

NATIONAL INSTITUTE OF AEROSPACE Machine Learning in Atomistic Simulations for Additive Manufacturing Alloys

NIA Board of Directors Meeting

Vesselin Yamakov Associate Principal Scientist

08.25.2022

Collaborators

NATIONAL INSTITUTE OF AEROSPACE

Edward Glaessgen – NASA/LaRC Yuri Mishin – George Mason University (GMU)

Outline

NATIONAL INSTITUTE OF AEROSPACE

- Fundamental physics-based modeling of materials
- Atomistic simulations in additive manufacturing (AM)
- Machine learning in atomistic simulations
- Physically Informed Neural Network (PINN) interatomic potential
- Example for aluminum
- Computational implementation of PINN
- Conclusion

Fundamental Physics-Based Modeling of Materials

NATIONAL INSTITUTE OF AEROSPACE

- Provides fundamental understanding of materials behavior
- Tailor materials properties to specific needs by composition and structural design
- Increases design space for advanced materials and enables new structural concepts

Atomistic Models

Phase transformation in CoNiAl SMA

BNNT-AI metal matrix composite

Multiscale Models

Crack tip plasticity in AI crystal

Pseudoelastic response of SMA particle under shock wave in Al matrix

Atomistic Simulations in Additive Manufacturing

NATIONAL INSTITUTE OF AEROSPACE

Role:

- Provides first-principles physics-based information on the highly dynamic AM processing during:
 - rapid heating and cooling (melt / solidification process)
 - strong thermal gradients (local heating)
 - high thermal stresses
- Complement other simulation methods at mesoscale by:
 - providing knowledge of microscopic mechanisms of key processes
 - obtaining material parameters not easily accessible experimentally

Objectives:

- Develop process parameter / microstructure relationships to guide process optimization
- Develop thermodynamics relationships to understand microstructure evolution and to guide design

Laser Sintering/E-beam Melting

Electron Beam Freeform Fabrication

Laser Engineered Net Shaping

Machine Learning in Atomistic Simulations

NATIONAL INSTITUTE OF AEROSPACE

Atomic interactions governed by quantum mechanics (QM) are very complex and extremely difficult to calculate: cpu time $\sim N^{3\div8}$

Standard approach: replace the complex QM calculations with a simplified expression with empirically fitted parameters

¹N. Marom et al., Phys. Rev. Lett. 105 (2010) 046801. ²V. Yamakov et al., Comp. Mat. Sci. 135 (2017) 29.

Physically Informed Neural Network (PINN) Interatomic Potential

NATIONAL INSTITUTE OF AEROSPACE

The Universal Approximation Theorem: a neural network (NN) can approximate any f(x) NN universality

QM is replaced by a trained NN

Implementation of PINN

NATIONAL INSTITUTE OF AEROSPACE

Training Stage

Retains the accuracy of QM while gaining in speed: cpu time ~N

coefficients

environment

Example for Aluminum: Crystalline Phase

NATIONAL INSTITUTE OF AEROSPACE

DFT – Density Functional Theory calculations

NN architecture: 40x16x16x8 -> 1064 fitting coefficients Training set: 36,490 supercells of 2 to 79 atoms

G. P. Purja Pun et al., *Physical Review Materials*, 4 (2020) 113807.

Excellent fit to DFT (QM) calculations

Example for Aluminum: Defect Structures

NATIONAL INSTITUTE OF AEROSPACE

Excellent agreement with defect structures and thermal expansion

Example for Aluminum: Melt Properties

NATIONAL INSTITUTE OF AEROSPACE

Melting temperature

Reasonably good prediction of the melting temperature

Example for Aluminum: Melt Properties

NATIONAL INSTITUTE OF AEROSPACE

12

Surface and liquid-solid interface energies

Prediction of difficult to estimate interface energies is essential for AM applications

Example for Aluminum: Melt Properties

NATIONAL INSTITUTE OF AEROSPACE

DFT: N. Jakse & A. Pasturel, Scientific Reports 3 (2013) 3135.

Accurate prediction of density, diffusivity, and viscosity is essential for AM applications 13

Computational Implementation of PINN

NATIONAL INSTITUTE OF AEROSPACE

Exploring the recent advancements in supercomputer architectures

- PINN calculations are computationally highly demanding: ~ 3,000,000 floating point operations per atom
- High Performance Computing (HPC)
 implementation is strongly required
- ParaGrandMC code developed at NASA and NIA provides massively parallel computational platform for PINN (<u>https://software.nasa.gov/software/LAR-19893-1</u>)

NASA/LaRC midrange supercomputing K-cluster

Midrange supercomputing K-cluster provides learning environment for HPC development 14

NATIONAL INSTITUTE OF AEROSPACE

Test example on an aluminum crystal for 100 molecular dynamics (MD) time steps

Direct 1:1	comparison to DFT
------------	-------------------

N=500 100 MDS	EAM 16 cores	PINN 16 cores	DFT 32 nodes
Time, t	0.39 s	35 s	46,688 s
t/t _{EAM}	1	89	119,107

Larger scale beyond DFT capabilities

N=72,000 100 MDS	EAM	PINN	DFT 32 nodes extrapolated
16 cores	3.5 s (1)	528 s (151)	13.5 years
16 cores + V100	-	115 s (33)	-

PINN is slower than empirical potentials, but much faster than DFT without loss of accuracy 15

NATIONAL INSTITUTE OF AEROSPACE

Simulation of a central crack nucleation along a grain boundary in aluminum using PINN potential

Crack growth simulation with DFT precision

433,000 atoms; 24 ps MD simulation (12,000 MD time steps) 4 MPI nodes using (10 Skylake 6148 CPUs + V100 GPU) / node 14 cpu hours

ParaGrandMC code developed at NASA and NIA (<u>https://software.nasa.gov/software/LAR-19893-1</u>)

High performance computing technologies allow for large scale PINN simulations

Conclusion

NATIONAL INSTITUTE OF AEROSPACE

- Atomistic simulations provide fundamental understanding of materials behavior and help design new advanced materials
- Machine learning in atomistic simulations reproduces atomic forces with quantum mechanics precision at orders of magnitude lower computational cost
- Applied in additive manufacturing NN-based interatomic potential can accurately predict solid phase and melt properties of metallic alloys to guide process optimization
- Other PINN potentials under development for:
 - Additive Manufacturing: Ti, Ti-Al, Ti-Al-V (Ti-6Al-4V aerospace alloy) NASA/LaRC
 - Semiconductor industry: Si, Si-C GMU, NIST
 - Other: Ta, Cu-Ta in collaboration with GMU

Acknowledgements

NATIONAL INSTITUTE OF AEROSPACE

- NASA Transformational Tools and Technologies (T3) Project
- High-End Computing Capability Project NASA Advanced Supercomputing Division: Gabriele Jost and Daniel Kokron
- NASA/LaRC midrange supercomputing K-cluster
- Cooperative agreement NNL09AA00A with the National Institute of Aerospace