

# General Aviation Synthesis with Python An Optimization-Based Hybrid Propulsion Aircraft Design Software

Kenneth R. Lyons

# G∕SPý

GASPy Development Team

- Jennifer Bergeson (GRC)
- Sydney Schnulo (prev. GRC)
- Eliot Aretskin-Harriton (GRC)
- Benjamin Margolis (ARC)

- OpenMDAO Development Team (GRC)
- Advisors
  - Jeff Bowles (ARC)
  - Justin Gray (GRC)
  - Rob Falck (GRC)



1 Background

- 2 Software Stack
- **3** Reference Vehicle and Mission
- 4 Current Progress and Results







#### 1 Background

2 Software Stack

**3** Reference Vehicle and Mission

**4** Current Progress and Results

G∧SP∛



GASP: General Aviation Synthesis Program

- Modernize GASP to meet challenges of tightly-coupled concepts
- Facilitate integration with existing tools to improve subsystem models (e.g. pyCycle, VSPAERO)
- Generalize approach to vehicle analysis and design
- Facilitate knowledge transfer







## Goal: Optimization-Based Design

- Checkpoint: Verification
  - Port GASP submodules (weights and sizing, propulsion, aero)
  - Reimplement GASP mission analysis
  - Replicate GASP results with a reference vehicle
- Milestone: New capability
  - Integrate pyCycle-based engine
  - Coupled engine-airframe optimization with electrified engine
- Stretch goal: Optimized electrification





G∧SP∛

## **Optimization-Based Approach**



GASF

1 Background

2 Software Stack

**3** Reference Vehicle and Mission

**4** Current Progress and Results





| Cou        | Analysis  |
|------------|-----------|
| Propulsion | Model     |
|            | Library   |
| pyCycle    | LIDIALY   |
|            | Framework |

G∧SP∛

# OpenMDAO

Open Multidisciplinary Analysis and Optimization





Gray et al., "OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization," 2019.

Hwang and Martins, "A Computational Architecture for Coupling Heterogeneous Numerical Models and Computing Coupled Derivatives,", 2018.

GASP





Pycycle

Think NPSS but with analytic derivatives

- Cycle analysis tool for constructing an engine model
- Analytic derivatives enable efficient optimization
- Complex design requirements handled through multi-design point (MDP) analysis



Hendricks and Gray, "pyCycle: A Tool for Efficient Optimization of Gas Turbine Engine Cycles," 2019.

K. R. Lyons

GASPy



- Trajectory optimization framework supporting implicit and explicit methods
  - GASPy currently using collocation exclusively
- ODE evaluated only at the collocation nodes
- Ideal for optimizing without a controller model



defect constraints between computed state rates and interp. optimizer drives design vars to optimize objective, resolve constraints additional constraints may be imposed to e.g. fix initial condition

Falck et al., "dymos: A Python package for optimal control of multidisciplinary systems," 2021.

Paris, Riehl, and Sjauw, "Enhanced Procedures for Direct Trajectory Optimization Using Nonlinear Programming and Implicit Integration," 2006.

## SNOPT

#### Sparse Nonlinear Optimizer

$$\begin{array}{l} \underset{x \in \mathbb{R}^n}{\text{minimize } f(x)} \\ \text{subject to } l \leq \begin{pmatrix} x \\ c(x) \\ Ax \end{pmatrix} \leq u \end{array}$$

- Sequential quadratic programming (SQP)
- Can make use of (user-provided) exact derivatives
- Suited to *sparse* problems





K. R. Lyons

GASPy

Gill, Murray, and Saunders, "SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization," 2005.

