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Abstract—The demand for voice and data communications
continues to rise with the emergence of new aerial vehicles into
the airspace and the continued growth of aviation operations
throughout the National Airspace System (NAS). Recent studies
have shown that the anticipated growing demand for spectrum
resources will exceed the capacity of existing aviation spectrum
allocations. Further, airspace configurations, via assignment of
fixed channel allocations within standard service volumes, do
not allow for the dynamic and efficient distribution of spectrum
resources based on airspace demand; as a result, a new approach
to aviation spectrum management is needed to support the
forecasted needs of new airspace users. The National Aeronautics
and Space Administration (NASA) is investigating applications
of artificial intelligence (AI), machine learning (ML), and other
advanced concepts to solve a dynamic constraint satisfaction
problem which is analogous to the frequency assignment problem
faced by aviation. Procedures and strategies for dynamic channel
allocation can be borrowed from other large-scale mobile services
(i.e., 4G/5G applications) and can provide a novel spectrum
management approach that allows for the intelligent utilization
of aviation spectrum throughout the airspace while maintaining
the strict quality of service prescribed by aeronautical standards.

Index Terms—Communications, aeronautics, machine learn-
ing, artificial intelligence, spectrum sharing, resource manage-
ment, prediction, national airspace system, AAM. graph coloring

I. INTRODUCTION

NASA’s aeronautics research programs are focused on the
transformation of aviation for enhanced sustainability and
accessibility, including new initiatives such as electric-powered
aircraft, commercial supersonic flight, and enhanced air traffic
management with increased automation for safer and more
efficient air travel. The Advanced Air Mobility (AAM) concept
is another initiative that focuses on the development of air
transportation capabilities for the movement of passengers and
cargo throughout regions of airspace not previously served
by traditional aviation operations. As part of this effort, the
AAM project is investigating novel air traffic management ap-
proaches that enable a more collaborative and information-rich
environment. Recent studies have indicated that the complexity
of air operations in the AAM environment will require diverse

air-ground and air-air communications capabilities to ensure
safety and crucial information distribution for users within
the airspace. The communications systems of the new aerial
users must seamlessly interconnect to other aircraft and ground
assets for the timely exchange of data for ensured safe travel
throughout varying conditions and environments. As of this
time, the specific requirements for AAM applications are still
in formulation; however, recent studies performed by the AAM
community indicate that the existing spectrum management
approach will not scale to meet the anticipated needs [1].

Accordingly, researchers at the NASA Glenn Research
Center and the University of Louisville are investigating
approaches to enhance the management of aviation spectrum
through the implementation of artificial intelligence (AI) and
machine learning (ML). The identified techniques for assign-
ing channels for communication links are applicable to both
existing applications, such as today’s air traffic control (ATC)
system, as well as to future applications, such as the AAM
initiative.

Recent efforts within this investigation have evaluated the
use of a Deep Reinforcement Learning approach for spectrum
management in air-ground and air-air AAM use cases, as
described in [2], [3]. This paper focuses on the examination of
a graph coloring approach to address the channel assignment
problem for a hypothetical AAM use case under interference
constraints. The investigation compares the performance of a
relatively simple (e.g., “greedy”) algorithm to the performance
gained by using a learning-based algorithm, specifically a
graph convolutional neural network, to solve the resource
allocation problem. Additionally, various predictive methods
are described, which are used to simplify the problem space
in situations where obtaining a valid solution may be difficult
or impossible for scenarios with large numbers of nodes and
many edges.

To support this analysis, the team is also developing an aero-
nautical communications modeling and simulation capability
for the evaluation of proposed spectrum management methods
through the implementation and use of graphical, mathematical



Fig. 1. Visualization of the airspace at one timestep using simulation tool.
Aircraft move from their randomly selected origin to a randomly selected
destination over 100 steps.

and data analysis tools. This simulation environment allows
researchers to evaluate the performance of neural networks
and other learning-based models using realistic airspace op-
erational scenarios to assess concept feasibility, accuracy,
scalability, and efficiency. It is anticipated that the outcomes
of this study will enable the spectrum needs of future airspace
communications to be met, including the existing air traffic
control system as well as future AAM, high-altitude Class E
airspace communications, and others.

