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ABSTRACT 17 

We evaluate two stochastic subcolumn generators used in GCMs to emulate subgrid 18 

cloud variability enabling comparisons with satellite observations and simulations of certain 19 

physical processes. Our evaluation necessitated the creation of a reference observational 20 

dataset that resolves horizontal and vertical cloud variability. The dataset combines two 21 

CloudSat cloud products that resolve two-dimensional cloud optical depth variability of 22 

liquid, ice, and mixed phase clouds when blended at ~200 m vertical and ~ 2 km horizontal 23 

scales. Upon segmenting the dataset to individual “scenes”, mean profiles of the cloud fields 24 

are passed as input to generators that produce scene-level cloud subgrid variability. The 25 

assessment of generator performance at the scale of individual scenes and in a mean sense is 26 

largely based on inferred joint histograms that partition cloud fraction within predetermined 27 

combinations of cloud top pressure – cloud optical thickness ranges. Our main finding is that 28 

both generators tend to underestimate optically thin clouds, while one of them also tends to 29 

overestimate some cloud types of moderate and high optical thickness. Associated radiative 30 

flux errors are also calculated by applying a simple transformation to the cloud fraction 31 

histogram errors, and are found to approach values almost as high as 3 W m-2 for the cloud 32 

radiative effect in the shortwave part of the spectrum. 33 

 34 

SIGNIFICANCE STATEMENT 35 

The purpose of the paper is to assess the realism of relatively simple ways of producing 36 

fine-scale cloud variability in global models from coarsely-resolved cloud properties. The 37 

assessment is achieved via comparisons to observed cloud fields where the fine-scale 38 

variability is known in both the horizontal and vertical directions. Our results show that while 39 

the generators have considerable skill, they still suffer from consistent deficiencies that need 40 

to be addressed with further development guided by appropriate observations. 41 

1. Introduction 42 

Satellite simulators are important tools of modern GCMs. Subcolumn cloud generators 43 

are in turn critical components of satellite simulators striving to emulate subgrid-scale cloud 44 

properties in order to bridge the coarse resolution of these models and the scales at which 45 

satellite retrievals are performed. Emulation of subgrid variability is not only required for 46 

mimicking satellite observations, but also contributes to improved calculations of quantities 47 
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with non-linear dependences on cloud properties, such as radiative flux and precipitation rate 48 

(Song et al. 2018). For some radiation schemes such as the Monte Carlo Independent Column 49 

Approximation (McICA, Pincus et al. 2003), the coupling of the radiative transfer algorithm 50 

with cloud fields resolved at subgrid scales is actually an inherent feature of their design. 51 

Since simple profiles of averaged quantities at larger scales do not by themselves fully 52 

constrain the distribution of profiles at smaller scales, there is considerable amount of 53 

freedom (and uncertainty) in simulating the more detailed satellite views of clouds. The 54 

emulated subgrid variability depends on how cloud microphysical properties are distributed 55 

both horizontally and in height, and how cloud occurrence and the distributions of 56 

microphysical properties overlap vertically. Within the satellite simulator framework, the tool 57 

that handles subgrid variability is a cloud subcolumn generator. This tool produces stochastic 58 

samples of subcolumn cloud profiles, which preserve the average profiles of the gridbox in 59 

the limit of a large number of samples. An essential ingredient of subcolumn generators is a 60 

set of rules on how the cloudy parts of a gridbox overlap vertically (Jakob and Klein, 1999). 61 

The combination of cloud horizontal variability and how it correlates between various 62 

atmospheric levels produces the subgrid variability of total (vertically integrated) cloud water 63 

path and column cloud optical depth TAU. Note that subgrid variability of vertically 64 

integrated (column) cloud properties can exist even if the properties themselves at individual 65 

levels are distributed homogeneously; this is because the rules of cloud occurrence overlap 66 

create variability in the number of layers that are cloudy in each subcolumn. 67 

The subcolumn generator SCOPS (Subgrid Cloud Overlap Profile Sampler) of the 68 

CFMIP (Cloud Feedback Modeling Intercomparison Project) Operational Satellite Simulator 69 

Package (COSP, Bodas-Salcedo et al. 2011) assumes that vertical cloud occurrence follows a 70 

combination of maximum and random overlap (Hillman et al. 2018) and that a cloudy layer’s 71 

condensate is homogeneous at the scale of model (GCM) gridboxes. While SCOPS 72 

subcolumns are generally not passed outside of COSP, its underlying overlap assumptions 73 

have been proven inadequate for the simulation of accurate cloud-sky radiative fluxes when 74 

implemented in radiation schemes (Barker et al., 1999; Oreopoulos et al., 2012). A first step 75 

then towards improvement of radiation from subcolumn generators would therefore be direct 76 

statistical comparison of their cloud fields with observed subgrid cloud variability. Note that 77 

horizontal coherence, i.e., the spatial arrangement of subcolumns does not need to be part of 78 
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the subgrid variability description and comparison since horizontal interactions within a 79 

model gridbox are typically neglected. 80 

Because subcolumn generators also emulate vertical variability, reference data 81 

appropriate for generator validation must provide such information as well. An approach 82 

embraced previously was to use simulated cloud fields more highly resolved than in GCMs as 83 

proxy for observations, for example cloud fields from Multiscale Modeling Framework 84 

(MMF) simulations (Hillman et al. 2018). In this treatment, model gridcolumns are treated as 85 

observed subcolumns and serve as “truth” in comparisons with subcolumns produced by 86 

SCOPS or other generators. The usefulness of such an evaluation is obviously limited by the 87 

degree of realism of MMF clouds. Moving beyond previous work, here we make the case that 88 

simulated cloud fields are not the only recourse, but rather that observed cloud fields exist as 89 

a reference source for subgrid cloud variability for the purposes of subcolumn generator 90 

validation and development. Such cloud fields come from combined observations of the 91 

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar aboard the Cloud-Aerosol 92 

Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite and its near-93 

synchronous CloudSat satellite carrying the Cloud Profiling Radar (CPR). The main feature 94 

of the cloud fields retrieved from these two instruments is that the variability is resolved 95 

horizontally not only for the atmospheric column as a whole, but also vertically within the 96 

column.  97 

Our paper thus uses such a reference dataset in an attempt to evaluate SCOPS and another 98 

established subcolumn generator by Räisänen et al. (2004). It consists of two main parts: The 99 

first part is dedicated to describing the construction of the observational reference dataset, 100 

while the second part presents the approach and findings of our effort to assess the 101 

performance of these two generators. 102 

 103 

2. Quality assessment and improvement of reference dataset 104 

a. Key Cloud Products 105 

Our construction of 2D cloud fields resolving horizontal (along the path of the two 106 

observing satellites) and vertical (height) variability of visible cloud optical depth (COD) is 107 

achieved by combining two CloudSat “release 5” (R05) products: 2B-CWC-RVOD 108 

(Leinonen et al. 2016, hereafter 2BCWC) and the CALIPSO-enhanced 2C-ICE product 109 
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(Deng et al. 2015, hereafter 2CICE). To begin with, some quick clarifications on terminology 110 

are in order before we proceed. Herein we use COD for “cell” optical depth and TAU for the 111 

integrated/column optical depth, i.e., the vertical sum of CODs. In CloudSat terminology 112 