Putting it all together



- Electrified pyCycle engine
- GASP-based weights and sizing, aero
- GASP-based mission implemented with dymos

# Model Construction: MDP Engine

 Design points: top of climb, rolling takeoff, sea-level static, start-of-cruise







# Model Construction: Trajectory



1 Background

2 Software Stack

**3** Reference Vehicle and Mission

**4** Current Progress and Results

G∕V255



## **Reference Vehicle**

GASPy built up from GASP 737 MAX 8 inputs

I/O from MAX 8 case used as a basis for testing



pjs2005 from Hampshire, UK, rotated by the uploader, CC BY-SA 2.0, via Wikimedia Commons

| GTOW        | 175,400 lb |  |  |
|-------------|------------|--|--|
| Cruise Mach | 0.8        |  |  |
| Cruise alt  | 37,500 ft  |  |  |
| Payload     | 36,000 lb  |  |  |
| SLS thrust  | 28,690 lbf |  |  |







G∕VS5∆

## GASP Design Mission: Takeoff



1 Background

2 Software Stack

**3** Reference Vehicle and Mission

4 Current Progress and Results

G∧SP∛



|  | "Vehicle | closure" |
|--|----------|----------|
|--|----------|----------|

- Variable GTOW
- Fixed engine size
- Match GASP range

| GASP    | GASPy                                                 | error                                                               |
|---------|-------------------------------------------------------|---------------------------------------------------------------------|
| 175,400 | 174,562                                               | -0.48%                                                              |
| 96,348  | 95,805                                                | -0.56%                                                              |
| 43,050  | 42,756                                                | -0.68%                                                              |
| 8.128   | 8.110                                                 | -0.22%                                                              |
| 18.61   | 18.58                                                 | -0.16%                                                              |
|         | GASP<br>175,400<br>96,348<br>43,050<br>8.128<br>18.61 | GASPGASPy175,400174,56296,34895,80543,05042,7568.1288.11018.6118.58 |



G∕VS5∆

### Reference Case Results: Whole Trajectory



## Reference Case Results: Takeoff



G∧SP∛

# Engine Deck Sizing

- Variable SLS airflow  $\left(F(Ma, h, T_4) = \frac{\dot{m}_{SLS}}{\dot{m}_{SLS,ref}}F_{ref}(Ma, h, T_4)\right)$
- $\blacksquare$  Rate-of-climb at top-of-climb constrained to  $\geq$  300 fpm
- Total range always 3,675 nmi

|                        | GASP    | vary GTOW | vary airflow | vary both |
|------------------------|---------|-----------|--------------|-----------|
| GTOW (lb)              | 175,400 | 174,562   | 175,400      | 173,977   |
| SLS thrust (lbf)       | 28,690  | 28,690    | 29,435       | 28,162    |
| ROC @ TOC (fpm)        | 339.9   | 341.6     | 400.0        | 300.0*    |
| Cruise TSFC (lb/lbf/h) | 0.5487  | 0.5478    | 0.5470       | 0.5485    |
| Cruise range (nmi)     | 3,417   | 3,429     | 3,437        | 3,421     |
| Cruise fuel (lb)       | 33,866  | 33,969    | 34,225       | 33,785    |
| Block fuel (lb)        | 43,050  | 42,756    | 42,936       | 42,645    |



# Engine Deck Sizing

- Variable SLS airflow  $\left(F(Ma, h, T_4) = \frac{\dot{m}_{SLS}}{\dot{m}_{SLS,ref}}F_{ref}(Ma, h, T_4)\right)$
- $\blacksquare$  Rate-of-climb at top-of-climb constrained to  $\geq$  300 fpm
- Total range always 3,675 nmi

|                        | GASP    | vary GTOW | vary airflow | vary both |
|------------------------|---------|-----------|--------------|-----------|
| GTOW (lb)              | 175,400 | 174,562   | 175,400      | 173,977   |
| SLS thrust (lbf)       | 28,690  | 28,690    | 29,435       | 28,162    |
| ROC @ TOC (fpm)        | 339.9   | 341.6     | 400.0        | 300.0*    |
| Cruise TSFC (lb/lbf/h) | 0.5487  | 0.5478    | 0.5470       | 0.5485    |
| Cruise range (nmi)     | 3,417   | 3,429     | 3,437        | 3,421     |
| Cruise fuel (lb)       | 33,866  | 33,969    | 34,225       | 33,785    |
| Block fuel (lb)        | 43,050  | 42,756    | 42,936       | 42,645    |