II. PROBLEM STATEMENT AND SYSTEM MODEL

A. Problem Statement

Spectrum is an already finite and limited resource, and
considering new aviation initiatives such as AAM are en-
visioning new complex airspace scenarios with new aerial
vehicles and diverse communications requirements, the current
infrastructure will likely not scale to meet the anticipated
demand. Accordingly, this study examines if the proposed
spectrum management strategies can support the demand given
a traffic scenario with defined airspaces, aircraft trajectories
and supporting ground stations. Areas of investigation in-
clude determining: 1) how spectrum “real estate” is required
depending on the traffic scenario, 2) if there any limits or

“stress points” in a particular region or regions, and 3) how
much time the allocation is required for a given flight path.
In general the resource allocation function will attempt to
minimize interference while utilizing a constrained number of
available channels.

For this initial study, the team is evaluating the performance
of a graph coloring approach for dynamic resource allocation
in a simulation scenario that attempts to align with the current
assumption for Urban Air Mobility (UAM) Maturity Level
4 (UML-4), which is defined as a late-intermediate level of
maturity in the anticipated evolutionary stages of the UAM
transportation system. The UAM maturity levels are described
in detail in [1].

B. System Model

In accordance with the assumptions of UML-4, this use case
considers approximately 100 aircraft traveling at an altitude
of 3000 feet above ground level (AGL). For simplicity, this
study assumes that all aircraft traverse a linear lateral trajectory
at a constant altitude and velocity between randomly-defined
departure and arrival points over 100 simulation steps, as
depicted in Fig 1. Future work will focus on more realistic
aircraft flight trajectories (vertically and laterally) between
defined vertiports through structured air routes referred to as
UAM corridors.

Communications links are assumed to be only established
between aircraft and ground stations (i.e., no vehicle-to-vehicle
communications). Transceiver parameters assume constant
transmit power, antenna gain, and channel bandwidth. Free-
space path loss is assumed for the link equations, with more
complex channel models being planned for future efforts.

This scenario assumes a finite number of available fre-
quency channels to share among all aircraft within the
airspace. Wherever possible, the resource allocation function
will strive to provide a unique channel to each aircraft to
eliminate the possibility of interference. Further, predictive
methods are employed such that channels are only allocated
when needed (i.e., event-based), which simplifies the alloca-
tion process.

For interference calculations, this study focuses on the inter-
site frequency engineering procedures for very high frequency
(VHF) air-ground links as described by the Federal Aviation
Administration (FAA) in [4]. Specifically, the procedures
require that at worst-case, an aircraft will receive the desired
signal at a level that is 14 dB stronger than from a co-channel
interferer, i.e., the desired-to-undesired signal level (D/U)
is at least 14 dB. Given the constant transceiver parameters
described above, the ratio (D/U) becomes dependent only
upon the free-space path loss.

Distance becomes the dominating variable and the desired-
to-undesired ratio of 14 dB translates to a distance ratio dU/dD
of at least 5. Consequently, any co-channel interfering node
must remain at least five times the distance from the desired
transmitter in order to meet the 14 dB specification. For
additional interference protection, this study assumes that any



Fig. 2. Prediction and allocation functional flow

transmitting node that is within a distance ratio of 6 will be
considered a co-channel interferer.

III. SPECTRUM MANAGEMENT APPROACH

The proposed concept for autonomous spectrum manage-
ment aims to provide an intelligent, efficient, flexible, and
scalable solution to improve spectrum utilization (allocation,
access and sharing) using recent advancements in artificial
intelligence and machine learning. Fig. 2 depicts the functional
flow chart of an intelligent spectrum management concept.
The prediction module is a prerequisite for the ensuing al-
location module. Specifically, the prediction module outputs
air traffic and communications demands (i.e., prediction prod-
ucts) throughout the airspace, whereby the resource allocation
module dynamically reserves resources based on the predicted
results and other inputs. Then these reserved resources are
dynamically allocated to communication assets throughout the
air and ground portions of the airspace system. To achieve the
goal of safe and efficient air operations, the resource allocation
function strives to maximize the utilization efficiency of avail-
able resources (spectrum, power, time, etc.), while meeting
the desired Quality of Service (QoS) requirements for users
throughout the airspace.