CPR measurements are resolved vertically in 240 m “bins” and horizontally in 1.7 km (along 113 

track) “rays”. A bin therefore represents a vertical layer, a ray essentially represents a 114 

subcolumn, and a “cell” is a bin within a subcolumn. We refrain from using the term “bin” 115 

for vertical layers because it is also used for histogram discretization.  116 

1) LIQUID PHASE: 2B-CWC-RVOD (2BCWC) 117 

This product focuses on clouds of liquid phase, with key inputs to the algorithm being the 118 

CloudSat 2B-GEOPROF radar reflectivity profile (Marchand et al., 2008) and the column 119 

cloud optical depth TAU from the Collection 6 level 2 Aqua Moderate Resolution Imaging 120 

Spectroradiometer (MODIS) cloud product (MYD06) (Platnick et al., 2017), which has been 121 

collocated with CloudSat CPR measurements and is available in CloudSat’s MOD06-1KM-122 

AUX product. The incorporation of MODIS TAU (TAUMODIS) as a constraint in the retrievals 123 

makes this a purely daytime product. The algorithm is based on the optimal estimation 124 

framework (Rodgers 2000), with the measurement vector consisting of the logarithm of the 125 

total column liquid optical depth TAUliq and the profile of all valid CPR reflectivities. To 126 

infer TAUliq, the algorithm uses ice cloud optical depth provided by the 2CICE product 127 

(Deng et al. 2015, see below) which is subtracted from MODIS total optical depth, i.e., 128 

TAUliq = TAUMODIS – TAU2CICE. Ancillary temperature estimates from the European Centre 129 

for Medium-Range Weather Forecasts (ECMWF) analysis provided as CloudSat’s ECMWF-130 

AUX product are used to delineate layers where ice, mixed, and liquid clouds are expected. 131 

The state vector retrieved by the algorithm consists of the particle number concentration NT, 132 

assumed constant throughout the column, and the profile of the logarithm of geometric mean 133 

particle radius rg = exp(<lnr>) (brackets denote the expected value). By assuming a 134 

lognormal distribution of liquid particle size with geometric standard deviation σlog, the 135 

Liquid Water Content LWC profile can be derived one CloudSat subcolumn/ray at a time. A 136 

preliminary version of the algorithm was previously outlined in Leinonen et al. (2016) and 137 

has been revisited to better handle confounding factors such as precipitation, and overlying 138 

ice and mixed-phase clouds. See https://www.cloudsat.cira.colostate.edu/cloudsat-139 

static/info/dl/2b-cwc-rvod/2B-CWC-RVOD_PDICD.P1_R05.rev0_.pdf for additional details. 140 

2) ICE PHASE: 2C-ICE (2CICE) 141 

https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/2b-cwc-rvod/2B-CWC-RVOD_PDICD.P1_R05.rev0_.pdf
https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/2b-cwc-rvod/2B-CWC-RVOD_PDICD.P1_R05.rev0_.pdf
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The Cloudsat and CALIPSO Ice Cloud Property Product (2C-ICE, hereafter 2CICE) 142 

contains retrieved estimates of profiles of ice cloud water content, effective radius, and 143 

extinction coefficient for each active measurement ray that contains ice particles as indicated 144 

by CloudSat’s CPR and/or CALIPSO’s CALIOP. Specifically, the 2CICE cloud product uses 145 

combined inputs of measured radar reflectivity profiles from CloudSat’s 2B-GEOPROF 146 

product and measured attenuated backscattering coefficient profiles at 532 nm from CALIOP 147 

(Rogers et al. 2011) to constrain the ice cloud retrieval more tightly than the radar-only 148 

product, and to yield improved retrievals (Deng et al. 2015). As in 2BCWC, an optimal 149 

estimation framework is used with the measurement vector consisting of the CALIOP-150 

measured backscattering coefficient profile and the CPR-measured reflectivity profile. The 151 

state vector is initialized with a priori estimates from extensive in situ measurements and/or 152 

literature-supported empirical relations and algorithms.  153 

3) CLOUD MASK: 2B-CLDCLASS-LIDAR (2BCL) 154 

The 2B-CLDCLASS-LIDAR product, hereafter 2BCL, combines CPR and CALIOP 155 

measurements for cloud phase determination and cloud scenario classification (Sassen and 156 

Wang 2008; Sassen and Wang 2012). Cloud classification is achieved by synthesizing 157 

information about the horizontal and vertical variability of cloud properties, the precipitating 158 

state of the cloud field, cloud temperature, and coincident MODIS radiances. For this work, 159 

we use 2BCL as a 2D (along track-height) cloud mask on the same grid as the previous two 160 

products. For each ray in the dataset, the height of the cloud top and base, as well as the cloud 161 

thermodynamic phase (liquid, ice, mixed) is extracted for vertically distinct cloud “objects” 162 

consisting of contiguous vertical layers. With each distinct cloud object assigned one of the 163 

three thermodynamic phases, all the vertical layers it encompasses have the same phase. 164 

b. Construction of base 2D cloud optical depth fields 165 

2CICE provides vertically (240m) and horizontally (~1.7 km) resolved (i.e., “cell”) ice 166 

water content (IWC) and particle effective radius (re) from which cell visible ice cloud optical 167 

depth CODice can be calculated according to (e.g., Stein et al. 2011): 168 

𝐶𝑂𝐷𝑖𝑐𝑒 =
3𝑄𝑒𝑥𝑡𝐼𝑊𝐶

4𝜌𝑖𝑐𝑒𝑟𝑒
Δ𝑧        (1) 169 

where ρice = 0.92 g cm-3 is the density of ice, Qext = 2 is the extinction efficiency at visible 170 

wavelengths, and Δz = 240 m is the cell’s physical thickness. 171 
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On the other hand, the 2D field of visible cloud optical depth for liquid phase clouds 172 

CODliq is estimated from 2BCWC using the retrieved optical extinction coefficient. Per 173 

Leinonen et al. (2016), the cell’s extinction coefficient is calculated by combining the cell’s 174 

NT, rg, and the droplet distribution’s geometric standard deviation σlog: 175 

𝜎𝑒𝑥𝑡 = 2𝜋𝑁𝑇𝑟𝑔
2 exp(2𝜎𝑙𝑜𝑔

2 )      (2) 176 

Cell cloud optical depth CODliq is then obtained by multiplying extinction with the cell’s 177 

physical thickness Δz, i.e., CODliq = σext Δz. 178 

 179 

Fig. 1. Comparison of either directly observed (subcolumns with liquid only clouds, left 180 

panel) or inferred (subcolumns with both liquid and ice clouds, right panel) TAUMODIS,liq 181 

against TAUliq from 2BCWC (eq. 2). One month of data (January 2007) with solar zenith 182 

angle below 45° were used, as in Leinonen et al. (2016). 183 

 184 

We evaluate CODliq obtained from eq. (2) by comparing its vertical integral TAUliq with 185 

the collocated MODIS TAUliq, inferred or directly observed. TAUMODIS in MOD06-1KM-186 

AUX corresponds to the TAUliq used as constraint in the 2BCWC retrieval when there is no 187 

ice in the subcolumn; TAUliq can also be inferred by subtracting 2CICE TAUice from total 188 

MODIS TAUMODIS for subcolumns that have both liquid and ice clouds, as indicated above. 189 

A comparison for the first scenario is shown in the left panel of Fig. 1 for a sample month 190 

