raphy (Frankenberg et al., 2009)), providing a spatially robust means of constraining model results.
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Variability in water isotopes may also be obtained from various paleoclimate archives that are not only spatially
well-distributed but are also available across past earth climates drastically different from today. One excellent
source of past water isotope variability and therefore hydroclimatic information are speleothems. Speleothems
are secondary cave deposits that form from dissolution of carbonate bedrock through water action. While their
geographical distribution is largely constrained by the geology of a region, speleothems form under a broad
range of hydroclimatic regimes ideal for investigating predominant regional patterns. Variations in speleothem
5180 largely reflects the 5'30 of soil (6'80,) and groundwater percolation, which in turn is heavily influenced
by 6 18Op above the cave and other processes within the karst system (Fairchild & Baker, 2012; Lachniet, 2009).
Early speleothem §'30 compilations and the more recently available Speleothem Isotope Synthesis and Analysis
(SISAL) database (Atsawawaranunt et al., 2018; Comas-Bru et al., 2020, 2019), a large global compilation of
speleothem isotope records since the last glacial, have aided in evaluating GCM performance across the LGM and
mid-Holocene (MH; 6ka) time periods (Caley et al., 2014; Cauquoin et al., 2019; Comas-Bru et al., 2019; Werner
et al., 2016) and have served as an independent validation check in reconstructions of glacial temperature fields
(Tierney, Zhu, et al., 2020), demonstrating their usefulness in benchmarking isotope enabled paleoclimate simu-
lations. However, not all parts of the world are equally influenced by cloud and convective parameter changes,
implying that proxy record locations may be more or less constraining against simulations. This has not been
fully quantified in existing paleoproxy-model comparisons and/or analyses of model-satellite discrepancies both
globally and restricted to proxy sites only.

In this study, we explore cloud and convective parameterizations (Table 1) in the GISS-E2.1 climate model
(Kelley et al., 2020) that likely have a significant impact on water isotope distribution and ECS. We use two
sets of atmosphere-only simulations: one that has been re-tuned into radiative equilibrium in the pre-industrial
(PD) (hereafter referred to as the balanced version as per (Schmidt et al., 2017)) and another which only changes
the parameters (hereafter referred to as the unbalanced version), to evaluate whether this approach is preferable
in simulations of past climates with large differences in radiative forcing. We investigate the variability and
sensitivity of key climate variables to cloud and convective changes and identify parameter-sensitive sites in the
present-day (PD, year 2000) and paleoclimate simulations covering the (PI, year 1850), MH and LGM periods.
We also compare and evaluate the model simulations against multiple satellite climatologies and assess the agree-
ment between simulated 5180p and speleothem 630 from the SISAL version 2 (Comas-Bru et al., 2020) database.
This proof-of-concept study presents a basis to which we determine the best suite of parameters representing
clouds and convective processes across distinct time periods, critical in improving isotope-enabled models and
thus, ECS and climate projections.

2. Materials and Methods
2.1. NASA GISS E2.1

Simulations were conducted using the atmosphere-only GISS-E2.1, a CMIP6 submission described in length in
Kelley et al. (2020). Relative to GISS-E2 (Schmidt et al., 2014), the default E2.1 configuration has an improved
treatment of mixed-phase clouds, improvements in the planetary boundary layer parameterization, and systematic
increases in convective entrainment rates (Kelley et al., 2020), though these rates are perturbed as part of this
study as detailed below.

Water tracers ('H,'°O, “normal” water; H'H'O, 6D; and 'H,'®0, 6'%0; where permil (%0) 6 = 1000 * [(R/
R,..w)-11) were included in the land surface, sea ice, sea surface, and atmosphere. These isotopes are tracked
through all stages of the water cycle and are advected like water through the model with appropriate fractionation
during each phase change (LeGrande & Schmidt, 2009; Schmidt et al., 2007, 2005).