A. Resource Allocation

The use of graph coloring in the context of resource
allocation has been a widely-studied problem for spectrum
management applications [5]–[9], and this investigation fo-
cuses on the use of a graph coloring approach to address the
channel assignment problem in the AAM scenarios identified
previously. Graph coloring is a method that assigns colors to
vertices of a graph such that no two vertices linked by an edge
share the same color, and Fig. 3 provides an example of how
aircraft proximity can be translated to an intersection graph
whose vertices and edges are defined by regions of airspace
where an aircraft may experience detrimental interference.
Aircraft that are sufficiently separated in space would not
present a risk of interference and would thus not be joined
by an edge in the graph representation.

Utilizing multiple methods to dynamically assign resources
allows for selection depending on the complexity of the
problem. In cases where the number of available resources

exceeds demand, a simple greedy (or first-come first-serve)
algorithm is more than sufficient. However, in cases where
demand exceeds the available resources, there is potential for
interference between many of the aircraft in the scenario. In
such cases, the use of a more sophisticated approach based
on machine learning may serve to provide a better solution.
Accordingly, the following sections compare the performance
a relatively simple greedy algorithm to the performance gained
by using a learning-based algorithm, specifically a graph
convolutional neural network.

B. Prediction

Depending on the complexity of the airspace modeling
scenario, determining a valid solution via graph coloring may
be difficult or impossible considering the large number of
nodes with many edges. One approach to simplify the problem
complexity is to only assign spectrum when needed, whereby
predictive methods may be used to eliminate interference
scenarios that may not be relevant at the time of consideration.
For example, airspace nodes will likely not interfere with
each other if there is no need for concurrent transmission.
Additionally, airspace nodes that are substantially separated in
distance are not able to pose unwanted interference, and may
also be eliminated from the problem space. As a result, the
implementation of methods to predict when communication
events may occur can substantially reduce problem complexity
and allow for the determination of a solution. Elimination of
irrelevant airspace users will remove potential instances of
interference, resulting in a simpler graph representation with
fewer edges.

Aircraft trajectory prediction can be considered a first
step in determining when communication events may occur.
Based on environmental factors such as aircraft positions,
airspace restrictions, and weather information, the predic-
tion algorithms may determine when an aircraft will have
a need for communication, as not all airspace users require
an uninterrupted communications link (such as the case for
unmanned aerial vehicles). Accordingly, implementation of
these prediction methods can simplify the problem complexity,
and thereby increasing the possibility of the resource allocation
function obtaining a valid solution. Reducing the amount of
time required for communications contact allows for more

Fig. 3. An example areas of potential interference around aircraft and
translating it to a graph.



channels to be used by more aircraft, and therefore increasing
airspace communication capacity.

The team is investigating methods of prediction using
various approaches, such as 1) flight trajectory prediction
using recurrent neural network approaches [10], and 2) com-
munications demand prediction using a federated learning
approach [11]. These research areas are still evolving towards
maturity and will eventually be incorporated into the modeling
and simulation capability. However, for this effort, a more
simple approach is used to 1) generate flight tracks between
vertiports and 2) estimating communication demand by evalu-
ating airspace sector crossing events. Future work will include
consideration for additional events, such as altitude changes,
aircraft vectoring around weather systems, and others.