(January 2007), while a comparison for the second scenario is shown in the right panel. The 191 

general agreement seen in the figure serves primarily as a sanity check rather than an 192 

independent validation given that the 2BCWC retrievals are algorithmically constrained by 193 
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TAUMODIS. Since MODIS is not sensitive to precipitating particles, the MODIS optical depth 194 

constraint signifies that the combination of retrieved NT, rg in eq. (2) represents the extinction 195 

of non-precipitating particles. However, occasional substantial deviations from the 1:1 to line 196 

are indicative of imperfect filtering of rays containing precipitation (drizzle) in which case 197 

the a priori constraints of the optimal estimation algorithm are inappropriate and may 198 

introduce biases.  199 

The blended 2D COD field from 2BCWC and 2CICE consists then of cells whose COD 200 

comes from either 2CICE-alone (CODice), 2BCWC-alone (CODliq), or combined CODs from 201 

the two datasets (“mixed” phase cells with CODmixed = CODliq+CODice). 202 

1) MISSING RETRIEVALS 203 

Comparison of our 2D COD fields, constructed as described above, with CloudSat’s 2D 204 

2BCL cloud mask product reveals that numerous cells identified as cloudy in that product do 205 

not have COD > 0 in our combined product. This turns out to be a problem mostly confined 206 

to liquid phase clouds whose CODs come from 2BCWC. It appears that most missing liquid 207 

phase retrievals correspond to optically thin (and therefore of low CPR reflectivity) clouds 208 

that are however still detected by the CALIOP lidar and therefore present in 2BCL. Since 209 

upper-level clouds with substantial extinction (TAU ~ 5 and above) fully attenuate the lidar 210 

beam, many of these low clouds seen by the lidar are either completely unobscured by clouds 211 

above, or co-occur with upper level clouds still thin enough to allow the lidar beam to reach 212 

the lower troposphere. Such clouds, present in 2BCL, but not in 2BCWC, are assigned COD 213 

values according to a filling scheme described below. 214 

Figure 2 shows two examples, each corresponding to a CALIOP-CloudSat “curtain” 215 

within a 1° gridbox. In the first example (upper row) liquid cloud retrievals seem to be 216 

missing (no yellow) in segment A. More missing liquid cloud retrievals apparently exist in 217 

segment B, which is classified as being of mixed phase by virtue of being part of a distinct 218 

cloud object in 2BCL assigned in its entirety to the mixed phase because of ice presence in its 219 

upper part. The second example (bottom row) has far more missing liquid cloud retrievals: 220 

indeed, very few yellow cells of successful 2BCWC retrievals exist compared to the large 221 

liquid cloud cell population (orange cells) in 2BCL. Missing liquid retrievals can be found 222 

both in parts of the scene with (segment D) and without (segment E) overlying high clouds. 223 

Below we describe our simple approach to restore some of the missing retrievals for liquid 224 

clouds that are apparently present (orange cells in the left panels of Fig. 2). 225 
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 226 

Fig. 2. Two examples 2BCL 2D cloud mask scenes (left panels) and reconstructed 2D COD 227 

scenes. Highlighted segments designated with letters are used as examples to explain major 228 

aspects of our filling scheme. 229 

 230 

2) FILLING MISSING LIQUID PHASE RETRIEVALS 231 

A simple scheme was devised to assign CODliq values to cells with no retrievals in 232 

2BCWC but flagged as having liquid clouds in 2BCL. We follow the logic of the 2BCWC 233 

algorithm and calculate the subcolumn’s TAUliq by either simply assigning total TAUMODIS to 234 

subcolumns with only liquid clouds, or assigning TAUMODIS minus TAUice from 2CICE to 235 

mixed subcolumns. TAUliq for the missing cells can then be calculated by subtracting the sum 236 

of existing 2BCWC CODliq values in the subcolumn (if applicable, as in segment C of Fig. 237 

2). This adjusted TAUliq is then partitioned into equal CODliq values among all missing cells. 238 

The CODliq profile of a subcolumn can therefore contain a mixture of CODliq values from the 239 

original 2BCWC retrievals, and equal CODliq values for all cells with missing retrievals from 240 

the partitioning of the adjusted TAUliq. Assigning CODliq values to cells with unavailable 241 

retrievals through a more sophisticated scheme would require information that is not 242 

currently at our disposal. Actually, application of even this procedure (constituting “Pass 1” 243 

of our filling scheme) is not always possible either because of unavailability of TAUMODIS or 244 

because the adjusted TAUliq after subtracting TAUice (and in some cases also the sum of 245 

2BCWC-provided CODliq) from TAUMODIS turns out to be negative. Missing CODliq values 246 



10 

File generated with AMS Word template 2.0 

for such cases are filled with available neighboring CODliq values (“Pass 2”), as described 247 

below. 248 

The possible Pass 1 scenarios to obtain profiles of CODliq can then be summarized as 249 

follows: 250 

(1) Pure liquid subcolumn according to 2BCL, no 2BCWC retrievals in the subcolumn 251 

(segment E in Fig. 2): Apportion equally TAUMODIS ≡ TAUMODIS,liq to all cells with liquid 252 

phase in 2BCL. The CODliq profile consists of equal values. 253 

(2) Pure liquid subcolumn according to 2BCL with available 2BCWC retrievals (segment 254 

F in Fig. 2): Subtract TAU2BCWC,liq from TAUMODIS ≡ TAUMODIS,liq and if the result is 255 

positive apportion equally to all missing cells with liquid phase in 2BCL. The CODliq profile 256 

is a mixture of 2BCWC retrievals and the equal values from the apportionment of this 257 

adjusted TAUliq corresponding to all cells of the subcolumn with missing retrievals. 258 

(3) Overlying ice clouds and no retrievals in 2BCWC (segments A and D in Fig. 2): 259 

Subtract TAU2CICE from TAUMODIS and if the result is positive apportion the resulting TAUliq 260 

equally to all missing cells with liquid phase in 2BCL. The CODliq profile consists of equal 261 

values. 262 

(4) Both overlying ice clouds with 2CICE retrievals and liquid clouds with 2BCWC 263 

retrievals (segment C in Fig. 2): Subtract the combined ice and liquid column optical depths 264 

(TAU2CICE + TAU2BCWC) from TAUMODIS and if the result is positive apportion the resulting 265 

TAUliq equally to all cells of liquid phase in 2BCL without 2BCWC retrievals. The CODliq 266 

profile is a mixture of 2BCWC retrievals and the equal values from the apportionment of 267 

adjusted TAUliq corresponding to all cells of the subcolumn with missing retrievals. 268 

As previously mentioned, our scheme has also a second part (“Pass 2”) to fill 2BCL cells 269 

with liquid clouds that remain unfilled after Pass 1 because TAUMODIS is either unavailable or 270 

inconsistent with available 2CICE and 2BCWC CODs in the subcolumn. Pass 2 applies a 271 