2.2. Time Slice Experiments

We performed three paleo-time slice experiments as described for the LGM (Kageyama, 2021; Kageyama
et al., 2017), MH (Brierley et al., 2020; Otto-Bliesner et al., 2017) and PI (Eyring et al., 2016). These followed
the Paleoclimate Modeling and Intercomparison Project (PMIP4) and CMIP6 protocols (Kageyama et al., 2017;
Otto-Bliesner et al., 2017). For each time slice, appropriate changes to topography, bathymetry, and land-ocean-ice
mask (LGM: Glac1D, Abe-Ouchi et al., 2013; Briggs et al., 2014; Tarasov & Peltier, 2002; Tarasov et al., 2012);
river routing (Licciardi et al., 1999, 1998; Peltier, 2004); vegetation cover (Ray & Adams, 2001); orbital changes
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Table 1
Parameter Space Exploration of GISS-E2.1
Mean
precipitation, Radiation
GISS- Mean surface air mm/day balance at TOA,
E2.1 New temperature, °C (global, NH, W/m? (PI, MH,
Short name Parameter Description default  value  (global, NH, SH) SH) LGM)
std standard - ---- ---- 13.90,14.34,13.65 2.96,2.81,3.11  0.12,0.57,-1.85
rev rain Allows extra moistening above the cloud base, On (1) Off (0) 13.78,14.03,13.52 2.94,2.83,3.05 0.23,0.11,-1.25
re-evaporation increasing moisture availability and model
above cloud precipitation as well as global temperature
base
entr50-50 entrainment rate Modulates relative size and dilution of (2 max 0.4;0.6 0.5;0.5 13.98.14.30,13.66 2.98,2.89,3.06 —0.04,-0.04,-1.82
entr60-40 o TS (. g eld gl par level) Gumesie plmmes 0.6;0.4 14.00,14.33,13.67 2.952.87,3.05 —0.03-0.09,-2.01
& 2) by setting how much mass is entrained
entr20-80 into each of the less- (deep) and more- 0.2;0.8 14.00,14.36,13.65 2.92,2.80,3.04 0.17,0.16,-1.67
entraining (shallow) convective plumes,
setting up moisture availability for each for
precipitation and convection depth
tconvadjX2 convection Modulates time for convective mass to reach 1 2 14.03,14.35,13.72  2.96,2.87,3.05  0.18,0.06,-1.88
adjustment the tropopause; thus the response time of
time temperature and moisture profiles to adjust
to moist convective processes
triggerl.1 convective trigger ~ Changes convection initiation (easier or harder 2 1.1 14.02,14.36,13.67 2.98,2.88,3.08  0.11,0.17,-1.72
L to attain) by the relative balance of stable 12 13.99,1435,13.65 2982.893.07 0.12,0.14,-1.59
layers against planetary boundary layer
trigger0.99 processes (turbulent lifting, near-surface 0.99  13.95,14.27,13.63 3.09,2.93,3.25 —0.01,-1.00,-4.09
triggerl.3 stability variation, moisture), vertical wind 13 13.99,14.35,13.63 2.982.87,3.08 0.15,0.14,-1.59
. shear, mesoscale ascent, and gravity waves
triggerl.0 1.0 13.94,14.25,13.63 2.98,2.87,3.08  0.26,0.19,-1.70
droprad50-50 cloud droplet Liquid droplet and ice particle sizes for a given 1;1 0.5;0.5 13.88,14.13,13.62 2.98,2.74,2.98 —0.02,-0.30,-2.58
droprad50-130 radius LR A R 0.5:13 14.16,14.5513.77 2.982.81,3.00 —0.04,0.11-1.71
(liquid- ice) relatively reflective (shortwave scattering,
dropradl30-50 thus increasing reflected SW radiation) 1.3;0.5 13.74,14.97,13.50 2.93,2.82,3.05 —1.18,-1.33,-3.79
droprad30-130 versus insulating (longwave absorption and 1.3;1.3 14.02,14.40,13.65 2.98,2.89,3.07 0.18,0.16,-1.58
re-emission)
critQ2-2 critical cloud The critical threshold controlling amount of 2;1 2;2 13.99,14.33,13.65 2.95,2.85,3.05 —0.02,-0.12,-1.79
critQ1-0.5 water content water converted to precipitation via auto- 1:05 14.00.14.30.13.69 2.992.953.04 —0.11-0.19.-2.00
’ (liquid & ice) conversion. Higher means more cloud T T o o
critQ1-4 condensate and more optically thick clouds 1;4 13.95,14.30,13.61 2.96,2.86,3.06 —0.16,-0.14,1.17
critQ2-4 often altering radiation, but lowering 2:4  13.96,14.28,13.65 2.952.833.07 0.01,-0.04,-2.04
precipitation
(Berger & Loutre, 1991); greenhouse gases (Indermiihle et al., 1999); standard mean ocean water, salinity and
water isotopes (Adkins & Schrag, 2003) were made (Table 2). All these runs were completed to surface equi-
librium in GISS-E2.1-G (Kelley et al., 2020); the surface sea ice fraction, sea ice thickness, and sea surface
Table 2
Summary of Forcing and Boundary Conditions for Each Time Slice Experiment
Time slice Ice sheet SST/SICE GHG Mean salinity, psu ~ SMOW (5'%0, 6D)
Present Day (PD) modern Hadley Obs year 2000 34.7 0%o0, 0%o
PIL 1850 modern CMIP6: PI year 1850 34.7 0%o, 0%o
MH, 6 ka modern CMIP6: MH 6 ka 34.7 0%0, 0%o0
LGM, 21 ka GlaclD CMIP6: LGM 21 ka 35.7 1.0%0, 8.0%0
Note. All experiments applied topography, bathymetry, land-ocean-ice mask, greenhouse gas, river routing and appropriate
SMOW changes.
RAMOS ET AL. 40f 19
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temperatures were then recorded. Coupled simulations are computationally expensive (but are planned in the
future to completely assess §'30 sensitivity to coupled versus prescribed sea surface temperature (SST)), and
thus, surface conditions were used in this proof-of-concept study to drive a new suite of GISS-E2.1 simulation
(CMIP6) in atmosphere-only mode with the same forcing conditions to create the LGM, MH and PI runs. We
conduct one further PD experiment to facilitate comparison with the satellite products, using year 2,000 atmos-
pheric constituents and a climatological mean from Hadley for 2000-2015 for ocean surface conditions (Table 2).
Each experiment was run for 21 years, with the first year left out so the atmosphere equilibrates with the surface
conditions; we used the last two decadal outputs as the basis of all presented results and interpretations.