# Engine Deck Sizing

- Variable SLS airflow  $\left(F(Ma, h, T_4) = \frac{\dot{m}_{SLS}}{\dot{m}_{SLS,ref}}F_{ref}(Ma, h, T_4)\right)$
- $\blacksquare$  Rate-of-climb at top-of-climb constrained to  $\geq$  300 fpm
- Total range always 3,675 nmi

|                        | GASP    | vary GTOW | vary airflow | vary both |
|------------------------|---------|-----------|--------------|-----------|
| GTOW (lb)              | 175,400 | 174,562   | 175,400      | 173,977   |
| SLS thrust (lbf)       | 28,690  | 28,690    | 29,435       | 28,162    |
| ROC @ TOC (fpm)        | 339.9   | 341.6     | 400.0        | 300.0*    |
| Cruise TSFC (lb/lbf/h) | 0.5487  | 0.5478    | 0.5470       | 0.5485    |
| Cruise range (nmi)     | 3,417   | 3,429     | 3,437        | 3,421     |
| Cruise fuel (lb)       | 33,866  | 33,969    | 34,225       | 33,785    |
| Block fuel (lb)        | 43,050  | 42,756    | 42,936       | 42,645    |



# Electrification with pyCycle

- Assist added as constant power applied to LP shaft
- Constant power for a given phase:  $P_{\text{part}} = P_{\text{max}} \left( \frac{\text{PC}}{30} \frac{2}{3} \right)$
- Preliminary automatic battery sizing with augmentation system weight estimation

| Phase   | PC     | P <sub>max</sub> (hp) | P <sub>part</sub> (hp) |
|---------|--------|-----------------------|------------------------|
| Taxi    | 21     | 0                     | 0                      |
| Takeoff | 50     | 1,341                 | 1,341                  |
| Accel   | 47     | 1,341                 | 1,206.9                |
| Climb   | 47     | 1,341                 | 1,206.9                |
| Cruise  | $\sim$ | 0                     | 0                      |
| Descent | 21     | 0                     | 0                      |
| Landing | 21     | 0                     | 0                      |



Cruise PC determined by solver for T = D

# pyCycle Engine Sizing and Optimization Progress

#### Variable GTOW, fixed MDP engine

- pyCycle enabled for all phases except descent
- $\blacksquare$  Run on Skylake node with 42 processes took  $\sim 25$  minutes



# pyCycle Engine Sizing and Optimization Progress

#### Variable GTOW, fixed MDP engine

- pyCycle enabled for all phases except descent
- $\blacksquare$  Run on Skylake node with 42 processes took  $\sim 25$  minutes
- Fixed GTOW, sized MDP engine (variable  $\dot{m}_{TOC}$ )
  - pyCycle enabled for second climb & cruise only
  - Engine sized up dramatically (860 fpm @ TOC)
  - Engine weight model may not be sufficient



# pyCycle Engine Sizing and Optimization Progress

#### Variable GTOW, fixed MDP engine

- pyCycle enabled for all phases except descent
- $\blacksquare$  Run on Skylake node with 42 processes took  $\sim 25$  minutes
- Fixed GTOW, sized MDP engine (variable  $\dot{m}_{TOC}$ )
  - pyCycle enabled for second climb & cruise only
  - Engine sized up dramatically (860 fpm @ TOC)
  - Engine weight model may not be sufficient
- Variable GTOW, sized MDP engine
  - Still having some convergence issues
  - Enabling pyCycle for second climb segment only is working

#### Performance

- Improve robustness with and without pyCycle
- Improve augmentation system integration







Performance

- Improve robustness with and without pyCycle
- Improve augmentation system integration

GASP feature parity

- Develop simplified user interface
- Test additional aircraft and configurations
- Reserve mission, OEI takeoff, other climb modes







Performance

- Improve robustness with and without pyCycle
- Improve augmentation system integration

GASP feature parity

- Develop simplified user interface
- Test additional aircraft and configurations
- Reserve mission, OEI takeoff, other climb modes
- Potential future tool integrations
  - Engine weight estimation
  - Higher-fidelity aerodynamics