“nearest-neighbor” (NN) scheme using cells with available CODliq, from 2BCWC retrievals 272 

or Pass 1. The scheme works as follows: We move from “left” to “right” (from start to end of 273 

the data granule). We form a 3×3 domain centered around the missing value and calculate the 274 

missing value as the weighted average of the available CODliq values in the domain either 275 

from 2BCWC, Pass 1, or Pass 2 on preceding subcolumns. We then multiply by the volume 276 

liquid cloud fraction of the domain (fraction of cells in the domain with liquid clouds, i.e., 277 

number of cloudy cells divided by 9). Unity weights are used when averaging immediate 278 
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vertical and horizontal neighbors of the cell being filled, and 1 √2⁄  (pythagorean distance) for 279 

diagonal neighbors. If the 3×3 domain contains no CODliq values, we expand the domain 280 

centered around the missing value to be a rectangle domain of size 21×7 (horizontal×vertical) 281 

and calculate the missing value as the median of all available CODliq values in the domain. 282 

Further expansion to 51×7 and 101×7 domains is built into the scheme, but is rarely invoked. 283 

 284 

Fig. 3. Flowchart summarizing the construction of our 2D CODliq reference fields. 285 

Provenance of CODliq cells Number of cells Percentage of cells 

Derived from rg, NT 289,197,600  80.7% 

Filled using MODIS TAUliq 45,438,111  12.7% 

Filled using NN, 3×3 domain 22,188,733  6.2% 

Filled using NN, 21×7 domain 1,270,571  0.4% 

Filled using NN, 51×7 domain 184,610  0.1% 

Filled using NN, 101×7 domain 82,989  0.0% 

All CODliq cells 358,362,614  100%  

Table 1. Population information on the provenance of CODliq cells in our 2D COD field 286 

constructed by combining 2BCWC and 2CICE retrievals. 287 
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The flowchart of Fig. 3 encapsulates the full scheme for constructing the 2D CODliq 288 

fields. Table 1 summarizes the provenance of CODliq cells for the 2007 data we processed. 289 

About 81% of CODliq values come from 2BCWC; from the remaining 19%, about two-thirds 290 

are filled via TAUMODIS (explicit or adjusted MODIS TAUliq, or inferred where appropriate 291 

using TAU2CICE), i.e., Pass 1, and the remaining one-third by NN filling (Pass 2), the vast 292 

majority of which comes from very close neighbors (within the 3×3 domain). 293 

3) ASSESSMENT OF FILLING 294 

A major application of the type of generators assessed in this work is to provide 295 

subcolumns to COSP’s International Satellite Cloud Climatology Project (ISCCP) and 296 

MODIS simulators whose main diagnostic is joint cloud fraction (CF) histograms in cloud 297 

top pressure (CTP) – TAU space. We therefore opt to use such histograms as the cornerstone 298 

for evaluating not only the generators, but also the performance of the filling scheme. 299 

Specifically, we examine whether average joint CTP-TAU histograms corresponding to the 300 

modified COD fields are more alike to their counterparts from coincident Aqua cloud 301 

observations than average joint histograms coming from the original (unfilled) COD fields.  302 

The central role of CTP-TAU histograms in this paper merits some additional elaboration. 303 

Given that we use in these histograms the subcolumn TAU and the CTP of its topmost cloudy 304 

layer, one would initially think that the vertical distribution of COD does not matter, but 305 

rather only its vertical integral, in accordance with the simplicity of our filling scheme’s Pass 306 

1. But the irrelevance of the COD profiles for the TAU of individual subcolumns casts doubt 307 

at the same time on the appropriateness of CTP-TAU histograms as a rigorous evaluation 308 

metric of the filling scheme. While it is true that using only TAU for individual observed 309 

subcolumns considered in isolation makes the COD profile irrelevant, the details of the 310 

vertical COD profile matter for the ensemble of subcolumns forming a scene. This is because 311 

in addition to the observed scene CF profile (calculated as the fraction of the scene’s 312 

subcolumns with valid clouds in that layer), the generators also use the observed mean COD 313 

profile as input. This layer mean COD across subcolumns does depend on how TAU is 314 

vertically apportioned within individual subcolumns in the observations, making thus CTP-315 

TAU histograms coming from generators sensitive to the observed COD profile. Nonetheless, 316 

the lack of better alternatives compels us to stay with the simple equal apportionment of 317 

adjusted TAUliq for Pass 1 of our filling scheme, and also CTP-TAU joint histograms as the 318 
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primary metric for evaluating both the filling scheme and the performance of the subcolumn 319 

generators. 320 

Aqua joint histograms were obtained from the equal area 3-hour histogram dataset used in 321 

Cho et al. (2021) to derive MODIS Cloud Regimes (CRs) on the ISCCP grid. Because for the 322 

year of our analysis (2007) Aqua and CloudSat-CALIPSO (CC) were part of the A-Train 323 

constellation, temporal matching is already built into the dataset. We simply identify the 324 

segment of the 2D COD field that falls within the 110 km gridbox on that day and create a 325 

2D CTP-TAU histogram for that segment. To construct the 2D CTP-TAU histograms we 326 

convert COD profiles from height to pressure coordinates using CloudSat’s ECMWF-AUX 327 

product. We then eliminate all cloudy subcolumns with TAU < 0.3 (about 1% of all 328 

subcolumns), by setting TAU = 0. This is done because MODIS detection and retrieval of 329 

clouds with such low optical thickness is of low confidence, something accounted for in the 330 

MODIS simulator (Pincus et al. 2012) used in this paper for generator evaluation. All 331 

coincident joint histograms from the active CC and the passive MODIS observations are then 332 

averaged. Figure 4 shows the comparison of global joint histograms resolving CF into 42-333 

bins, using ISCCP’s CTP-TAU bin discretization (Jakob and Tselioudis 2003), also used for 334 

a CTP-TAU joint histogram version found in the MODIS cloud products. 335 

 336 

Fig. 4. Globally-averaged joint CTP-TAU histograms from 2007 coincident observations of 337 

(a) Aqua (left); (b) “Unfilled” COD fields from CC; (c) “Filled” COD fields from CC. 338 

While MODIS clouds cannot be considered as “truth”, a certain degree of consistency 339 

between passive and active retrievals is expected, with large discrepancies potentially being a 340 

cause for concern. Our comparison is therefore highly instructive and clearly shows the 341 

improvements brought by the filling scheme with respect to low clouds. The unfilled joint 342 

histogram has a far smaller overall CF than the MODIS global histogram (44.6 vs 58.1, in %, 343 

henceforth implied for all CF values) with the difference in low clouds, CTP > 680 hPa, 344 
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being even larger: low CF values are 28.5 for MODIS and 7.4 for unfilled CC 2D COD 345 

fields. The reconstructed COD dataset compensates some of the low cloud difference with 346 

more high clouds, especially in the bin of smallest TAU due to CALIOP’s sensitivity to even 347 

the optically thinnest clouds. But filling is essential in raising the low CF of CC to 19.7, still 348 

not as high as MODIS (which may be overestimating low CF because MODIS pixels are 349 

assumed overcast when cloud is detected), but good enough to bring down the overall CF 350 

discrepancy to (absolute) 0.3%.  351 

The evaluation of the filling scheme via such a CTP-TAU joint histogram comparison can 352 

also be broken down by the MODIS CRs of Cho et al. (2021). These CRs represent the most 353 

common cloud mixtures observed by MODIS at daily ~100 km scales as represented by the 354 

mean of all CTP-TAU histograms deemed alike by a k-means clustering algorithm. The CTP-355 