2.3. Cloud and Convective Parameterizations and Model Tuning

GISS-E2.1 regularly uses five tuning parameters (Kelley et al., 2020). Here, we re-balanced the model by altering
cloud reflectivity (Schmidt et al., 2017), after each parameter change to ensure that the decadal top of the atmos-
phere net planetary radiation is within 0.2 W/m? during a PI simulation (i.e., balanced version). We conduct a
parallel set of experiments where this tuning was not done (i.e., unbalanced version) to check that the tuning itself
is not influencing our interpretation. Ideally, this positions us to complete fully coupled simulations to explore
the full range of variability imparted by these clouds and convective changes during the paleoclimate simulations.
However, these coupled experiments are computationally expensive, taking months to years of a “real time” to
complete; they are thus beyond the scope of this proof-of-concept study (but are planned in the future). The
practical consequence is that variability over the ocean, especially, is throttled, and the climate system during the
paleoclimate runs may no longer be in radiative equilibrium (a symptom of the incomplete climate response to the
strong paleoclimate forcing perturbed parameter runs); we note the net top of the atmosphere radiative balance of
each simulation (Table 1).

The basic structure of the clouds and convection schemes are described in (Del Genio, 2012; Del Genio
etal., 2015; Kim & Kang, 2012). We have chosen here to explore six different parameters utilized in the cloud and
convection schemes that likely have a substantive impact on ECS as well as water isotope distribution (Table 1). A
total of 19 simulations were performed for each time period. Parameters chosen are ones not directly constrained
by current in situ or satellite observing platforms, yet are commonly perturbed in GCM atmosphere tuning efforts
(Hourdin et al., 2017; Schmidt et al., 2017).

Rain re-evaporation above the cloud base (rev) has been a parameter previously considered for change because
it improves convection and variability (e.g., Madden-Julian Oscillation in (Kim & Kang, 2012)). This parameter
makes the GISSE-2.2 model distinct from the GISSE-2.1 (Rind et al., 2020). Water isotopes are sensitive to
changing this parameter (Field et al., 2014). Increasing this parameter results in additional atmospheric mois-
tening and a subsequent increase in precipitation over the Maritime Continent (i.e., increased bias); however,
it does typically improve isotopic matches between GISS-E2.1 simulations and satellite observations (Worden
et al., 2007).

The entrainment rate (entr) parameters control how much environmental mass is entrained into a less- and
more-entraining convective plume. At most, two updraft plumes are permitted to initiate at each model level in
the GISS convective scheme, and the only requirement is that they have different entrainment rates thus allowing
a representation of shallow (i.e., more entraining) and deep (i.e., less entraining) convective towers within any
convective cloud ensemble in the GCM grid box.

The convective adjustment time (fconvadj) is a parameter that controls how quickly convective mass reaches
the tropopause, and thus how quickly the environmental profile of temperature and moisture adjusts to moist
convective processes.

The convective trigger (trigger) parameter determines what environmental conditions are necessary for initiating
convection. Physically this parameter can be interpreted as accounting for the multi-faceted role that the planetary
boundary layer plays in convective initiation (e.g., turbulent lifting of parcels, variations in near-surface stability
or moisture across a grid box), the role of vertical wind shear, the role of mesoscale ascent causing local destabi-
lization, or the role of gravity waves in the weakening of convection-inhibiting stable layers.

The radius multiplier (droprad) is a parameter that governs the sizes of liquid droplets and ice particles for a given
condensate amount. Though there are some observational estimates of sizes at cloud tops (Elsaesser, Del Genio,
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et al., 2017, and references therein), within-cloud estimates are largely unconstrained (and particularly within
convection, where attenuation of radiometric signals are substantial). In general, smaller sizes result in clouds
reflecting more shortwave (SW) radiation coincident with reduced outgoing longwave radiation (OLR).

Auto-conversion of cloud water content to precipitation is governed by a critical cloud water content scaling
parameter (critQ). Any liquid or ice water content above the scaled critical threshold will be converted to precip-
itation via auto-conversion, thus affecting cloud condensate, cloud fractions, and in turn, radiation.

2.4. Satellite Data

Our perturbed parameter configurations are evaluated using multiple PD satellite climatologies provided by the
Obs4MIPS project (https://esgf-node.llnl.gov/projects/obs4mips/) hosted on the Earth System Grid Federation
(https://esgf.llnl.gov). Top of the atmosphere absorbed shortwave (SWabsTOA) and OLR, along with cloud radi-
ative forcing estimates (SW_CRE, and LW_CRE) are provided by the CERES EBAF Edition 4.1 product (Kato
et al., 2018; Loeb et al., 2018, 2020). Temperature and water vapor profiles are provided by AIRS Version 6
retrievals (Tian et al., 2019; Tian & Hearty, 2020) for altitudes at and below 600 hPa, and by MLS Version 4
satellite retrievals (Waters et al., 2006) at and above 200 hPa. Column integrated total (cloud plus precipitating)
liquid water estimates (TLWP) are provided by the MAC-LWP (Elsaesser, O’Dell, et al., 2017) and TRMM
3A12 (Kummerow et al., 2001) products, while the column integrated ice counterparts (TIWP) are provided by
the CloudSat 2C-Ice (Deng et al., 2015) R05 and MODIS C6 (Marchant et al., 2016; Platnick et al., 2015; Yi
et al., 2017) products. Total precipitation (prec) is provided by GPCP Version 2.3 (Adler et al., 2003) and TRMM
TMPA (Adler et al., 2009; Huffman et al., 2007) Version 7 products. Convective precipitation (prec_mc) is
provided by the GPM Dual-frequency Precipitation (DPR) Radar product (Iguchi et al., 2012). Global total cloud
cover (tcc_iscep) is provided by the ISCCP (Rossow & Schiffer, 1999) D1 total cloud fraction product, while
surface wind estimates are provided by the QuikSCAT satellite and Remote Sensing Systems surface wind prod-
ucts (Wentz & Schabel, 2000; Wentz et al., 2007). Estimates of HDO (i.e., 6D) are retrieved from high-resolution
TES measurements (Berkelhammer et al., 2012; Worden et al., 2006).