IV. GRAPH COLORING METHOD

A. Greedy Algorithm

The most fundamental method to solve the graph coloring
problem is via a greedy algorithm, which is analogous to a
“first-come, first-served” scheduling process or the function-
ality of cognitive radios that ”listen” for open channels and
make use of any unoccupied spectrum at the time. The greedy
algorithm has at its disposal a list of available channels (or
colors) for each node within the airspace. For each node that
requires a channel, the algorithm will assign the first available
color, which is then removed as a color option for all other
connected nodes. This process is repeated until all nodes are
assigned a color. In this implementation, the algorithm will
randomly assign a color in cases where there is no available
color that would satisfy the problem. Clearly, this method may
not provide an optimal solution and may even fail when a
valid solution exists. More complex methods may implement
sorting or backtracking functionality to determine solutions or
to reduce conflicts. Computational complexity is an additional
consideration and may become an issue when examining larger
systems. Future efforts may explore other heuristic approaches
for graph coloring, such as Recursive Largest First, DSatur and
others.

B. Graph Convolutional Network

As airspace scenarios become more complex, artificial in-
telligence and machine learning can be used as tools to aid in
the resource allocation problem [12]. However, given the large
number of possible scenarios that may or may not have solu-
tions nor labeled training data, investigation of unsupervised
learned techniques allows for a viable approach. Accordingly,
the team has chosen to implement a graph convolutional neural
network inspired by [13], [14]. As an input to the network, an
adjacency matrix is formed based on the relative positioning
of aircraft within a region of airspace. Given the adjacency
matrix as an input, the neural network model returns a coloring
solution that attempts to satisfy the graph coloring problem, or
in the absence of a solution, minimizes the number of conflicts
through an energy-based loss function.

For this study, a graph G is represented by N×N adjacency
matrix A describing the relation of nodes in edges in the

graph. The adjacency matrix serves as the input to the neural
network, as illustrated in Fig. 4. The output of the network
is an N × C matrix C that contains the set of probabilities
that a node N would be assigned any color C such that∑

c CN,c = 1. Ideally, the probability of a single color should
approach 1 in a well-trained network. In this context, reducing
the loss to zero indicates a coloring solution with no conflicts.
However, in cases where there may be no valid solution, the
network will minimize conflicts in accordance with the loss
function.

The graph network implemented in this work utilizes two
topology adaptive graph convolutional layers from [15], with
dimensional embedding and hidden layer sizes both set to
60. The input layer uses a ReLU activation function, and
the output uses a Softmax activation to generate the output
probabilities for each color. Network training is performed
using a slightly modified version of the physics-inspired loss
function from [13]. The loss is calculated as

Loss =

C∑
i

p⊺i Api (1)

where pi is a length N column of C, the probability of
assigning the ith color to each node in the graph represented
by the adjacency matrix A.

V. SIMULATIONS

To implement the intelligent spectrum management concept
and evaluate its performance, a modeling and simulation
platform consisting of computational tools and environment vi-
sualization is being developed. An important aspect of the tool
is the development, integration, and evaluation of learning-
based models in a simulated airspace operational environment.
Additional design objectives include the development of a live,
virtual and constructive operational mode in which concepts
can be incrementally evaluated as maturity and confidence is
achieved.

A modularized architecture design is employed to enable
a flexible and scalable approach to evaluate and test various
communications systems, airspace environments, and neural
network models. The tool is designed to enable rapid develop-
ment of new airspace configurations and to apply new channel
assignment strategies for evaluation. Simulations generate a
dataset that is representative of the airspace environment (i.e.,
adjacency matrix) and provides this information to either in-
ternal or external functions for additional processing. External
functions may include various artificial intelligence or machine
learning applications. The simulation software then utilizes the
outputs of these prediction and allocation functions to examine
the quality of services for each active communication link
in the airspace. Using this simulation tool, the previously-
described graph coloring methods are implemented as allo-
cation functions for channel resource assignment.

A. Graph Coloring Allocation Functions

The allocation function utilizes the information on the
state of the airspace in the form of an adjacency matrix.



Fig. 4. GCN ex chart with input adjacency matrix A and output coloring assignments.

Initial simulations compare the number of interference events
observed within a scenario described by the system model in
Section II-B.

Given these assumptions, a graph is created to represent
the state of the airspace at each simulation step, and three
allocation methods are examined: 1) greedy allocation, 2) a
graph network trained using the entire simulation dataset (i.e.,
iterate over 100 input graphs), and 3) a graph network trained
for each simulation step (i.e., a new network is trained for each
input graph). In each case the number of available channels
was constrained to 20.