TAU histograms of the CC COD segments collocated with MODIS-Aqua equal area 356 

gridboxes are assigned to the MODIS CRs identified therein. For this comparison, histogram 357 

averaging is therefore performed as before, but now separately for each MODIS CR. The 358 

relative proximity of joint histograms coming from the unfilled and filled cloud fields to the 359 

Aqua reference can be summarily captured by Euclidean Distances (EDs) between members 360 

of histogram pairs. EDs derived for unfilled and filled CC COD fields are very similar for 361 

CRs with relatively small populations of low clouds (CR1-CR6). But for the other CRs, CR7-362 

CR11, with plentiful low clouds, the lower EDs of the filled cloud fields indicate better 363 

histogram resemblance, particularly for CR7-CR10. These results instill confidence in the 364 

beneficial effects of our simple approach to fill cells with missing CODliq values. 365 

 366 

3. Performance of subcolumn generators 367 

a. Description of subcolumn generators and implementation specifics 368 

1) SCOPS GENERATOR 369 

The SCOPS generator can produce subcolumns obeying random, maximum, or (our 370 

choice for this paper) maximum-random overlap, and can treat separately convective and 371 

stratiform clouds if such a distinction is known in the source dataset and of interest (neither 372 

applies for this work). SCOPS takes as input the gridbox’s or (in our case) the scene’s mean 373 

CF profile (the fraction of the scene at each layer with COD above the threshold that 374 

indicates cloud presence) and then outputs a set of subcolumn cloud occurrence profiles 375 
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where the individual subcolumn cells are either overcast or cloud free (i.e., binary 0 or 100 376 

cell CF). Condensate amounts are then assigned to the overcast cells according to the 377 

standard implementation in COSP which assumes constant in-cloud condensate mixing ratio 378 

across each layer equal to the gridbox layer mean provided by the host GCM. In our study 379 

each SCOPS subcolumn is multiplied by the scene’s mean COD rather than condensate 380 

profile. The output is a 2D scene of COD that obeys the cloud occurrence overlap rules of 381 

SCOPS and has horizontally uniform layer COD, but horizontally variable subcolumn TAU. 382 

The scene COD field is then passed to the MODIS simulator to generate a CTP-TAU joint 383 

histogram.384 
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 385 

Fig. 5. Globally-averaged joint CTP-TAU histograms from coincident 2007 observations broken down by MODIS CR. (a) Aqua (top); (b) 386 

“Unfilled” COD fields from CC (middle); (c) “Filled” COD fields from CC (bottom). Above the CC panels, we also provide in addition to CF 387 

the CR-specific EDs from observations.388 
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2) RAISANEN GENERATOR 389 

The “Raisanen” generator also yields an ensemble of stochastically generated cloudy 390 

subcolumns (Räisänen et al. 2004). Each layer within each subcolumn (cell) is assumed 391 

homogeneous, with a CF of either 0 or 100, but condensate amount can vary across a vertical 392 

layer consisting of the cells of the subcolumns at the same altitude, forming thus the layer’s 393 

condensate probability density function (PDF) which can be described by an analytical 394 

function such as gamma, beta or lognormal. In our case, we pass to the generator the CF, 395 

mean COD, and COD variance profiles of the 2D scene, the latter coming from the CF profile 396 

using the variance parameterization in Oreopoulos et al. (2012). The COD variance profile is 397 

then used to create a profile of beta distribution PDFs. 398 

The generator allows for a continuous range of cloud occurrence overlap rates between 399 

maximum and random overlap according to the generalized overlap paradigm of Hogan and 400 

Illingworth (2000). In this paradigm a weighting factor controls the relative contribution of 401 

maximum (dominating for values of weighting factor close to one) and random overlap 402 

(dominating for values of the weighting factor close to zero) to the combined CF of two 403 

cloudy layers. The weighting factor is parameterized as an exponentially decaying function 404 

with an e-folding distance or “decorrelation length” describing its rate of decrease as a 405 

function of the separation distance between cloud layer pairs. Small values of decorrelation 406 

length denote rapid decline of the weighting factor with separation distance (near-random 407 

overlap) while large values denote a slow decline (near-maximum overlap). We use a 408 

parameterization that captures the day-to-day latitude dependence of decorrelation length 409 

with a Gaussian function fit to CloudSat observations of cloud occurrence overlap 410 

(Oreopoulos et al. 2012). Similarly, vertical correlations of COD PDFs are captured by 411 

correlations of COD ranks (i.e., Spearman rank correlations), also assumed to decay 412 

exponentially with layer separation distance, according to a second decorrelation length. This 413 

decorrelation length is also parameterized with a latitude and day-of-the-year-varying 414 

Gaussian function which fits CloudSat reflectivity observations (Oreopoulos et al. 2012) and 415 

represents a more rapid decay with vertical separation distance of COD rank than cloud 416 

occurrence overlap. 417 

 418 

b. Results 419 
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We use the one-year (2007) dataset of reconstructed CC COD fields to assess the skill of 420 

the two subcolumn generators described above in simulating cloud subgrid variability of 421 

scenes consisting of 100 subcolumns (~110 km given CC ray sampling). We only use oceanic 422 

scenes (about 586 thousand scenes) because height in CC datasets is referenced relative to 423 

local surface elevation, making the averaging of vertically resolved subcolumns ambiguous 424 

when surface elevation varies. 425 

Our preferred (but not only) method of assessing skill is comparison of CTP-TAU joint 426 

histograms coming from the MODIS simulator. These capture how clouds and their 427 

condensate align vertically in real and simulated overlap scenarios to generate subcolumn 428 

TAUs, and at the same time provide a rough cloud type discretization according to cloud top 429 

height (pressure). Because in constructing these joint histograms the MODIS simulator 430 

rejects subcolumns with TAU < 0.3, the reconstructed COD fields and the statistics derived 431 

from them treat these subcolumns as cloud-free. All in all, the generators are evaluated using 432 

comparisons between: (1) Mean CTP-TAU histograms obtained by extensive averaging of 433 

individual scene histograms and their corresponding bin-resolved cloud radiative effects 434 

(CREs); (2) Quantities derived from individual scene CTP-TAU histograms; (3) Profiles of 435 

cumulative CF and (the closely related) CF exposed to space. 436 

1) GRAND AVERAGE HISTOGRAMS 437 

Figure 6 shows the one-year mean global ocean of 42-bin CTP-TAU joint histograms 438 

from observations (left) and from the subcolumn generator reconstruction (middle and right 439 

panels). The leftmost column of observed globally (ocean-only) averaged joint histograms 440 

includes the numerical values of bin CF. The middle column shows the globally-averaged 441 

histograms coming from SCOPS-generated subcolumns; the numbers stand for the bin CF 442 

values while color displays differences from the reference observed histograms. The 443 

rightmost column similarly conveys results from the Raisanen generator. 444 

Once again, the overall resemblance of the reconstructed histogram to the true histogram 445 

can be captured by the ED between the two histograms. According to that metric, the 446 

Raisanen generator performs better overall (smaller ED) despite its slightly worse than 447 

SCOPS underestimation of total CF . Both generators have reasonably good skill in 448 

reproducing the total vertically projected CF. This is expected to some extent since they are 449 

supplied observed CF profiles. Nevertheless, how the CFs of individual layers are overlapped 450 

still matters: the underestimation by the generators suggest that they overlap clouds slightly 451 
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more maximally than in observations. A common deficiency of the two generators is the 452 

underestimation of optically thin (TAU < 3.6) clouds, which is less severe and mostly 453 

concentrated to TAU < 1.3 for the Raisanen generator. These underestimates are possibly 454 

related at least in part to the greater than observed tendency for maximum overlap and the 455 

resulting greater vertical cloud alignment that reduces the probability of optically thin clouds. 456 