We compared these multiple satellite climatologies to the perturbed parameter simulations and computed both
global and proxy site-averaged root mean square error (RMSE) scores.

2.5. Paleoclimate Data

To evaluate the atmosphere-only (S”‘Op simulations, we used land-based paleoclimate constraints which are less
impacted by the lack of surface ocean and ice feedbacks in these runs, minimizing proxy-model mismatches
that may be expected from including ice core records. We used the latest SISAL version 2 database (Comas-Bru
et al., 2020) and extracted 378 speleothem records from a total of 224 unique sites. In this version, multiple age
models for most cave sites were generated but we used the original published chronologies in obtaining mean
5180 over the following time periods: LGM (21 + 1 ka), MH (6 + 1 ka) and PI (last 2 ka). Depending on the
mineralogy (i.e., calcite or aragonite), mean 6'%0 values (VPDB) were converted to their drip water equivalents
analogous to 5130p (VSMOW) (Comas-Bru et al., 2019). We used model-generated mean annual SAT extracted at
the grid points nearest the cave sites as representative for cave temperatures required in the drip water conversion.
Records where mineralogy is unknown or mixed were excluded. Multiple records in a single site and model grid
box were then averaged except for those that report large dating errors (e.g., Kesang Cave, (Cai et al., 2017)). A
total of 257, 195 and 81 records were obtained for the PI, MH and LGM periods, respectively.

2.6. Sensitivity to Perturbations and Proxy-Model Comparison

To assess the spatial sensitivity of & 18OlD to perturbations in cloud and convective parameterizations, we derived
z-scores for each experiment, z = (X;“) ; where x is the mean 6“‘0p of an ensemble member over two decades (see
Section 2.2), i is the PPE mean and ¢ is the standard deviation about the mean decadal variability of each exper-
iment per grid box. We counted the number of ensembles per grid box where the absolute value of the z-score
is greater than 1 and then normalized the total against the number of PPE runs to derive a sensitivity score. A

maximum score of 1 indicates that all 19 ensemble members show significant difference from the PPE mean,
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and thus the highest sensitivity to parameter changes. We similarly evaluated the spatial sensitivity of PREC and
SAT to parameter changes.

Simulated 5‘30p from the nearest grid points to the cave sites were compared with associated proxy values for
each period; time slice anomalies for each period relative to PI were also examined. Skill statistics were calculated
over each time period using a weighted least squares regression and RMSE. The weights applied to the extracted
grid points were the derived sensitivity scores of a 5‘80p grid box to changes in cloud and convective parameter-
izations as discussed above, highlighting the strength of a proxy site in discriminating among perturbations (i.e.,
weight of 1) or penalizing a proxy site for exhibiting small changes with each perturbation (i.e., weight of 0).

3. Results
3.1. Spatial Sensitivity to Perturbations in Clouds and Convective Parameterizations

Based on the resultant spatial variability of precipitation (PREC), surface air temperature (SAT), and 5180p (Text
S1 in Supporting Information S1), we derived scores that represent the number of simulations in the ensemble
per grid box showing significant difference from the PPE mean (see Section 2.6) to highlight spatial sensitivity to
parameterization choices. Using the simulations from the balanced version, PREC and 5‘80p are more sensitive
to parameter changes, with over 30% of the overall land surface showing significant difference from the mean
across all time periods (Figure 1). SAT, on the other hand, shows less sensitivity, covering less than 30% of the
total land surface.

The regions that are most sensitive to clouds and convective processes in the GISS-E2.1 simulations of SAT are
spatially varying across time periods while that of PREC and 5180p are located almost everywhere except for
interior Africa (Figure 1). Based on our PPE simulations, these regions form the key sites to which model results
may be principally constrained by the presence of viable paleo-proxy records.

Relative to the PI period, sensitive regions for each variable increase in extent in the MH and LGM periods
(Figure 2), indicating that paleoclimate simulations are more sensitive to parameter changes relative to the
modern. This supports the premise of this proof-of-concept study that paleoclimate simulations, especially that of
o 18Op where parameter sensitive regions can be found almost everywhere, may be better at discriminating cloud
and convective parameterization changes across multiple PPE members than modern.

