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Fundamental Physics-Based Modeling of Materials

• Provides fundamental understanding 
of materials behavior

• Tailor materials properties to specific 
needs by composition and structural 
design

• Increases design space for advanced 
materials and enables new structural 
concepts

Phase transformation in CoNiAl SMA

Crack tip plasticity in Al crystal Pseudoelastic response of SMA 
particle under shock wave in Al matrix 

Multiscale Models

BNNT-Al metal matrix composite 

Atomistic Models
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Atomistic Simulations in Additive Manufacturing

• Provides first-principles physics-based information 
on the highly dynamic AM processing during:

– rapid heating and cooling (melt / solidification 
process)

– strong thermal gradients (local heating)
– high thermal stresses

• Complement other simulation methods at 
mesoscale by:

– providing knowledge of microscopic mechanisms of 
key processes

– obtaining material parameters not easily accessible 
experimentally

Laser Sintering/E-beam Melting

Electron Beam Freeform Fabrication

Laser Engineered Net Shaping

• Develop process parameter / microstructure 
relationships to guide process optimization

• Develop thermodynamics relationships to understand 
microstructure evolution and to guide design

Objectives:

Role:
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Machine Learning in Atomistic Simulations
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Atomic interactions governed by quantum 
mechanics (QM) are very complex and 
extremely difficult to calculate: cpu time ~𝑁!÷#

Standard approach: replace the complex QM 
calculations with a simplified expression with 
empirically fitted parameters
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• Very accurate
• Generic to all known structures
• Very slow: cpu time ~N3-8 
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• Very fast: ~10!" atoms
• Inaccurate
• Non-transferable (unique for each material)
• Difficult to create (expensive)

1N. Marom et al., Phys. Rev. Lett. 105 (2010) 046801.
2V. Yamakov et al., Comp. Mat. Sci. 135 (2017) 29.

New approach is needed



Physically Informed Neural Network (PINN) 
Interatomic Potential

7QM is replaced by a trained NN

Material Atomic 
environment
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coefficients Neural Network

Contains the “knowledge” 
of the QM calculations
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NN predicted 
parameters

NN parameterized potential energy 
function

Retains the physics of the 
atomic interactions

The Universal Approximation Theorem: a neural network (NN) can approximate any f(x) 
NN universality 

Improves transferability 
outside the training region



Retains the accuracy of QM while gaining in speed: cpu time ~N

Training Stage
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Use QM to calculate a large set of atomic structures
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Train NN against 𝑤!, 𝑏!, 𝑤", 𝑏", … to minimize the 
objective function, 𝜀
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Inference Stage

Material Atomic 
environment
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Fixed 𝑤!, 𝑏!, 𝑤", 𝑏", … as trained

Approximate 𝐸% of 
atom (i):

Implementation of PINN
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Excellent fit to DFT (QM) calculations

DFT – Density Functional Theory calculations NN architecture: 40x16x16x8 -> 1064 fitting coefficients

Training set: 36,490 supercells of 2 to 79 atoms

G. P. Purja Pun et al., Physical Review Materials, 4 (2020) 113807. 

Example for Aluminum: Crystalline Phase
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Example for Aluminum: Defect Structures

10Excellent agreement with defect structures and thermal expansion

Edge dislocation Thermal expansion



Example for Aluminum: Melt Properties

11Reasonably good prediction of the melting temperature

Melting temperature

𝑇1 (33) = 975 𝐾

𝑇1 (56758/15.9) = 933 𝐾



Example for Aluminum: Melt Properties

12Prediction of difficult to estimate interface energies is essential for AM applications

Capillary fluctuation method:

Surface tension,

Liquid-solid interface energy

Surface and liquid-solid interface energies 

Capillary fluctuation



Example for Aluminum: Melt Properties

13Accurate prediction of density, diffusivity, and viscosity is essential for AM applications

ViscosityDiffusionDensity

EAM – Embedded Atom Method (Empirical) potential
PINN – Physically Informed Neural Network potential 𝐷 = lim
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DFT: N. Jakse & A. Pasturel, Scientific Reports 3 (2013) 3135.



Computational Implementation of PINN
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Exploring the recent advancements in supercomputer architectures

• PINN calculations are computationally 
highly demanding: ~ 3,000,000 floating 
point operations per atom

• High Performance Computing (HPC) 
implementation is strongly required

• ParaGrandMC code developed at NASA 
and NIA provides massively parallel 
computational platform for PINN 
(https://software.nasa.gov/software/LAR-
19893-1)

NASA/LaRC midrange supercomputing K-cluster

Midrange supercomputing K-cluster provides learning environment for HPC development

https://software.nasa.gov/software/LAR-19893-1


Computational Implementation of PINN

15PINN is slower than empirical potentials, but much faster than DFT without loss of accuracy 

Test example on an aluminum crystal for 100 molecular dynamics (MD) time steps 

N=500 
100 MDS

EAM
16 cores

PINN
16 cores

DFT
32 nodes

Time, t 0.39 s 35 s 46,688 s

t/tEAM 1 89 119,107

N=72,000 
100 MDS

EAM PINN DFT
32 nodes

extrapolated
16 cores 3.5 s (1) 528 s (151) 13.5 years

16 cores + V100 - 115 s (33) -

Direct 1:1 comparison to DFT

Larger scale beyond DFT capabilities



Computational Implementation of PINN

16High performance computing technologies allow for large scale PINN simulations 

Simulation of a central crack nucleation along a grain boundary in 
aluminum using PINN potential

Crack growth simulation with DFT 
precision 

433,000 atoms; 24 ps MD simulation 
(12,000 MD time steps)

4 MPI nodes using (10 Skylake 6148 
CPUs + V100 GPU) / node

14 cpu hours

𝑌

𝑋

ParaGrandMC code developed at NASA and NIA 
(https://software.nasa.gov/software/LAR-19893-1) 

https://software.nasa.gov/software/LAR-19893-1


Conclusion

• Atomistic simulations provide fundamental understanding of materials behavior 
and help design new advanced materials

• Machine learning in atomistic simulations reproduces atomic forces with quantum 
mechanics precision at orders of magnitude lower computational cost

• Applied in additive manufacturing NN-based interatomic potential can accurately 
predict solid phase and melt properties of metallic alloys to guide process 
optimization

• Other PINN potentials under development for: 
– Additive Manufacturing: Ti, Ti-Al, Ti-Al-V (Ti-6Al-4V aerospace alloy) – NASA/LaRC
– Semiconductor industry: Si, Si-C – GMU, NIST
– Other: Ta, Cu-Ta – in collaboration with GMU
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