SCOPS seems to compensate for the deficit of optically thin clouds with overestimates of 457 

clouds of moderate and large optically thickness, something that the Raisanen generator is 458 

much less prone to. Note that while absolute biases for the optically thickest TAU class (60-459 

150) are mild for both generators, the small differences from observations correspond to 460 

small CFs to begin with (i.e., such clouds are rare). The CF of the second largest TAU class 461 

(23-60) is overestimated similarly by both generators (7.4 vs 6.7 in observations), but SCOPS 462 

suffers more error compensation. On the whole, the Raisanen generator produces fewer 463 

extreme biases (both overestimates and underestimates) than SCOPS, and most of the overall 464 

CF underestimate comes from optically thin clouds. SCOPS on the other hand would have 465 

suffered a much greater total CF underestimate due to thin clouds were it not for 466 

compensatory overestimates for clouds of moderate and high optical thickness.  467 

 468 

Fig. 6. One-year (2007) mean global ocean CTP-TAU joint histograms of observations (left 469 

panels) and from the subcolumn generator reconstruction (SCOPS-middle and Raisanen-right 470 

panels). For the middle and right panels the numbers represent the bin CF values themselves 471 

while the colors represent differences from the reference observed histograms. 472 

The comparison of average histograms can be performed at a greater level of detail using 473 

again the Cho et al. (2021) MODIS CRs in the manner previously employed in assessing the 474 

quality of CODliq filling. Mean joint CTP-TAU histograms by CR are compared between our 475 

reference COD fields and those produced by the two generators in Fig. 7. The top row shows 476 

the observed mean joint histograms by CR from CC COD fields for the year 2007 and for 477 
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ocean only. The middle and bottom rows show joint histogram differences obtained by 478 

subtracting the observed mean CR histogram from its reconstructed counterpart produced by 479 

the two generators. Both generators are capable of closely reproducing the mean CF 480 

corresponding to each CR, but again with a systematic underestimation. The Raisanen 481 

generator performs overall better when performance is measured in terms of ED: for 8 out of 482 

11 CRs, Raisanen EDs are smaller than SCOPS EDs. Raisanen is notably inferior for CR8 483 

even though it reproduces the mean CF of this CR quite well. This CR along with CR9 484 

appear to go against Raisanen’s tendency of optical thin cloud underestimation; on the other 485 

hand, SCOPS’s underestimation of optically thin cloud is persistent across all CRs. 486 
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 487 

 488 

Fig. 7. Top row: Mean 42-bin joint CTP-TAU histograms from CC for 2007 aggregated by MODIS CR over oceans only. Middle row: 489 

difference between SCOPS-reconstructed and observed mean joint histograms by CR (negative values indicate underestimate by SCOPS). 490 

Bottom row: As middle row, but for the Raisanen generator. 491 
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2) INDIVIDUAL SCENES 492 

The performance of the two subcolumn generators can also be assessed at the scene level 493 

by comparing the statistics of individual scene EDs and other metrics. Figure 8 depicts two 494 

examples of how the EDs between simulated and observed 42-bin joint histograms for 495 

individual 100-subcolumn scenes can be used to compare the performance of the two 496 

generators. The left panel shows how the mean of scene EDs varies as a function of their CF. 497 

The mean EDs of the two generators start to diverge at CF ≈ 20%, with the average EDs of 498 

the Raisanen generator remaining consistently below those from the SCOPS generator, 499 

indicating greater resemblance to observations on average. Two factors contribute to the 500 

monotonic increases of ED with CF: larger CF values for joint histogram bins that are already 501 

populated creating larger squared differences, and greater number of populated bins 502 

contributing more terms to the sum of squared differences. 503 

 504 

Fig. 8. Left panel: Average of individual 100-subcolumn scene EDs for the SCOPS and 505 

Raisanen generators from scene 42-bin histograms, discretized by observed scene CF. Right 506 

panel: Density plot of ED pairs from the two generators for individual scenes. 507 

The right panel of Fig. 8 provides another glimpse of relative generator performance 508 

using the same scene ED dataset. This time we create a density plot of ED pairs from the two 509 

generators. The population of pairs above the diagonal containing scenes where SCOPS ED 510 

exceeds Raisanen ED is much larger. There is a hint that SCOPS is doing better than 511 

Raisanen at very small EDs (and thus likely small scene CFs), as indicated by the larger 512 

density below the diagonal up to ED ≈ 5, but the density asymmetry reverses quickly, with 513 

far more scenes having greater ED for SCOPS than Raisanen above ED ≈ 10. 514 
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 515 

Fig. 9. Top row: Density plot of pairs of observed and simulated (SCOPS: left column; 516 

Raisanen: right column) vertically projected scene CFs. Middle row: As top row, but for 517 

mean logarithmic TAU. Bottom row: As top row but for scene TAU variance. 518 

Additional comparisons using density plots are shown in Fig. 9. This time we compare 519 

observed and simulated vertically projected scene-level CFs (top row), mean TAUs (middle 520 

row) and TAU variances (bottom row). The density plots for CFs indicate similar 521 

performance for the two generators and a preponderance of scene CF underestimates (i.e., 522 

fewer points above the diagonal) over the full range of CFs, a result consistent with the 523 

overall underestimate of CF seen in Fig. 6. The two generators produce a broad overestimate 524 

of mean logarithmic TAU which is however less pronounced for Raisanen, consistent with 525 

the underestimate of optical thin and overestimate of optically moderate and thick cloud 526 

populations seen previously in averaged joint histogram results. One has to keep in mind 527 
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though when comparing to previous results that what is being assessed here is the mean 528 

(logarithmic) TAU of individual scenes which corresponds to the TAU distribution of 529 

individual scene joint histograms. The Raisanen generator appears to overestimate scene 530 

mean TAU even when the scene is optically thin on average, something that does not occur 531 

for SCOPS which is performing better for such scenes. But for intermediate TAUs Raisanen 532 

is clearly better, ultimately yielding a smaller overall bias and RMSE. Where the two 533 

generators diverge greatly is with respect to the variance of TAU: SCOPS’s variance is far 534 

below observations for the vast majority of scenes. This is hardly surprising given that 535 

SCOPS distributes COD homogeneously across vertical layers and all variance of column 536 

TAU comes from cloud occurrence overlap. Raisanen on the other hand tends to overestimate 537 

variance of low and moderate magnitude. But once observed variance becomes very 538 

pronounced (> 200), which is though quite rare, Raisanen typically underestimates it. 539 

Even with this information, the radiative implications of generator performance at the 540 

level of individual scenes are not easily predictable outside of an actual model 541 

implementation. Yet, one can hypothesize on the potential impact of competing effects in the 542 

shortwave part of the spectrum where cloud heterogeneity (subgrid variability) matters more: 543 

reflected solar radiation would be underestimated when scene total vertically projected CF is 544 

underestimated (both generators), but this would be compensated to some degree by 545 

overestimates in mean TAU (both generators). Once variance of TAU is taken into account, 546 

its smaller underestimate by Raisanen would contribute a smaller overestimate than SCOPS. 547 