This observation is consistent with that of the unbalanced version, however, the spatial extent or the fraction of
land surface of highly parameter-sensitive sites has decreased across all time periods (Text S1, Figures S3 and S4
in Supporting Information S1), indicating that without re-tuning, model sensitivity decreases.

3.2. Model Evaluation Using Multiple Satellite Climatologies

Radiation, cloud, and thermodynamic variables from modern PPE simulations are compared to satellite esti-
mates provided largely from the Obs4MIPS archive (Waliser et al., 2020) (see Section 2). It is often the case that
inter-product differences for any cloud or thermodynamic variable exceeds published random noise or uncer-
tainty estimates. Such differences arise due to systematic regime-dependent unknowns in satellite cloud and
precipitation remote sensing (Duncan & Eriksson, 2018; Elsaesser & Kummerow, 2015; Liu et al., 2017; Rapp
et al., 2009). To avoid RMSE scores being dependent on any one satellite product choice, we explicitly account
for satellite product systematic biases by allowing no contribution to RMSE if the model field falls within the
observational range bounded by the minimum and maximum product estimates.

RMSE derived for global, as well as for grid boxes co-located only with proxy sites, are shown in Figure 3. Across
the board, RMSE is lower with a more muted response across PPE members for proxy site locations, where on
average, both total and convective rainfall are a factor of ~2 less than the tropical (30°S—30°N) avearge. Less
convection implies a smaller reliance on convective and cloud parameterizations, and a less complex atmosphere
to simulate. Both entr60-40 and tconvadjX2 are slightly more skillful for proxy site PREC, with a 5%-10%
reduction in RMSE compared to std, the default mode for GISS-E2.1; crirQ1-0.5 was the configuration exhibit-
ing subtle improvement across more diagnostics than other PPE members. When considering global scores, the
top two performers change to droprad50-50 and triggerl.O, with both exhibiting the lowest global RMSE for
PREC. Interestingly, when considering convective precipitation (prec_mc) only, both fconvadjX?2 and trigger0.99

RAMOS ET AL.

7 of 19



Y d |
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Advances in Modeling Earth Systems 10.1029/2021MS002893

MH B. PI A. PD

D. LGM

Score

Figure 1. Spatial patterns in sensitivity of precipitation, surface air temperature, and & 18Op to perturbed cloud and convective parameters for different time periods
(a—d). Shading represents the scores or the fraction of the total number of ensembles per grid box showing significant difference from the perturbed parameter
ensembles mean. The higher the score, the more sensitive a location is to parameter changes. The oceans are masked to highlight changes on land for these
atmosphere-only simulations. Percentages reported at the top right of each panel indicate the fraction of land surface (using present-day configuration in order to
facilitate comparison across time periods) having a score greater than 0.2.

outperform to a large degree, with both exhibiting a 10%—-20% reduction in RMSE (the rigger0.99 result is oppo-
site to what is inferred from the proxy-only site satellite score). Relative to the work of Field et al., 2014, we have
a smaller PD spread in 6'80 vapor. This change is likely due to the rev parameter being turned off in all of the
Field et al., 2014 experiments, and highlights the need to do multiple parameter changes simultaneously in future
work to infer a more complete picture of sensitivity to parameters.

3.3. Model Evaluation Using Proxy Data Under PI, MH and LGM Conditions

Our selected proxy database comprises a total of 257, 195 and 81 records for the PI, MH and LGM periods,
respectively. From each of the models, we extracted the simulated 5130p nearest each cave site. As shown in
our proxy-model comparisons (Figure 4), the mean 6 18OP distribution in all runs and time periods are in excel-
lent agreement with the proxies. In these comparisons, we prescribed weights to the simulated 5130p, based on
Figure 1, which gives importance to the spatial sensitivity of a particular site to parameter changes. Weighting
to z scores (Figure 1) significantly improved the overall proxy-model agreement compared to the unweighted
calculation (Figures S6-a to -s and S7 in Supporting Information S1).
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A. MH-PI

B. LGM-PI

Score

Figure 2. Same as Figure 1 but for (a) MH-PI and (b) LGM-PI anomalies.

While these first order comparisons show excellent agreement, discrepancies remain; for example, simulated
6 18Op is more negative (positive) at low (mid- to high) latitude speleothem sites compared to the proxies, with
those from the LGM exhibiting the largest offsets (Figure 4). These discrepancies could be due to cave specific
factors and model limitations (see Discussion) that may exacerbate proxy-model mismatches. Because simulated
5180, has the potential to better reflect processes within the karst system, we then compared the proxies with the
5'80, model results. Comparisons show high and significant correlations across all time periods (rZq, > 0.85,
Figures S8 and S9 in Supporting Information S1) with the less depleted 5'#0, values showing a better match
than the more depleted 6'80, values. However, the mismatch between the more depleted 5'%0; values remain,
leading to an overall lower agreement compared with using the simulated 6'*0,, results (17,45, > 0.87, Figure S9
in Supporting Information S1). Average transit times from the surface to the cave systems over multiple years,
along with site-specific karstic groundwater mixing effects, varies from each cave site, and thus may not be fully
represented in the models especially at individual speleothem sites exhibiting strong annual or seasonal signals
(e.g., (Comas-Bru et al., 2019)).

