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Abstract: Ocean color remote sensing requires compensation for atmospheric scattering and
absorption (aerosol, Rayleigh, and trace gases), referred to as atmospheric correction (AC). AC
allows inference of parameters such as spectrally resolved remote sensing reflectance (R (L);
sr'!) at the ocean surface from the top-of-atmosphere reflectance. Often, the uncertainty of this
process is not fully explored. Bayesian inference techniques provide a simultaneous AC and
uncertainty assessment via a full posterior distribution of the relevant variables, given the prior
distribution of those variables and the radiative transfer (RT) likelihood function. Given
uncertainties in the algorithm inputs, the Bayesian framework enables better constraints on the
AC process by using the complete spectral information compared to traditional approaches that
use only a subset of bands for AC. This paper investigates a Bayesian inference research method
(Optimal Estimation, OE) for ocean color AC by simultaneously retrieving atmospheric and
ocean properties using all visible and near-infrared spectral bands. The OE algorithm
analytically approximates the posterior distribution of parameters based on normality
assumptions and provides a potentially viable operational algorithm with a reduced
computational expense. We developed a Neural Network (NN) RT forward model look-up-
table-based emulator to increase algorithm efficiency further and thus speed up the likelihood
computations. We then applied the OE algorithm to synthetic data and observations from the
MODerate resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua spacecraft. We
compared the R,4(A) retrieval and its uncertainty estimates from the OE method with in-situ
validation data from the SeaWiFS Bio-optical Archive and Storage System (SeaBASS) and
Aecrosol Robotic Network Ocean Color (AERONET-OC) datasets. The OE algorithm improved
R, (M) estimates relative to the NASA standard operational algorithm by improving all
statistical metrics at 443, 555, and 667 nm. Unphysical negative R,s(A), which often appear in
complex water conditions, was reduced by a factor of 3. The OE-derived pixel-level R,(\)
uncertainty estimates were also assessed relative to in-situ data and were shown to have skill.

© 2021 Optica Publishing Group under the terms of the Optica Publishing Group Open Access Publishing
Agreement

1. Introduction

The atmospheric correction (AC) process in ocean color (OC) remote sensing involves
separating and removing the atmospheric contributions (aerosol and gas scattering and
absorption) and ocean surface signal from the spectral reflectances observed by a satellite
radiometer at the top of the atmosphere (TOA) [1-4]. The science of OC aims to quantify and
assess the biogeochemical properties of aquatic ecosystems by interpreting their visible water-
leaving spectra. These spectral reflectance signals emerging from the water body primarily
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depend on the inherent optical properties (IOPs; absorption and scattering properties) of the
biogeochemical constituents dissolved or suspended within the water column, in combination
with the IOPs of seawater itself. These constituents include organic and inorganic hydrosols
suspended in seawater, colored dissolved organic matter (CDOM), and photosynthetic
pigments within phytoplankton. The primary heritage OC data product is the near-surface
concentration of the photosynthetic pigment chlorophyll-a (Chl-a; mg m-3), which provides a
convenient and widely-used proxy for phytoplankton biomass [5]. Phytoplankton biomass is
an essential component of the Earth’s carbon cycle, and producing climate-quality OC data
records is generally necessary for Earth climate studies [6-8].

Chlorophyll-a concentrations are typically derived through an empirical relationship based
on coincident in-situ observations of Chl-a and the aforementioned water-leaving radiometric
signal, namely spectral remote sensing reflectances (R,(A); sr-1), which are the radiances
exiting the water column normalized to downwelling surface irradiance. However, since the
atmospheric radiance contribution to the TOA signal is typically between 85-90% of the total,
a small uncertainty in the AC can lead to large uncertainties in the ocean radiances and derived
OC products [3]. The Rayleigh scattering of the atmosphere is effectively known, based on
assumed molecular properties [9], yet it can introduce additional uncertainties in the AC [10].
However, the aerosol signal must be inferred from the satellite observations since the aerosol
type and concentration vary spatially and temporally in the atmosphere [11].