In other words, SCOPS can potentially provide greater compensation for its CF 548 

underestimate through its mean TAU overestimate and TAU variance underestimate. 549 

Radiative flux errors implied by generator deficiencies in producing correct subgrid 550 

variability are discussed later, but only in the context of the grand-average joint histograms of 551 

Fig. 6, and not for individual scenes where a more involved setup is required.  552 

3) SENSITIVITY EXPERIMENTS WITH THE RAISANEN GENERATOR 553 

As elaborated previously, the overlap of cloud occurrence and COD PDF in the Raisanen 554 

generator is regulated by two decorrelation lengths which control the proportion with which 555 

maximum and random overlap mix. In the results shown previously we used decorrelation 556 

lengths values obtained by the parameterizations of Oreopoulos et al. (2012), specifically 557 

their equations 10 and 11, which express decorrelation lengths as a function of latitude and 558 

day of the year. This means that we have shown results from only a single realization of the 559 
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Raisanen generator. Yet, other decorrelation length combinations may give better agreement 560 

with observations. In this subsection, we therefore show results from a limited number of 561 

experiments applying simple scaling on the default values of the two decorrelation lengths. 562 

Specifically, we show results from eight experiments corresponding to all possible 563 

combinations of halving and doubling the default values of the two decorrelation lengths. 564 

 565 

Fig. 10. Mean (2007 global average over ocean) CTP-TAU joint histograms for various 566 

experiments with the Raisanen generator using different decorrelation lengths, as indicated 567 

above each panel: “×0.5” indicates halving, “×1” same as default (Oreopoulos et al. 2012), 568 

and “×2” doubling the decorrelation length; the scaling factor for cloud occurrence 569 

decorrelation length is given first and that for COD PDF overlap second. Also, above each 570 

panel the ED of the mean histogram from observations, and the histogram CF are provided. 571 

The center plot is the default experiment, i.e., Fig. 6c. 572 

The center plot corresponds to the default experiment previously shown in Fig. 6c. Total 573 

CF and ED shown above each panel facilitate a quick assessment of performance. It can be 574 

seen that the observed CF (64.3) can be further approached by halving the cloud occurrence 575 

overlap decorrelation length (bottom row). This makes sense, because a smaller decorrelation 576 
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length makes cloud overlap more random which favors larger total CF. Doubling this 577 

decorrelation length (top row) has the opposite than desired effect: overlap becomes more 578 

maximum which decreases total CF compared to the already lower than observed CF of the 579 

default experiment. Note that CF across rows can change even if the decorrelation length for 580 

cloud occurrence overlap remains constant because of our previously discussed rejection of 581 

TAU < 0.3 subcolumns which do not count towards cloudy skies; the number of such 582 

subcolumns depends on the decorrelation length regulating COD PDF overlap. 583 

Matching total CF better does not guarantee superior (smaller) ED, as seen by the ED 584 

value of the lower right panel which is (slightly) larger than that two panels of the same row 585 

with worse CF. The best performing experiment is probably the one where decorrelation 586 

length for COD PDF remains the same while decorrelation length for cloud occurrence is 587 

halved (middle panel of bottom row). The fact that halving the default value for cloud 588 

occurrence overlap improves results (compare middle and bottom row) is somewhat 589 

surprising because previous results suggest that cloud occurrence overlap randomizes 590 

substantially slower with cloud layer separation distance than COD PDF overlap (Räisänen et 591 

al. 2004; Pincus et al. 2005; Oreopoulos and Norris 2011; Oreopoulos et al. 2012). 592 

4) PROFILES OF OVERLAPPED CLOUD FRACTION  593 

The generators by design should reproduce the observed mean CF profiles. However, the 594 

cloud occurrence is imperfectly overlapped vertically and this can be captured by comparing 595 

CFs of combinations of vertical layers between observations and simulations. Relevant 596 

profiles conveying such information are those for cumulative CF and CF exposed to space as 597 

in Barker (2008), the latter actually being the profile of differences between adjacent 598 

cumulative CF values. 599 

Figure 11 compares the profiles of mean downward and upward cumulative CF and CF 600 

exposed to space between observations and simulations as well as the profiles of root mean 601 

square differences in these quantities from the scene level data. Fig. 11 shows that in a mean 602 

sense both generators handle cloud overlap quite well. The downward cumulative cloud 603 

fraction profile (Fig. 11a) shows that the two generators handle the overlap of small CF in the 604 

upper troposphere similarly and start to diverge only at a height of about 8 km, with the 605 

cumulative CF of the Raisanen generator remaining closer to observations until abrupt CF 606 

increases around 3 km (seen as a change in the slope of the curve) bring the two generator 607 

curves closer together and with observations. This suggests errors in the CF overlap of the 608 
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generators at those heights which compensate for excessive overlap aloft causing 609 

underestimates of cumulative CF. At lower levels, the generators once again overlap too 610 

much, restoring the underestimates in cumulative CF. When CF is accumulated in the other 611 

direction (panel b) the excessive overlap of the generators starts appearing at around 1 km 612 

and once established continues unabated since getting closer to the observed curve would 613 

now require a severe underestimate of overlap. The RMSE curves from scene values suggests 614 

slightly more compensating error for Raisanen. 615 

 616 

Figure 11. Downward (a) and upward (b) global (ocean) average cumulative CF for the 617 

observations and two generators. The rightmost panel (c) shows profiles of CF exposed to 618 

space. For all three panels, the profile of root mean square errors is also provided. 619 

The rightmost panel shows the profile of CF exposed to space which peaks where the 620 

difference between two successive cumulative CF values is maximum. SCOPS outperforms 621 

Raisanen at that height, but the curves from the two generators are otherwise close and their 622 

deviations from observations are very small, until the highest levels of the troposphere where 623 

deviations re-emerge. Keep in mind that one can get good CF exposed to space even if the 624 

cumulative CF profile is biased because it is the shape of the profile that primarily matters. 625 

5) FIRST ORDER RADIATIVE FLUX ERRORS 626 

Here we present a simple method for translating the observed and simulated grand-627 

averaged CF distribution resolved in CTP-TAU space shown in Fig. 6 to a cloud radiative 628 

effect distribution (CRE, i.e., the difference between all-sky and clear-sky fluxes) in the same 629 

phase space. To accomplish this, we use the concept of cloud radiative kernels (CRKs) 630 

introduced by Zelinka et al. (2012) in which the impact of cloud on the shortwave (SW), 631 

longwave (LW) and total (combined SW+LW) radiative flux is modeled for each of the 42 632 

bins of the CTP-TAU joint histogram. The CRKs give the change in radiative flux due to 633 
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clouds (i.e., compared to clear-sky conditions) per unit CF across all bins of the joint CTP-634 

TAU histogram. When this normalized difference between clear and overcast radiative 635 

fluxes, i.e., the overcast CRE is multiplied with the distribution of CF shown in Fig. 6, a 636 

distribution of CREs in the CTP-TAU phase space can be obtained. In our own 637 

implementation of this CRE calculation, rather than using the model-derived Zelinka et al. 638 