Spread among the weighted r? values in each simulation is small (standard deviation, ¢ < 0.03, Figure 5), indi-
cating that the parameterization choices do not drastically impact 5180p simulations, consistent with the proxy
site-collocated satellite results. Nonetheless, certain simulations show higher r? values than that of the std run,
representing an improvement in the level of agreement between models and proxies. The critical cloud water
content (critQI-4), entrainment rate for plume (entr50-50) and convective trigger (trigger0.99) parameters
exhibit the highest skill for the PI (r> = 0.944, RMSE = 1.794%0), MH (+? = 0.940, RMSE = 2.007%o) and
LGM (r? = 0.897, RMSE = 2.673%0) periods, respectively. Considering only the sites common across the time
periods (i.e., limited by the number of LGM sites), the entr60-40 and tconvadjX2 parameters emerged as the
best performing simulation for the PI (+? = 0.940, RMSE = 1.855%0) and MH (r* = 0.940, RMSE = 1.710%o0),
respectively, indicating that the reduced number and spatial spread of data points, with the influence of weight-
ing, impacts model performance. These results, broadly consistent with some of the best performers derived
from satellite comparisons (considering only the proxy sites), suggest that while different cloud and convective
scheme settings do not necessarily impose large changes on the model results for the sites considered, the best
parameterization for each time period may vary likely depending upon the prevailing boundary condition. This
warrants further investigation involving the use of the more appropriate fully coupled simulations using these
parameterizations.
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Figure 4. Comparison of simulated §'*0,, with speleothem 6'*0. Global distribution of simulated '%0, (background) and speleothem 6'*0, converted to their drip
water equivalents (See Materials and Methods) under (a) PI (n = 257), (c) MH (n = 195) and (e) Last Glacial Maximum (n = 81) conditions. Background and extracted
data points are from the perturbed parameter ensembles (PPE) mean. Speleothem Isotope Synthesis and Analysis §'%0 points with standard deviation greater than 1 are
marked with ‘+’. Scatterplots between simulated and proxy 5180p for the respective time periods (b, d, f). PPE members are differentiated by color. Black lines represent
the weighted least squares regression fits to data points while the gray dashed lines represent the 1:1 line. Weighted 7> and root mean square error for the PPE mean are
reported in the lower right corner of each scatterplot. The size of the circles in all plots are scaled to the sensitivity scores derived in Figure 1. Results for each ensemble
member are in Figures S6-a to S6-s in Supporting Information S1.

3.4. LGM and MH Isotopic Changes and Model Performance

To investigate the impact of parameter changes on the relative shift in 5180p, we computed anomalies between
the LGM and MH relative to the PI. LGM-PI anomalies consist of 17 records whereas MH-PI anomalies contain
79 records. Similar to the absolute value comparisons, we prescribed weights (extracted from Figure 2) to the
simulated §'0, anomalies. The spatial distribution of simulated LGM-PI 6'*0,, in the PPE mean shows an over-
all depletion over land, with the northern latitudes (i.e., ice sheet over North America and Europe) exhibiting
the greatest negative 6‘80p excursions — a direct consequence of temperature-dependent fractionation at higher
latitudes (Figure 6a). In contrast, the mid-latitudes are only slightly depleted while the Amazon, northern Africa,
Himalayas, and oceanic regions show overall positive § 18Op anomalies, consistent with the overall drier/cooler
conditions during the LGM relative to present.

Figure 3. Comparison of model with satellite data (top left) Global model-satellite root mean square error (RMSE) scores for absorbed shortwave (SW) radiation at
the top of the atmosphere (SWabsTOA), SW cloud radiative effects, outgoing longwave radiation, longwave_CRE, water vapor (qv) and temperature at various levels,
total (cloud + precipitating) liquid and ice water paths (TLWP, TIWP), convective and total precipitation (prec_mc, prec), ISCCP satellite cloud cover (tcc_isccp), 10-m
surface wind speeds (sfcwind) and 6D (top right) binary white-gray shading indicating if RMSE scores improved for a given ensemble member relative to std, with
numbers in parenthesis indicating the number of metrics exhibiting improvement (bottom row) As in the top row, but only for model and satellite grid boxes co-located
with paleo-proxy sites.
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Figure 5. Weighted 2 (black dots) and root mean square error (gray crosses) values between simulated §'%0 , and

Speleothem Isotope Synthesis and Analysis §'30 for all time periods. All speleothem §'%0 were converted to their drip water
equivalent.

Comparison with SISAL §'80 anomalies show moderate and statistically significant (p < 0.005) proxy-model
relationship (Figures 6b, Figure 7) with at least 70% of the records sharing similar signs. The strong positive and
negative anomalies observed in Paraiso cave, Brazil, and Sofular cave, Turkey, respectively, are not captured by
the models, where simulated 5"‘0p changes instead show values closer to zero. The spread among the weighted
r? values remains small (¢ < 0.06, Figure 7). The rev parameterization outperformed the std run, exhibiting
the lowest proxy-model mismatch compared to other parameterization results (r> = 0.647, RMSE = 1.152%o,
Figure 7). Regions of notable model improvement are in the Maritime Continent (n = 4), Africa (n = 2) and the

Middle East (except Sofular cave, n = 2) showing a 55%, 34% and 32% mean decrease in error relative to the std,
respectively.