Inferring useful information from satellite-derived radiometry is accomplished by solving
the inverse problem, which is ill-posed and under-constrained for AC [12,13]. The TOA
reflectance of multi-spectral, single viewing sensors such as the Sea-viewing Wide Field-of-
view Sensor (SeaWiFS) [14], MODerate resolution Imaging Spectroradiometer
(MODIS) [15], and Visible Infrared Imaging Radiometer Suite (VIIRS) [16], contain less
information than what is required to find an unambiguous solution to a complex Atmosphere-
Ocean (AO) model. To address this issue, future NASA missions will dedicate more advanced
instruments to increase the observed information. For example, NASA’s Plankton, Aerosol,
Cloud, ocean Ecosystem (PACE) mission will host three instruments that will measure the AO
system with unprecedented spectral and angular information [17]. The primary instrument is
the Ocean Color Instrument (OCI), which is being developed at the Goddard Space Flight
Center (GSFC) and is a hyperspectral scanning radiometer that measures the light from 320 to
890 nm at 5-nm spectral resolution and 2.5-nm spectral sampling, and at seven discrete short-
wave infrared (SWIR) channels: 940, 1,038, 1,250, 1,378, 1,615, 2,130, and 2,260 nm. The two
other instruments, the Hyper-Angular Rainbow Polarimeter 2 (HARP2) and the Spectro-
Polarimeter for Exploration (SPEXone), are aimed at studying aerosols and clouds and are
multi-angular polarimeters (MAPs) developed and contributed by external partners. To employ
OCT’s unprecedented hyperspectral capabilities for ocean applications, an accurate AC process
with capabilities beyond the current algorithm designed for multispectral sensors is necessary.
One such OCI algorithm has been developed, which relies on the proven heritage AC
capabilities of the NASA standard algorithm, extended to hyperspectral data and with added
capabilities to seamlessly utilize the SWIR channels for AC in coastal and inland waters (e.g.,
the multiband AC (MBAC) algorithm) [18]. In addition to this OCI-only AC, the MAPs will
provide more complex aerosol information to constrain the AC for OCI [19]. Thus,
establishing a probabilistic framework that can combine the information from two or three
independent instruments with different spatial and spectral resolutions, information content,
and measurement uncertainty characteristics using a Bayesian framework is a logical next step
to advance the AC performance and the quality of OC retrievals from PACE.

Deterministic (that is, non-stochastic) AC methods have been and are currently being used
as the standard processing algorithms for satellite remote sensing of OC [3,4,11,20,21]. These
methods maximize the likelihood (i.e., match radiative transfer prediction models to the
observations) of the AC parameters such as the aerosol, surface, and ocean optical properties
and often do not directly provide an estimate of the uncertainty on these parameters or consider



the uncertainty in the algorithm inputs and parameters. The forward likelihood model is
parametrized from radiative transfer simulations in a (pre-computed) look-up-table (LUT) for
computational efficiency. These LUTs contain the modeled TOA reflectances for a pre-
determined set of relevant parameters within a typical range.

NASA’s current operational AC algorithm for OC sensors is based on Gordon and
Wang [11], with the current implementation detailed in [20]. The algorithm determines and
removes atmospheric (i.e., Rayleigh and aerosol) and surface (i.e., whitecaps, glint)
reflectances through a LUT search of pre-computed reflectances as derived using vector
radiative transfer (VRT) simulations. One LUT contains the spectral TOA Rayleigh reflectance
for different geometries and surface wind speeds. The aerosol reflectance LUTs are
parametrized for 80 different aerosol optical models representing the range of relative humidity
(RH) and fine-mode volume fractions [22]. These models assume a complex refractive index
and bimodal effective radius and variance for coarse and fine aerosol particles, determined from
Aerosol Robotic Network (AERONET) observations [23,24]. The absorption coefficients of
trace gases such as ozone, water vapor, oxygen, and methane are stored in LUTs and applied
to compensate for atmospheric path absorption given the gas concentration and an assumed
vertical profile. Ancillary information, including relative humidity, ozone and water vapor
concentrations, and wind speed, are provided as auxiliary inputs to constrain the inversion.