The results of the simulations are displayed in Figs. 5 and
6. The number of observed interference events is greatest
when the aircraft density is highest, represented by graphs
with the greatest number of edges. The greedy algorithm
performs the worst when the aircraft density is high, while
the graph network methods show improved performance. The
graph network that was trained with the entire data set shows
a number of instances of worse performance compared to the
greedy algorithm.

B. Communication Prediction

In order to simplify the graph provided to the allocation
network, this work also considers the case where an aircraft is
only assigned a channel when it needs to communicate. Rather
than allocate channels to each aircraft in the simulation, the
allocation function will only allocate resources to aircraft that
are predicted to require communications. The use of machine
learning can provide insight into when an aircraft would need
to communicate. However, in this paper, a simple method
for communication prediction is explored by examining the
flight path of the aircraft with respect to airspace boundaries.
So this simple method assumes that an aircraft only requires
an allocated channel when transitioning between regions of
airspace. In the examined scenario, the airspace boundary
crossing lies approximately 7.5 km from a ground station, and
aircraft that are greater than 6 km from a ground station are
considered to require communications for a boundary-crossing
event. Fig. 7 displays how the number of edges in the graph,
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Fig. 5. The number of interference events per simulation time step determined
for the greedy allocation algorithm and graph convolutional network cases.
Graph Network case (1) was trained using 100 graphs. Graph Network case
(2) involved a single trained network per graph.

i.e., the number of potential interference events, is reduced
from the full airspace scenario.

The three allocation methods are re-examined for the result-
ing simplified adjacency matrix. In both the greedy allocation
and the graph network that was trained for each simulation
step, there are no instances of interference. However, the graph
network that was trained using all simulation data continues to
show instances of interference, albeit significantly fewer with
only two instances of interference occurring at four simulation
steps.

VI. CONCLUSIONS

This study compared different allocation techniques to
evaluate communications capacity in a hypothetical airspace
scenario. Based on the simulations and their results, key items
of observation are as follows:
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greedy allocation algorithm and the graph convolutional network cases. Case
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Fig. 7. The number of edges in the generated graph adjacency matrices
for the full airspace communication scenario and the simplified predicted
communication scenario.

1) Graph coloring using AI shows improved performance
over greedy coloring in high density/demand use cases.

2) Graph convolutional networks by themselves are not
well-suited to accommodate time-dynamic situations.

3) This weakness in the time dynamic scenarios may be
remedied by using structured airspace configurations
and separation standards that are under development
for AAM. Introducing these configurations would create
a finite number of possible graph representations of

the airspace. However, such configurations are not yet
clearly defined.

4) Combining the graph convolutional network with a
recurrent neural network is another potential solution to
address the challenge of a time-dynamic structure [16]–
[18].

5) There are instances where it may be best to choose
which allocation method to use based on available
resources and complexity of the scenario.

6) The level of structure in airspace configurations will
greatly impact the ability for communication systems
to appropriately allocate resources [19], [20].

Future work will include additional constraints in the de-
fined graphs such as power, velocity, etc. Methods of intro-
ducing time dynamics into the graph neural network will be
explored along with more sophisticated communication predic-
tion algorithms to reduce the complexity of the graph structure.
Further analysis in a variety of different configurations of
structured airspaces and corridors will aid in the development
of AAM communications by enabling more efficient use of
aeronautical spectrum resources.

REFERENCES

[1] B. P. Hill, D. DeCarme, M. Metcalfe, C. Griffin, S. Wiggins, C. Metts,
B. Bastedo, M. D. Patterson, and N. L. Mendonca, “Uam vision concept
of operations (conops) uam maturity level (uml) 4,” 2020.

[2] R. Han, H. Li, E. J. Knoblock, and R. D. Apaza, “Dynamic spectrum
allocation in urban air transportation system via deep reinforcement
learning,” in 2021 IEEE/AIAA 40th Digital Avionics Systems Conference
(DASC), 2021, pp. 1–10.