Compared to LGM variations, MH changes relative to PI are more modest. Interior South America, India and
northern Australia show positive 6'80p anomalies in the PPE mean (Figure 6¢). In contrast, North America,
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Figure 6. Comparison of simulated 5‘30p anomalies (background) with speleothem §'30 (filled circles) for each time slices: (a) LGM-PI (n = 17), (c) MH-PI (n = 79).
Background and extracted data points are from the perturbed parameter ensembles (PPE) mean. Scatterplots between simulated and proxy 6180p for the respective time
periods (b, d). PPE members are differentiated by color. Gray dashed lines represent the 1:1 line. Weighted 72 and root mean square error for the PPE mean are reported

in the lower right corner of each scatterplot. The size of the circles in all plots are scaled to the sensitivity scores derived in Figure 2. Results for each ensemble member
are in Figures S10-a to S10-s in Supporting Information S1.

Eurasia, Himalayas, and East Asia show negative 6'80p anomalies, with the western and central African region
showing the greatest negative 5‘80p excursions — a consequence of simulated decrease in surface temperature and
increased precipitation or monsoon over these regions. Proxy-model agreement across runs lack skill in replicat-
ing MH-PI isotopic changes observed in the SISAL records (Figures 6d, 7), with only 35% of the records showing
similar signs in the PPE mean. The largest deviations are found in North and Central America (South America)
where positive (negative) anomalies are not reflected in the simulated 6]80p changes. Overall, the magnitude of
change is consistently smaller in the simulations (Figure 6d), as similarly observed in other models using fully
coupled simulations (e.g., (Cauquoin et al., 2019; Comas-Bru et al., 2019)). Of the 19 PPE members, only 4 show
statistically significant (p < 0.04) relationship with the proxies, outperforming the std 5]80p run (Figure 7). The
best performing parameterization is crirQ2-4 (weighted r? = 0.129, RMSE = 0.843%o, Figure 7), where 44% of
the data points now share similar signs. Notable regions of observed model improvement are in North America
(n = 6) and Europe (n = 14) showing a 14% and 30% mean decrease in error relative to the std, respectively.
Reducing the number of datapoints to match the sites from the LGM-PI changes shows a different result such that
the rriggerl.0 parameterization now shows the highest skill (weighted r? = 0.228, RMSE = 0.886%o).

4. Discussion and Conclusions

In this study, we have identified parts of the world that are most sensitive to convective and cloud parameteriza-
tions, which may provide the best opportunity for constraining key metrics in climate models. These areas could
potentially be the target locations for developing other proxy climate archives if the results of our GISS E2.1
simulations are held up across other models. Parameter-sensitive sites are different between the balanced and
unbalanced versions of the models with the latter showing more regions of lower sensitivity scores. This is likely
related to the greater variability among PPE members induced by changes in the spatial extent of mean SAT,
PREC and 5'30p by the parameter perturbations (Figures S1 and S2 in Supporting Information S1), affecting
more indiscriminate regions in the world. This outcome from the unbalanced version is less useful in constraining
biases related to cloud and convective parameterizations.

Our satellite-model analyses, stratified by global and proxy-specific skill scores, reveal that the distribution of
proxy sites here lie outside of the spatial domains most impacted by cloud and convective parameterization choices.
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Figure 7. Weighted 2 (black dots) and root mean square error (gray crosses) values between simulated §'%0 , and
Speleothem Isotope Synthesis and Analysis 6'30 anomalies for LGM-PI (top) and MH-PI (bottom).

This suggests a need for additional optimally suited sites distributed across more complex convection-cloud
schemes (e.g., tropical oceans) to constrain global simulations. Additionally, determining convective- and
parameter-sensitive areas across the world using different coupled atmosphere-ocean-vegetation models could
provide an excellent framework for targeted paleoclimate fieldwork to develop new archives and records.

Though the proxy sites are located in less complex atmospheric scenes (e.g., Africa where the biggest MH-PI
contrast occurs lack speleothem records as a function of geology), the first order spatial pattern of 6‘80p is in
excellent agreement between proxy data and all PPE members across all time periods. Also partly supported
by the satellite analyses, three parameterizations with highest model skill emerged: a 1:4 liquid and ice split for
critical cloud water content (critQ1-4) for the PI period, a 50:50 split of entrainment rate for plume (entr50-50)
for the MH and convective trigger of 0.99 (trigger0.99) for the LGM period. The simulations are able to capture
broad scale LGM-PI 5‘80p patterns where the rev parameterization performed best among PPE members. On the
other hand, model skill is significantly reduced in the MH-PI runs where the magnitude of change is consistently
smaller in all simulations compared to the proxies. Nonetheless, critQ2-4 parameterization outperformed the std
in the MH-PI simulations. Differences in the prevalence and average depth of convection across these warmer
and cooler periods would indeed suggest that different parameters (which correspond to different aspects of
convection) are more impactful on time period-dependent skill. These time period-dependent results motivate

the need to perturb numerous parameters simultaneously toward determining if optimal multi-parameter vectors
exist across all periods.