The aforementioned models are explicitly parameterized to ensure that the inversion is not
mathematically ill-posed and act as a constraint to reduce ambiguity and the potential for
degenerate solutions. The aerosol optical models are assumed to be non- to weakly- absorbing
and to have a fixed vertical profile. With these assumptions, only two pieces of information are
needed for the AC: aerosol optical depth (AOD, i.e., loading) and spectral dependence (i.e.,
from the optical model), both of which can be determined using a pair of near-infrared (NIR)
or SWIR wavelengths (dependent on the sensor). However, the presence of strongly absorbing
aerosol types confounds this process, and the AC typically produces either underestimated or
non-physical negative ocean radiances in the blue part of the spectrum . This is because the
algorithm relies on the extrapolation of the model information determined from the longer NIR
or SWIR wavelengths (where the ocean is dark) to the visible (where it is not). The spectral
information in the longer wavelengths is insufficient to discern absorbing from non-absorbing
aerosols, as they differ primarily in the shorter wavelengths and do not have a discriminating
signature in the NIR. Thus, the solution can be ambiguous and aerosol absorption cannot be
reliably inferred unless the algorithm is constrained by additional external information.

Pixel-level Uncertainty Quantification (UQ) is critical in assessing the fidelity of
geophysical retrievals within the Earth system. UQ also allows for identifying issues and
limitations in retrieval algorithms due to inherent modeling assumptions, measurement
uncertainties, and gaps in knowledge and sources of uncertainties. Traditionally, uncertainties
in R, are based on the reported average discrepancy between the satellite-derived and in-situ
R,y [27,28]. UQ has been attempted through various techniques such as Bayesian
approaches [29,30], Monte Carlo simulations [31], or analytical error propagation of sensor
random noise [32]. A new approach was developed to estimate pixel-level uncertainties for
Sentinel-3 Ocean and Land Colour Imager (OLCI) based on an ensemble of neural network
atmospheric correction models for coastal waters, showing an estimate of the R, uncertainty
product that is feasible to apply operationally [33].

Because of the ill-posed nature of the problem, Bayesian approaches are well-suited for AC
and indeed have been applied widely for acrosol [34,35], cloud [36,37], atmospheric trace gas
profiling [38,39], and OC [29,40—42] retrievals. For a given model, the aerosol and ocean
properties can be inferred, along with the associated uncertainties, in the form of a posterior
distribution. Bayes theorem calculates conditional probabilities and updates a prior belief when
new data (evidence) is introduced [43] such that P(x| yops) X P(YopslXx) X P(x), where P
(x| yops) 1s the posterior distribution or probability of the variables needed for AC, x, given the
observed data, Y,ps. The posterior distribution is proportional to the likelihood function, P(Vops



|x), and the prior probability of the variables P(x). The likelihood function describes the
probability of the observed TOA reflectance, Yops, given the variables x. Here, the likelihood
function is the forward model based on RT and x are the variables that describe the state of the
ocean and atmosphere, such as the aerosol and ocean optical properties or ancillary data. The
AC algorithm requires some prior information, P(x), such as the relative humidity, surface
pressure, ozone, and water vapor that can, along with their uncertainties, be directly
incorporated into the prior (in contrast to a non-Bayesian retrieval where these values are
assumed to be true). In the deterministic sense, the likelihood is typically written as Yobs = F(x)
+ €, where F(x) is the forward operator (model), and € is the uncertainty associated with that
model. In Bayesian terminology, the likelihood probability is modeled as a statistical
distribution, assumed normal in this case, with mean and variance determined from the forward
model.

There are various numerical techniques that approximate Bayes’ theorem. The grid
approximation is the most straightforward inference engine by approximating the continuous
variables, x, on a finite parameters grid. The posterior is calculated by multiplying the
likelihood probability and prior probability evaluated at each grid point: a non-iterative brute
force approach. The Generalized Nonlinear Retrieval Analysis (GENRA) algorithm for cloud
properties retrievals utilizes the grid approximation to retrieve, for example, the posterior of
two independent parameters: cloud optical depth and effective radius [44]. Expanding the grid
to higher dimensions, however, can be computationally challenging. But, when the dimension
is low (e.g., <5), the method is tractable and yields inference results within a reasonable
computational time [30]. This manuscript will focus on the normal or quadratic inference
approximation, Optimal Estimation (OE), as used in Rodgers’s (2000) formalism [45]. This is
a widely used inverse algorithm within the atmospheric science community [34,35,37-39,46].