[3] Z. Wang, H. Li, E. J. Knoblock, and R. D. Apaza, “Joint spectrum access
and power control in air-air communications - a deep reinforcement
learning based approach,” in 2021 IEEE/AIAA 40th Digital Avionics
Systems Conference (DASC), 2021, pp. 1–6.

[4] Spectrum Management Regulations and Procedures Manual, FAA order
6050.32B.

[5] C. Lee, S.-M. Oh, and A.-S. Park, “Interference avoidance resource
allocation for d2d communication based on graph-coloring,” in 2014
International Conference on Information and Communication Technol-
ogy Convergence (ICTC). IEEE, 2014, pp. 895–896.

[6] D. Tsolkas, E. Liotou, N. Passas, and L. Merakos, “A graph-coloring
secondary resource allocation for d2d communications in lte networks,”
in 2012 IEEE 17th international workshop on computer aided modeling
and design of communication links and networks (CAMAD). IEEE,
2012, pp. 56–60.

[7] X. Cai, J. Zheng, and Y. Zhang, “A graph-coloring based resource
allocation algorithm for d2d communication in cellular networks,” in
2015 IEEE International Conference on Communications (ICC). IEEE,
2015, pp. 5429–5434.

[8] S. Basloom, A. Nazar, G. Aldabbagh, M. Abdullah, and N. Dimitriou,
“Resource allocation using graph coloring for dense cellular networks,”
in 2016 International Conference on Computing, Networking and Com-
munications (ICNC). IEEE, 2016, pp. 1–5.

[9] E. Pateromichelakis and K. Samdanis, “A graph coloring based inter-
slice resource management for 5g dynamic tdd rans,” in 2018 IEEE
International Conference on Communications (ICC). IEEE, 2018, pp.
1–6.

[10] N. Schimpf, E. J. Knoblock, Z. Wang, R. D. Apaza, and H. Li, “Flight
trajectory prediction based on hybrid- recurrent networks,” in 2021
IEEE Cognitive Communications for Aerospace Applications Workshop
(CCAAW), 2021, pp. 1–6.

[11] N. Schimpf, H. Li, E. Knoblock, and R. Apaza, “Communication
demand in the national airspace – a federated learning approach,” in 2022
Integrated Communication, Navigation and Surveillance Conference
(ICNS), 2022, pp. 1–11.



[12] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24,
2021.

[13] M. J. A. Schuetz, J. K. Brubaker, and H. G. Katzgraber, “Combina-
torial optimization with physics-inspired graph neural networks,” arXiv
preprint arXiv:2107.01188, 2021.

[14] M. J. Schuetz, J. K. Brubaker, Z. Zhu, and H. G. Katzgraber, “Graph
coloring with physics-inspired graph neural networks,” arXiv preprint
arXiv:2202.01606, 2022.

[15] J. Du, S. Zhang, G. Wu, J. M. Moura, and S. Kar, “Topology adaptive
graph convolutional networks,” arXiv preprint arXiv:1710.10370, 2017.

[16] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, T. Schardl, and C. Leiserson, “Evolvegcn: Evolving graph
convolutional networks for dynamic graphs,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 5363–
5370.

[17] F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph convolutional
networks,” Pattern Recognition, vol. 97, p. 107000, 2020.

[18] S. Solomon and N. Wein, “Improved dynamic graph coloring,” ACM
Transactions on Algorithms (TALG), vol. 16, no. 3, pp. 1–24, 2020.

[19] A. Bauranov and J. Rakas, “Designing airspace for urban air mobility:
A review of concepts and approaches,” Progress in Aerospace Sciences,
vol. 125, p. 100726, 2021.

[20] D.-S. Jang, C. A. Ippolito, S. Sankararaman, and V. Stepanyan, “Con-
cepts of airspace structures and system analysis for uas traffic flows for
urban areas,” in AIAA Information Systems-AIAA Infotech@ Aerospace,
2017, p. 0449.