It is highly likely that the coupled simulations of these same experiments will exhibit a greater range of variability
across simulations. The fixed SSTs in our runs allowed us the ability to explore this approach with computationally
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inexpensive simulations; however, it also throttles coupled feedbacks muting LGM and MH variability across
ensemble members and precluded us from calculating ECS for every perturbed parameter. Further, these fixed
surface ocean conditions limit the paleoclimate constraints to land-based proxy archives. Other potential sources
of model discrepancies are related to ice sheet topography changes and dust concentrations (LGM), along with
the lack of vegetation and dust concentration feedbacks (LGM and MH) (Crucifix & Hewitt, 2005; Harrison
et al., 2014; Masson-Delmotte et al., 2006; Ullman et al., 2014), which may be best evaluated using fully coupled
atmosphere-ocean models.

Speleothem proxy climate records have their own set of uncertainties. Speleothem §'80 primarily reflects local
and regional climate signals controlling 5'30p. However, this signal may be altered as it enters the soil zone and
epikarst, a zone that stores infiltrated rainwater, through mixing with existing waters, seasonality of recharge rates,
and fractionation by evaporation before reaching the cave system (Baker et al., 2019; Hartmann & Baker, 2017).
Within the cave itself, the calcite §'30 signal can be further altered by non-equilibrium fractionation processes and
temperature-dependent fractionation during speleothem deposition (Baker et al., 2019; Hartmann & Baker, 2017,
Lachniet, 2009). Using 6'*0, instead of §'*0, in the comparisons did not show an improvement either (Figures
S8, S9 in Supporting Information S1). These cave specific factors are not reproduced in the models, exacerbating
discrepancies between proxies and simulations. Converting speleothem §'30 to its drip water equivalent similarly
introduces uncertainties as past cave temperatures are unknown (Comas-Bru et al., 2019). A natural next step to
better comparing the models to proxies is to convert the model output into proxy space via proxy system models,
an area of ongoing research (Dee et al., 2017; Evans et al., 2013).

While model biases and proxy uncertainties remain, our initial results add to the growing body of work that
demonstrates the utility of paleoclimate data in better constraining model skill, particularly at the model develop-
ment stage (Tierney, Poulsen, et al., 2020, Tierney, Zhu, et al., 2020; Zhu et al., 2021). Our approach and results
may be extended to other GCMs and could be especially useful for other models using similar parameters in their
cloud and convective parameterizations. Because cloud feedbacks within the climate system are non-stationary
under varying boundary conditions (Zhu et al., 2019), hence leading to differences in which parameterization
experiment performs best for each time period, this further supports the proposition that fine-tuning future simu-
lations requires determining all plausible parameter combinations and testing the limits of parameter values used
in this study. Future work applying this framework to coupled ocean-atmosphere simulations and incorporating
vegetation and dust change is needed to fully investigate the impact of parameter choices on paleoclimate simu-
lations. Incorporation of other land-based water isotope proxies such as those from ice cores, and inclusion of
SST proxies which reflects expected changes in radiative balance, will allow for further model evaluation. Tech-
niques like paleoclimate data assimilation could also be leveraged to identify optimal parameter choices that best
matches the paleorecord, and subsequently better constrain ECS as previously demonstrated (Annan et al., 2013;
Hargreaves & Annan, 2002; Osman et al., 2021; Tierney, Zhu, et al., 2020).

Data Availability Statement

Our perturbed parameter configurations were evaluated using multiple PD satellite climatologies provided by the
Obs4MIPS project (https://esgf-node.llnl.gov/projects/obs4mips/) hosted on the Earth System Grid Federation
(https://esgf.linl.gov/). Top of the atmosphere absorbed shortwave (SWabsTOA) and OLR, along with cloud
radiative forcing estimates (SW_CRE, and LW_CRE) are provided by the CERES EBAF Edition 4.1 product
(Kato et al., 2018; Loeb et al., 2018, 2020). Temperature and water vapor profiles are provided by AIRS Version
6 retrievals (Tian & Hearty, 2020; Tian et al., 2019) for altitudes at and below 600 hPa, and by MLS Version
4 satellite retrievals (Waters et al., 2006) at and above 200 hPa. Column integrated total (cloud plus precipitat-
ing) liquid water estimates are provided by the MAC-LWP (Elsaesser, O’Dell, et al., 2017) and TRMM 3A12
(Kummerow et al., 2001) products, while the column integrated ice counterparts are provided by the CloudSat
2C-Ice (Deng et al., 2015) R0O5 and MODIS C6 (Marchant et al., 2016; Platnick et al., 2015; Yi et al., 2017)
products. Total precipitation (prec) is provided by GPCP Version 2.3 (Adler et al., 2003) and TRMM TMPA
(Adler et al., 2009; Huffman et al., 2007) Version 7 products. Convective precipitation (prec_mc) is provided by
the GPM Dual-frequency Precipitation Radar product (Iguchi et al., 2012). Global total cloud cover (tcc_isccp) is
provided by the ISCCP (Rossow & Schiffer, 1999) D1 total cloud fraction product, while surface wind estimates
are provided by the QuikSCAT satellite and Remote Sensing Systems surface wind products (Wentz et al., 2007;
Wentz & Schabel, 2000). GISS E2.1 model outputs for SAT, PREC, 6 18Op and §'80, for each simulation and time
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