Due to the high computational demand of an OE inference algorithm that fully considers
the correlation structure in the observations and model, a fast likelihood function (i.e., forward
model) evaluation is necessary. There are several ways to approximate the forward model in
the iterative inversion process. A rigorous RT computation is the most accurate; however, it is
computationally slow for a complex AO system. The LUT parametrization of the RT, such as
NASA’s operational tables, are pre-computed and stored for a pre-determined grid of
parameters, thus requiring multi-dimensional interpolation for each iteration in the retrieval.
The LUT parametrization is accurate and sufficiently fast (for low-dimensional problems) for
deterministic inversion using, for example, non-Bayesian methods or low-dimensional OE.
However, in the high-dimensional inverse problem of the coupled AO system, the likelihood
function based on the associated LUT interpolations becomes computationally costly. We
developed a deep Neural Network (NN) with a simple multi-layer perceptron (MLP)
architecture that efficiently and accurately emulates the forward RT LUT parameterization to
speed up the forward model computations. In this case, the Forward RT NN is a non-linear
function approximator of the radiative transfer equation.

Forward model emulators using MLP-NN have been used to speed up the RT computations
in modeling solar radiation [47] and satellite sensor simulators [48]. A forward model
emulator was also used in inverting geophysical properties using a Gaussian Process model for
land surface parameter inference in spectroscopic remote sensing of land and ocean
surfaces [50,51], and polarimetric remote sensing of aerosols [52,53]. Note that the NN is not
required for a Bayesian retrieval; it is merely a tool adopted to increase the computational
efficiency of the analysis. A forward RT NN emulator provides advantages over an inverse RT
NN model that estimates geophysical parameters from observations. The forward NN model is
easier to train as there is a 1-1 mapping between the geophysical inputs to the RT and the
predicted TOA reflectances, avoiding the ill-posed, non-uniqueness, and overfitting problem
common with inverse neural networks due to multicollinearity among variables [54]. The
Jacobian matrix (see later) is necessary for the iterative inversion scheme. A NN forward model
can efficiently provide the Jacobian using the backpropagation chain rule algorithm and, with



modern computer languages, Automatic Differentiation (AD) [55-57]. Additionally, the
forward RT NN can be used in any iterative or stochastic inversion models that allow
uncertainty propagation or estimation, which is more challenging for an inverse NN. However,
several studies aimed at assessing the variability in NN weights and their relationship to
geophysical parameter uncertainties showed promising results within their application
domain [54,58,59].

This work aims to establish an inference framework for the AC that can be potentially
applied to global datasets for a wide range of environmental conditions and provide pixel-level
uncertainty. The algorithm relies on the simultaneous estimation of the atmospheric parameters
(i.e., AOD and fine-mode fraction, and ancillary related parameters), as well as the ocean’s
inherent optical properties established through the Generalized Inherent Optical Properties
(GIOP) model [60] (i.e., absorption coefficients of seawater, phytoplankton and colored
dissolved plus detrital matter and backscattering coefficients for seawater and particle matter).
It can exploit the information content of all spectral bands available for an instrument. Our OE
algorithm finds the optimal solution to the TOA reflectance state vector and estimates the pixel-
level uncertainty (i.e., the error covariance matrix) of R,;. The availability of a spectral error
covariance matrix can be used as an input for estimating IOP and biogeochemical product
uncertainties [61]. The model considers the uncertainty at the TOA due to instrument random
noise, ancillary data uncertainty, and the systematic and forward model uncertainty estimated
at the Marine Optical BuoY (MOBY) site.

The OE algorithm effectively recasts the standard NASA algorithm approach into a
Bayesian framework. The goal of this framework, however, manifests in several ways:

e We aim to assess the performance of the algorithm’s retrievals of R, for a wide range of
water conditions and provide validation metrics relative to in-situ data and compared to
the NASA standard algorithm.

e We aim to assess the performance of the pixel-level uncertainty of R, relative to the
error between the in-situ data and the satellite retrievals.

e We aim to assess the algorithm’s performance on an entire scene retrieval since the
algorithm is computationally fast as it relies on the NN model to emulate the forward
calculations and provide the Jacobian matrix necessary for the optimization and the
uncertainty estimates.

