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Abstract—This paper studies the Multiple Sources and Multi-
ple Destinations (MSMD) routing problem in a dynamic Air-to-
Air Ad-hoc Network (AAAN). We consider a spectrum limited
scenario where multiple links have to share the same frequency
channel so that co-channel interference becomes inevitable. As a
result, routing decisions and spectrum access are coupled and
must be jointly considered. This paper proposes a deep Q-
learning based algorithm to find an optimal routing and channel
selection strategy that minimizes the end-to-end communication
delay. Specifically, under the assumption that only local informa-
tion is available to every node, the Deep Q-Network (DQN) is
trained offline to learn the optimal routing and channel selection
strategy. After the trained DQN is implemented in every node,
multiple relay nodes can simultaneously determine their next-
hop relay and channel selections in real-time. Simulation results
demonstrate the efficacy of our proposed algorithm.

Index Terms—AAAN, Routing, Deep Reinforcement Learning,
Channel Selection

I. INTRODUCTION

The ever-increasing number of aerial vehicles flying in the
national airspace leads to a new type of wireless network
that establishes ad-hoc connections among aircraft in highly
dynamic environment [1]–[6]. In recent years, considerable
progress has been made in aerial network structures and
network topology [7], [8]. The command and control of
aircraft flying at low-to-medium altitude is generally managed
by ground control stations [9], requiring reliable air-ground
communications for critical information exchange. However,
various limitations exist in air-ground communication net-
works, such as high infrastructure cost, shortage of licensed
spectrum, and limited coverage. On the other hand, an AAAN
can offload data traffic and extend the coverage area of air-
ground communications in a number of applications such as
search and rescue, patrolling, and delivery of goods [10].

Currently, the National Aeronautics and Space Administration
(NASA) is investigating Artificial Intelligence (AI) assisted
aeronautical communications including AAAN to modernize
the spectrum management in the National Airspace System
(NAS). In particular, some learning-based algorithms were
developed to improve the spectrum utilization efficiency in
a single-hop AAAN [11], [12].

This paper extends our effort to consider routing and spec-
trum management in a multi-hop AAAN. Multi-hop air-to-air
(A2A) communications are necessary when the source and
destination nodes are out of reach for direct communications.
In this case, a good routing strategy must select several relay
nodes to guarantee the End-to-End (E2E) quality of service
(QoS). A hard deadline constrained packet transmission needs
an intelligent and efficient routing solution to coordinate a
group of aircraft sharing limited frequency channels.

Among existing wireless routing studies, geographical lo-
cations are considered one of the most important information
to make routing decisions [13]–[15]. Some popular routing
algorithms are widely adopted in different applications, such as
Dijkstra’s Shortest Path Routing (DSPR) algorithm [16]–[18],
Bellman-Ford algorithm [19], and Floyd Warshall algorithm
[18]. However, global geographical information is needed in
these algorithms, which is impractical in AAAN. On the
other hand, local information is more accessible in a dynamic
network. In [20], the authors proposed a Greedy Perimeter
Stateless Routing (GPSR) protocol based on local geograph-
ical locations, where greedy and perimeter forwarding are
used to make decisions. The GPSR was adopted in [21] for
dynamic routing in AAAN. Furthermore, [22], [23] redesigned
the GPSR to enhance the routing performance in AAAN.

Recently, learning-based algorithms were studied to provide
dynamic solutions for packet forwarding through AAAN [24]–



Fig. 1. Multiple Sources and Multiple Destinations (MSMD) Routing in an Air-Air Ad-hoc Network.

[27]. For example, Liu et al. proposed a deep learning-aided
packet routing in AAAN based on real flight data to achieve
minimized E2E delay [24]. However, the proposed algorithms
focus on a Single Source and Single Destination (SSSD)
scenario, without considering Multiple Sources and Multiple
Destinations (MSMD) routing.

This paper considers MSMD routing, where packets go from
different sources to different destinations through the same
network. Due to spectrum scarcity, a frequency channel may
be used by multiple links in MSMD routing so that co-channel
interference is inevitable in AAAN. This paper aims to design
a learning-based routing and channel selection strategy that
minimizes the E2E communication delay. The challenges are
multifold: First, each node may have direct connections with
many nodes, making the search space intractable in a high
density AAAN. Second, each node is constantly moving with
high speed so the A2A channel conditions are highly dynamic.
Third, multiple routing paths may share the same relay node,
making the queuing delay intractable. Finally, physical chan-
nels are frequency selective so the channel selection is coupled
with relay selection.

To tackle these challenges, we propose a Deep Reinforce-
ment Learning (DRL) based MSMD A2A Routing (DMAR)
Algorithm in support of multi-hop A2A communications. Our
contributions are summarized as follows:

• DMAR considers joint channel selection and MSMD
routing, which is a multi-dimensional combinatorial prob-
lem that suffers from the curse of dimensionality.