(2012) CRKs, we use roughly equivalent observational counterparts coming from the Clouds 639 

and the Earth Radiant System (CERES) FluxByCldTyp product (Sun et al. 2022). 640 

Specifically, from the monthly version of the product, we calculate globally-averaged ocean-641 

only pseudo-CRKs for the year 2007. These are shown in Fig. S1. When the pseudo-CRKs 642 

are multiplied with the CF histograms of Fig. 6, the results of Fig. 12 are obtained. Above 643 

each panel of Fig. 12, we provide the global (ocean only) CRE value. 644 

As expected, LW CRE errors are less widespread than SW errors, based on the extent of 645 

white space (indicating small errors) in the middle and right panels of the first and second 646 

row. The Raisanen generator performs remarkably well on a global basis, but is aided in the 647 

SW by non-negligible compensation of errors in individual bins; the bin errors are larger and 648 

more extensive for SCOPS and result in a substantial 2.7 Wm-2 global SW CRE error. 649 

Because SCOPS’s LW CRE error is small, most of the SW CRE error propagates to total 650 

CRE, which as a global value is actually perfect for Raisanen. The overestimates of SW CRE 651 

by SCOPS are consistent with the previous discussion of Fig. 6, identifying underestimates of 652 

optically thin clouds and overestimates of clouds with moderate and large optical thickness. 653 

The distribution of SW CRE errors in Fig. 12 (colors) tracks the distribution of CF errors in 654 

Fig. 6 (colors) to some extent, but the one-to-one mapping is imperfect because CF errors for 655 

optically thin clouds are radiatively inconsequential. Binned LW CRE errors outside the ±0.1 656 

Wm-2 range are more frequent for SCOPS, but generally rare besides the more sensitive to 657 

LW radiation high clouds. Errors in total CRE outside this range are limited to very few bins 658 

for Raisanen, but quite more frequent for SCOPS when TAU > 3.6. 659 
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 660 

Fig. 12. Distributions of shortwave (SW), longwave (LW) and total = (SW+LW) CREs in the 661 

CTP-TAU phase space (numbers in all panels) and errors (colors in the middle and right 662 

panels) obtained by multiplying the “pseudo-CRKs” of Fig. S1 with the CF histograms of 663 

Fig. 6. Above each panel the global (ocean only) CRE value is provided. 664 

 665 

4. Discussion and conclusions 666 

We have created a dataset of 2D cloud optical depth fields that is extensive enough for 667 

statistical evaluation of cloud subcolumn generators used by satellite simulators in GCMs for 668 

emulating real-world subgrid variability. The dataset is based on active CloudSat-CALIPSO 669 

global observations for the year 2007. The appropriateness of such observations compared to 670 

those obtained from passive instruments stems mainly from their ability to resolve the 671 

vertical (height-dependent) variability of clouds; passive observations typically provide only 672 

column-integrated quantities. Our dataset was constructed by combining two CloudSat 673 

products. Upon doing this, it quickly became apparent that the portion of the cloud field 674 

contributed by liquid clouds required corrections as it was found to lack retrievals for a non-675 
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negligible fraction of cells identified to be cloudy and of liquid phase in the CALIPSO-676 

enhanced CloudSat 2B-CLDCLASS-LIDAR product. We came up with a relatively simple 677 

filling scheme for the missing clouds whose performance was assessed via comparisons with 678 

MODIS-Aqua cloud retrievals. The comparisons were based on discretized cloud fraction 679 

(CF) distributions in the form of joint histograms of cloud top pressure (CTP)-cloud optical 680 

thickness, (TAU), and even encompassed a MODIS cloud regime (CR) segregation in order 681 

to gauge possible dependences on cloud types. 682 

The reconstructed 2D cloud optical depth fields including our improvements were 683 

segmented into scenes comprising 100 subcolumns (~110 km) and whose mean CF and TAU 684 

profiles were passed to the two generators to produce their own set of 100 subcolumns as a 685 

simulated version of the scene. All three sets of subcolumns were passed to COSP’s MODIS 686 

simulator which transformed them to joint CTP-TAU scene histograms for potential 687 

averaging across spatiotemporal scales. Note that there is no fundamental reason the 688 

generators should be configured to also produce 100 subcolumns, since individual 689 

subcolumns are never compared, but rather scene-level cloud field properties. When we 690 

experimented with different numbers of subcolumns, we noticed a slow progressive 691 

improvement in performance as the subcolumn number grew, but without much benefit 692 

above 100 subcolumns. Actually, on the opposite side of fewer subcolumns, even as few as 693 

20 would not have affected the results of this study substantiatively. 694 

 A sensible way of assessing the performance of the two generators in terms of joint 695 

histograms is to compare the Euclidean distances of their grand averages against their 696 

observational counterpart (which again can be made more detailed by applying a CR 697 

breakdown), or statistics of EDs coming from individual scene histograms. Simpler 698 

comparisons bypassing joint histograms altogether are of course also possible using 699 

vertically-integrated quantities directly derived from the scene’s subcolumns, such as 700 

vertically-projected cloud fraction, (logarithimic) mean scene TAU, and variance of TAU. 701 

Both types of comparisons described above reveal a clear superiority of the Raisanen 702 

generator in our default implementation, i.e., using the parameterization of decorrelation 703 

lengths for cloud occurrence and cloud optical depth PDFs proposed by Oreopoulos et al. 704 

(2012). Sensitivity experiments allowing the decorrelation lengths to vary unveil that simple 705 

modifications to this parameterization may yield even better results. Nevertheless, the main 706 

deficiencies of both generators, namely an overestimation of overlap and an underestimation 707 
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of the occurrence of optically thin clouds remains a persistent theme. For SCOPS, this error 708 

combines with overestimates of optically thicker clouds yielding an overestimate of 709 

shortwave cloud radiative effect that is close to 3 Wm-2 on global scales, but for Raisanen 710 

where optically thicker clouds are better simulated, the shortwave CRE error remains 711 

contained. 712 

We are fully aware that vertically integrated quantities and joint histograms describing 713 

how integrated extinction and location of the highest cloud co-vary cannot be viewed as the 714 

only way to evaluate subgrid variability simulated by generators. Even in a two-dimensional 715 

world, the subgrid-scale profiles of cloud occurrence and cloud (liquid and ice) condensate 716 

and particle size should be well-reproduced since they may matter for radiative heating rate 717 

profiles and the physical parameterizations developed for GCMs. We have taken a first step 718 

by evaluating subgrid cloud occurrence profiles via grand-average profiles of cumulative 719 

cloud fraction and cloud fraction exposed to space, which revealed satisfactory skill of 720 

similar parity for both generators. Nevertheless, one should keep in mind that knowing and 721 

being able to simulate the subgrid variability of a wider range cloud properties is imperative 722 

for an assessment of subgrid realism based on radiative flux and heating rate profiles. We 723 

anticipate to be in a position to confront the simulators with such stricter tests in future 724 

endeavors. Efforts of this kind would also benefit by a wider range of choices of empirical 725 

and easy to use cloud subcolumn generators that operate on the (more readily available from 726 

observations) condensed part of total water content, criteria that are unfortunately not met by 727 

other existing generators (Norris et al. 2008; Larson and Schanen 2013). 728 
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The CloudSat products used in this study are available at 739 

https://www.cloudsat.cira.colostate.edu. The CERES FluxByCldType product is available at 740 

https://ceres.larc.nasa.gov/data/. The COSP simulator which includes the MODIS simulator 741 

can be downloaded from https://github.com/CFMIP/COSPv2.0.  742 
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