The structure of this paper is as follows. Section 2 provides details of the physical forward
model based on radiative transfer computations for the atmospheric LUTs, with the analytical
forward model of the GIOP algorithm described in Supplement 1. We follow that with a
discussion on the development of the NN model that serves as the likelihood function for the
OE algorithm and the associated NN training process. Section 3 details the assumed uncertainty
sources. Section 4 describes the OE algorithm architecture, selection of priors, uncertainty
propagation, and derivation of R,s through the AC process. Section 5 describes the validation
datasets, including the in-situ SeaBASS and AERONET-OC datasets and satellite imagery
from the Moderate Resolution Imaging Spectroradiometer (MODIS), along with matchup
statistics and uncertainty validation metrics. In Section 6, we evaluate the performance of the
NN model as well as the R, retrieval from the OE algorithm. The OE algorithm is also evaluated
on a real validation dataset and compared with the operational algorithm. Finally, we discuss
the results and provide a conclusion in Section 7.

2. Methods

2.1 Forward model
The TOA reflectance is based on a radiative coupling of various components of the atmosphere,
ocean, and surface [20]. The forward model relates the retrievable geophysical parameters to
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the TOA observations measured by the satellite sensor. For a clear (cloud-free) ocean pixel, the
TOA reflectance is calculated as follows:

pt(A;Geom) = (ppath(/l;Geom) + py(4;Geom) + p’surface(/l;Geom)) XTg )
(4;Geom).

It is a function of Geom (i.e., solar zenith 8¢, sensor zenith 6, and relative azimuth @), and
wavelength, A; pparn(1;Geom) is the path reflectance due to scattering and absorption by air

molecules (Rayleigh scattering) and aerosols bounded by the sea surface; py,(1;Geom) is the
ocean body reflectance, and Py, race(A;Geom) is the reflectance contribution from surface

glint and whitecaps, where both py,(4;Geom) and pPsyyface(A;Geom) are expressed at the TOA
after propagation through the atmosphere. Tg4(4;Geom) is the two-way absorbing gas
transmittance along the solar and sensor zenith. The path reflectance is a summation of two
terms, the Rayleigh reflectance and the aerosol reflectance (including the aerosol-Rayleigh
interaction):

Ppath(A;Geom) = pr(A;Geom) + pa(X;Geom). 2

The pr(4;Geom) term is calculated through the tabulation of VRT simulations. The
Rayleigh optical depth is calculated from [9]. Although the path reflectance term is shown in
Egs. (1) and (2) as a function of only wavelengths and geometry, the Rayleigh reflectance is
also a function of surface pressure and wind speed. The former is needed to know the total
number of air molecules in the atmospheric column. The latter is to account for the interaction
of Rayleigh scattering with the wind-roughened sea surface. The surface roughness model is
from Cox and Munk (1954), and the effect of pressure variation is modeled by [62].

The second term in Eq. (2) is the aerosol reflectance, calculated through the VRT
simulations for each of 80 different bimodal aerosol models from [22], consisting of assumed
aerosol microphysical properties for a pre-determined set of 8 near-surface atmospheric RHs
and 10 fine-mode volume fractions. The aerosol vertical profile in the atmosphere is taken
from [63]. The aerosol reflectance calculations include the effects of multiple scattering and
molecule-aerosol interaction within the atmosphere. Note that these simulations also provide
the molecule-aerosol diffuse transmittance along the solar and sensor directions, tsq;(4, Geom)

and tgen(A,Geom), respectively, used later to propagate the water and surface reflectance to the
TOA.