• After centralized training, DMAR is implemented dis-
tributively, where each relay can independently make
routing and channel selection decisions by analyzing local
geographical and channel information.

• The computation complexity of DMAR is tractable even
in high complex AAAN, making it suitable for real-time
decisions.

• Extensive simulation results corroborate the effectiveness
of the proposed solution.

The rest of the paper is organized as follows. Sec. II
describes the system model and problem formulation. The
DMAR algorithm is discussed with details in Sec. III. Ex-
perimental results are presented in Sec. IV to evaluate the

performance of DMAR algorithm in different scenarios. Fi-
nally, a conclusion is drawn in Sec. V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multi-hop AAAN with N aircraft randomly
located in a given airspace. There are K frequency channels
K = {1, 2, ...,K} available for communications. The objective
is to minimize the average E2E communication delay, which
consists of propagation delay, transmission delay, and queuing
delay. Fig. 1 shows two source-destination pairs coexist to find
their routing paths.

We use t and T to denote the hop index and the total number
of hops needed to deliver a data packet from its source to
destination. The entire process of transmitting a packet from
its source to destination is called an episode, and the maximum
number of hops allowed for one episode is set as Tmax. An
optimal routing means to find the next relay node in every hop
to minimize the E2E delay. In Fig. 1, let’s use path-0 as an
example, where the packet is forwarded to node it after the
tth hop. To minimize the search space for the next relay, node
it’s neighboring nodes (within direct communication range
Rdef ) are ranked based on their distance to the destination
in ascending order, where a subset of the top ranked nodes
is selected as the candidate set Ct = {c1, c2, ..., cl} for node
it+1, as shown in Fig. 2.

The communication delay of the direct link from node it to
node it+1 using channel k can be expressed as:

D(it → it+1, k) =
Dist(it, it+1)

c
+

S

Rit→it+1

, (1)

The first term is propagation delay, where Dist(it, it+1) is the
distance between nodes it and it+1 and c is the speed of light.
The second term is transmission delay, where S is the packet
size and Rit→it+1

denotes the achievable data rate of the link
it → it+1 on channel k. Compared to the transmission delay,
the propagation delay is trivial and can be omitted.

We adopt the decode-and-forward (DF) relaying strategy,
where the decoding delay Dp can be considered as a constant
for every receiver. Additionally, queuing delay is inevitable
in multi-hop transmission and the average queuing delay at a
given node can be calculated based on its queuing status:

Dq =
1

µ− λ
(µ > λ) (2)



Fig. 2. Candidate Set Selection for Current Relay

where µ and λ are the packet service rate and arrival rate
respectively.

Accordingly, the one-hop delay of a packet from node it to
it+1 is given by:

Dit→it+1
= Dq(it) +Dp(it) +D(it → it+1, k). (3)

Since Dp is a constant, only queuing delay and link transmis-
sion delay need to be considered in the optimization. Given the
packet size, the transmission delay is solely determined by the
achievable rate of the underlying physical channel, whereas the
queuing delay is more affected by the incoming traffic load.

As shown in Fig. 1, from a source to its destination, there
are many routing and channel selections to choose from. The
question is how to find the optimal route P = {it → it+1, t =
0, ..., T} and spectrum allocation O = {oit,k, k = 1, ..,K}
that minimize the E2E delay. The joint optimization problem
can be formulated as follows:

min
O,P

T−1∑
t=0

Dq(it) +D(it → it+1, k)

s.t.

K∑
k=1

oit,k ≤ 1, t = 0, ..., T − 1

(4)

where oit,k ∈ {0, 1} is a binary channel selection indicator
(oit,k = 1 means node it chooses channel k for transmission,
otherwise oit,k = 0). We consider a spectrum-limited scenario
where the number of available frequency channels is always
less than the number of A2A links. As a result, multiple
communication links may have to share the same channel,
causing co-channel interference. For fairness, we also impose
that no link can use more than one channel at any given time.

III. DEEP REINFORCEMENT LEARNING-BASED ROUTING
ALGORITHM

In (4), the next-hop relay and channel selections depends
only on the current state so that the AAAN dynamics can be
modeled as a Markov Decision Process (MDP), which can
be cast into our DRL framework [11], [12]. Specifically, our
proposed solution takes the geolocation and Channel State

Information (CSI) as input to make the optimal routing and
channel selection decisions, where DQN is applied to learn
the optimal strategy through trial and error. In this case, each
aircraft node is an agent. We use centralized learning in the
training process and the learned parameters will be shared
among all agents. That is, there is only one agent in the
learning network which will be trained by the experiences
from all agents.