Pw(A;Geom) is the ocean reflectance at TOA. The bottom of atmosphere (BOA) ocean
reflectance pw(A;Geom) is calculated through a forward model that provides the ocean
reflectance as a function of Chl-a, Geom, and spectral IOPs. The BOA reflectance contribution
is attenuated by the diffuse transmittance of the atmosphere, such that py,(1;Geom) = tsen
(A,Geom) X p,,(4;Geom). The BOA ocean reflectance are generated from an ocean
reflectance model (ORM) that derives the above-water remote sensing reflectance, R, (4; sr!),
which is converted from nadir geometry to the desired solar and sensor path geometries using
the bidirectional reflectance distribution function (f5raf) of [64], and then propagated to the
TOA as:

Pw(A;Geom) = Terstsoltsen/fbrdf- 3
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R,(A) is modeled using the quasi-single scattering approximation ORM [65] included
within the Generalized Inherent Optical Property algorithm framework (GIOP) [60]. Given the
IOP data as an input to the GIOP ORM forward model, we can simulate a realistic R,(4)
distribution for various conditions observed by ocean color sensors. Details of the GIOP
forward model are provided in Supplement 1.

The surface reflectance, gy face(A;Geom), is the light scattered by the air-sea interface. It
has two terms: the direct sun glint reflectance and the whitecap reflectance, both of which are
driven by the ocean surface wind speed. It is important to remember that the sky glint reflection
was calculated through the VRT model of the Rayleigh signal. However, the direct glint signal
is calculated by the two-way attenuation of the direct solar beam that is modulated by the
surface glint reflectance, Lgn(4), which is modeled using Cox and Munk (1954) wave slope
statistics [66]. The TOA direct glint reflectance is then TLeNT soiTsen/ Ho, Where Uo is the
cosine of the solar zenith angle, and spectral (and geometric for 7)) dependency is implied. The
whitecap irradiance reflectance at the BOA, pw(4), is based on Koepke (1984) [67] combined
with the windspeed-dependent fractional coverage model of Stramksa and Petelski (2003) [68]
and the whitecap albedo spectral-dependence in the red and near-infrared from [69]. The BOA
irradiance reflectance is then propagated to TOA, similar to the ocean reflectance, as Py .ctsor
tsen, with spectral and geometric dependency implied.

We also account for the main absorbing gases in the atmosphere, including O;, H,O, and
0,. The H,O and O, transmittance are based on the HITRAN 2016 line by line (LBL)
spectroscopic dataset [70]. Assuming the US standard atmospheric profile, we calculate the
LBL transmittance for different column water vapor (CWYV) values. Then we apply the
instrument spectral response function (SRF) to the LBL transmittances and store them in a
LUT. Spectral H,O transmittance at each Geom, Ty, is then interpolated from the LUT for a
given slant water vapor (WV) concentration along the path as cwv/u, where p is the cosine of
the path zenith angle. The O, transmittance is calculated similarly for different path lengths of
the atmosphere given the observation geometry. The O; transmittance is calculated from the O
optical depth assuming the Beer-Lambert-Bougier law, where the optical depth is determined
from the spectral O; absorption coefficient [71] integrated with the sensor SRFs, and the O3
concentration. H,O and O; concentrations are taken from ancillary sources.

2.2 Neural network forward model

2.2.1 Data generation
In this work, the NN training dataset is derived from NASA’s operational atmospheric LUTs.
Hence, the TOA reflectance can be represented as

p:(A) =F(RH,03, PriWSWV,fmf,14,a5n844,bpp, V,Chl — a, 89, ¢,0,), 4)

where F is the atmospheric LUT and ORM forward model operator, 4 is sensor (here MODIS
Aqua) band center wavelengths within the solar spectrum, RH is the relative humidity in the
atmosphere, O3 is the column ozone concentration in Dobson units, Pr is the atmospheric
pressure in mbar, WS is the wind speed in m/s, WV is the column water vapor concentration in
cm, fmf is the aerosol volume fine-mode fraction, 74 is the AOD at 869 nm, app is the
phytoplankton absorption coefficient at 443nm, aqg is the colored dissolved and detrital matter
absorption coefficient at 443nm, by, is the particulate backscattering coefficient at 443mn, and
Y is the slope of the backscattering coefficient.

Table 1. The range of all the parameters used in the NN training.