A. DRL Framework

The MDP is characterized by several essential elements:
action, state, reward, and policy. Specifically, at hop t, the
agent observes the environment and collect data to have state
st. Based on st, the agent takes action at on the next relay and
channel selection. Then, the agent transits into a new state st+1

and receives a reward rt from the environment. The agent aims
to learn a mapping function (i.e., policy π(st, at)) from st to
at that can maximize the accumulated reward. The Bellman
Expectation Equation for the state-action value function (Q-
function) is Qπ(st, at) = Eπ{

∑T
j=0 γ

trt+j+1|st, at, π}. The
proposed routing algorithm aims to find an optimal policy that
achieves the minimum E2E delay:

Q∗(st, at) = max
π

Qπ(st, at) (5)

a) Action: The action vector < it+1, oit,k > indicates
the selection of the next relay it+1 and channel oit,k, which
are selected from the relay candidate set Ct and frequency
channel set K respectively.

b) State: In AAAN, we assume each agent only knows
the local information and the location of a packet’s final
destination. Thus, the input to the learning agent is the
state vector consisting of two parts: (i) the locations of the
current node, its relay candidates, and the destination node; (ii)
the local information including the CSI between the current
node and its neighbors, the CSI between its neighbors, the
transmission power and channel selections of its neighbors.
This information will be used to calculate the channel quality,
measured in SINR, of the next-hop link.

c) Reward: According to the objective function in (4),
the reward must be directly related to the E2E delay. We
design a negative reward (i.e., penalty) to solve proposed
minimization problem (4). Our reward function is defined as:

rt = −(Dq(it) +D(it → it1 , k) + w ∗RD) + rp (6)

where RD denotes the relative distance between the selected
node and the destination node, weight w controls the penalty of
the remaining distance, rp is an added penalty for not reaching
the destination (i.e., the selected node is not the destination
node).

d) Policy: The policy maps the environment state into an
action that maximizes the E2E delay. Specifically, the agent
adopts the fully connected Neural Networks (NNs) as the
policy π(s, a) to formulate the DQN structure, which has
Input, Hidden, and Output layers. The Input layer takes the
current state as input so it has the same dimension as the state



vector. The detail of the hidden layer is stated in Sec. IV. The
Output layer has the same dimension as the action vector.

B. Offline Training

In offline training, the centralized virtual agent equipped
with the policy is shared by all nodes, where the policy is
trained by experiences from all nodes to find out an optimal
Q-function defined in (5). While there could be more than one
optimal policies in the MDP, they all achieve the same optimal
Q-function. Let θtrain and θtarget denote the DQN parameters
in the virtual agent and real agents, θtarget will be updated by
θtrain in every Tc training events. An optimal policy can be
found by maximizing Q∗(st, at; θ

target). Note that θtarget is
trained offline in a simulated dynamic environment, and more
details are provided in Sec. IV.

For a SSSD routing, the offline training process is summa-
rized in Algorithm 1. After t hops, a relay node has the packet
that needs to be forwarded to the next relay. The relay applies
ϵ-greedy method to take action on the next relay and channel
selections. Specifically, with probability ϵ, the relay randomly
selects an action for exploration; otherwise, it takes action
at = maxa′ Q(st, a

′; θtarget) by exploiting the experiences.
Then, the experience vector et = [st, at, rt, st+1] is recorded
in a replay memory E , which stores the experience vectors
from all paths.

Algorithm 1 DMAR
1: Initialize Q-function parameter θtrain with random values,

and θtarget ← θtrain.
2: Initialize E , s, j, nep

3: for ep = 0, ep = nep do
4: for t = 0, t = Tmax do
5: if j − 1 < |B| or rand(t) < ϵ then
6: Randomly select an action at
7: else
8: Action at = maxa′ Q(st, a

′; θtarget)
9: end if

10: Perform action at on environment
11: Get updated state st+1, and reward rt
12: Store et = [at, st, rt, st+1] in E
13: if j − 1 > |B| then
14: Sample random mini-batch B from E
15: Calculate equation (7) and update θtrain

16: end if
17: j := j + 1
18: Update parameters every Tc: θtarget ← θtrain

19: end for
20: end for

The stochastic gradient descent algorithm is applied to train
DQN using mini-batch B, which is randomly sampled from
E . Then, the parameter of DQN θtrain is updated as:

θtraint+1 = arg min
θtrain

1

b

∑
e∈B

(ytarget −Q(s, a; θtrain))2, (7)

Fig. 3. Initial Node Deployment for MSMD Routing in a 3D Airspace.

where the target value ytarget to train DQN is calculated by:

ytarget = r + γmax
a′

Q(s, a′; θtarget) (8)

After the training converges, an optimal policy is obtained
with maximum Q(s, a). Then, DQN parameters θtrain and
θtarget are synchronized to implement the optimal routing
strategies. In the case of multiple source-destination pairs,
multiple routing paths work in parallel.

IV. SIMULATION RESULTS

A. Simulation Environment

We conduct simulation experiments to evaluate the effec-
tiveness of our DMAR algorithm for MSMD routing in a
dynamic AAAN. In Fig. 3, a total of 100 nodes are uniformly
distributed in a 3-D airspace of 2000 × 2000 × 2000 cubic,
where the red and green circular points represent the source
and destination nodes respectively. There are five concurrent
source-destination pairs. All nodes are flying at constant
speed towards random directions, with a minimum separation
distance enforced for flight safety. When a node hits the
airspace boundary, it will be bounced back at the same speed.
The achievable data rate of each link is determined by its
bandwidth and the received SINR, which can be calculated as
in [11]. We assume 5MHz bandwidth for each channel and
the packet size is set as S = 1KB. The size of each relay
candidate set is 8. The queuing delay is calculated by (2),
where the service rate is set as µ = 200 packets/s, and the
arrival rate is estimated based on recent historical traffic. We
use Python program for real-time simulation with a resolution
of 1 ms, i.e., the system updates the node locations and
channel information every 1 ms.
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Fig. 4. DMAR Learning with Path = 5, 6, 7.

B. DQN Parameters

The DQN has four hidden layers with 200, 200, 100, 50
neurons. The Rectified Linear Unit (ReLU) is selected as the
activation function for each hidden layer. In the training pro-
cess, the initial exploration probability is set as ϵ = 0.5, then it
decreases to 0.001 with a decaying rate of 0.5% per episode.
The reply memory size is B = 200, and the mini-batch size
is b = 64. To achieve “quasi-static” of the neural network, the
target network is updated every 50 training events. The reward
discount factor is set as γ = 0.4. Furthermore, Root Mean
Square Propagation (RMSPro) is selected as the optimization
method, which adopts an adaptive learning rate in the mini-
batch stochastic gradient descent.

C. Evaluations for MSMD Transmission

To test the reliability and scalability of our DMAR, we
conduct several experiments with different configurations. In
the first experiment, there are 100 nodes and 2 channels. Fig.
4 shows the E2E delay as a function of the training episode
for different number of paths (5, 6, and 7), where the delay
is averaged over all paths. To smooth the curves, the moving
average of 50 episodes is applied. We can see that our DMAR
algorithm is able to converge after about 500 episodes. We also
observe that the converged E2E delay increases slightly with
the number of paths, which is expected.

In the second experiment, there are 200 nodes and 80 paths.
Fig. 5 shows similar E2E delay convergence curves under
different number of channels (2, 4, and 6). We can see that,
for a denser AAAN, the E2E delay still converges in all cases.
As expected, the E2E delay decreases with the number of
available channels. This is because more frequency channels
will reduce the co-channel interference, and thus improve A2A
link’s achievable data rate.

D. Non-learning based Routing Algorithms

To better evaluate our learning based solution, we also use
two non-learning based baselines for performance comparison.
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Fig. 6. Average Delay Comparison Among DQN Learning, DSPR, and GPSR.

a) DSPR: Dijkstra Shortest Path Routing (DSPR) algo-
rithm is a widely adopted routing algorithm in many studies
[16]–[18]. However, the original DSPR is not applicable to
the problem in (4) because the co-channel interference and
channel selection are not considered. In this paper, we revise
the DSPR by assuming a fixed data rate for all channels, so
it provides a performance upper bound for our solution.

b) GPSR: Greedy Perimeter Stateless Routing (GPSR)
is an efficient routing protocol for wireless networks [20].
GPSR exploits the geographic locations and connectivity in a
wireless network to find the shortest-paths routes. Specifically,
a relay gathers the location information from its neighbors, and
applies greedy forwarding or perimeter forwarding to make
forwarding decisions. The original GPSR algorithm doesn’t
consider channel selection, so the channel is randomly selected
in our experiment.

We conduct experiments to compare our proposed DMAR
with the modified DSPR and GPSR algorithms. The simulation



setup includes 100 nodes, 2 channels and 5 paths. Fig. 6
illustrates the average E2E delay vs. the number of episode
for different algorithms, where GPSR and DSPR provide
performance lower and upper bounds for DMAR. In particular,
the converged delay values for DMAR, DSPR, and GPSR are
11.9 ms, 9.3 ms, and 20.8 ms, respectively.

V. CONCLUSION

This paper studies the joint MSMD routing and channel
selection problem to minimize the E2E delay in a highly
dynamic AAAN environment. We propose a DRL-basd so-
lution to predict the next relay and channel selection that can
minimize the E2E delay. In particular, our DMAR algorithm
supports concurrent MSMD routing in a distributed manner
where each agent only has local information from its neigh-
bors. The simulation results demonstrate the effectiveness of
our learning based approach in complex and dynamic aerial
networks.
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