Variable Range Distribution Distribution Log;y Distribution Log,

mean standard deviation
A (nm) 412:869 - - -
RH (%) 30:95 Uniform - -
03 (DU) 200:500 Uniform - -
Pr (mbar) 800:1100 Uniform - -
WS (m/s) 0.1:15 Uniform - -
WV (cm) 0.01:30 Lognormal 0.173 0.53
Smf (unitless) 0:1 Uniform - -
Ta(unitless) 0:0.4 Lognormal -1.03 0.316
apn (m') 0.001:5 Lognormal -1.5 0.45
Agg(m) 0.001:5 Lognormal -1.2 0.63
bbp(m-l) 0.0001:0.1 Lognormal -2.35 0.44
Chl-a (mg m) 0.05:50 Lognormal -0.217 0.724
Y (nm") 0:2 Uniform - -
0o(°) 5:77 MODISA - -
geometry
(9 0:180 MODISA - -
geometry
0,(°) 0:65 MODISA - -
geometry

The input parameters were generated for random uniform distribution with data ranges
given in Table 1, with a few exceptions. Aerosol optical depth, T, which was modeled with a
log-normal distribution such that low optical depth cases have greater representation than
higher optical depths [29,72,73]. Similarly, we assumed a log-normal distribution for the
column water vapor, WV, app, aqg, and bpy, with the distribution mean and standard deviation
reported in Table 1. The ocean IOPs are based on monthly mean (Level-3, L3) climatology
products from MODIS Aqua, as distributed by the OB.DAAC, but the range was extended to
include more extreme cases as observed in Level-2 (L2) data. The geometric parameters 8¢, @,
and 6, were all sampled from two MODIS Aqua orbits for a day in the summer and winter
seasons, thus covering the entire solar geometry range of the sensor’s imaging duty cycle. As
expected, the NN training is highly sensitive to the choice of geometries since radiant path
geometry is a primary driver for signal variations at TOA. Sampling from observed orbit
geometries ensures that the NN training considers only realistic solar and viewing geometry
combinations, thus improving performance. However, we did not include covariance between
the other parameters, which are all assumed independent.

2.2.2 Training process

We generated spectral TOA reflectance, p¢, from the standard algorithm LUT for 16 million
different data points. After excluding data points with the normalized sun glint radiance >
0.005, similar to the operational algorithm, we ended with ~ 9 million data points for the
training. The training was performed using the open-source machine learning platform Keras-
TensorFlow (Keras.io). The NN input layer vector has 15 parameters (Table 1), and the output
layer is the TOA reflectance, p¢, at 13 MODIS wavelengths from 412 to 869 nm. We found by
trial and error that four hidden layers provide a good performance of the NN, with additional
layers just adding forward model computational cost in the retrieval with negligible
performance improvement. The Rectified Linear Unit (ReLU) activation function was used for
the NN hidden layers [74]. We trained the NN with the Adam optimization algorithm for
10,000 epochs and with a batch size of 1,000 [75]. The dataset was split into the training set
(85%) and a test set (15%). The mean squared error cost function between the training dataset
(i.e., pr) and the predicted values was minimized through the optimization process of the NN
weights. We compared the NN performance on the training and test (independent) sets for all
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the training epochs, showing a continuous decline in the cost function for both training and
testing, indicating that the NN did not overfit the training data.

3. Uncertainty sources

It is important to properly account for an instrument’s measurement uncertainty when

validating the uncertainty estimates of the inferred variables. The measurement uncertainty

includes both random and systematic components. The random component (noise) is calculated

using the instrument's signal-to-noise ratio (SNR). In this work, we assume the sensor’s

uncorrelated random noise effects. We calculate the noise-equivalent radiance as follows:
NEAL(2) = [Co(A) + C1(1) X Le(A)] X S(A), (5)

where, Co(A) and C1(Q) are linear fit coefficients of the noise model from [76] , and S(A)
is the spectrally-dependent spatial weight that brings all bands to a common 1 km spatial
resolution [18]. The standard deviation of the signal is radiance-dependent and calculated as:

NEAL(A) 6)
on(D) = ——<— -
Le(D)

The standard deviation of the radiance is then converted to noise-equivalent reflectance after
normalizing by the solar irradiance at a specific solar angle.

Systematic (calibration) errors in measurements are challenging to characterize post-launch
due to the lack of an accurate absolute calibration apparatus on-orbit. Typically, the systematic
uncertainty is correlated between bands. The Marine Optical BuoY (MOBY) site, off the coast
of Lanai, Hawaii, is the system vicarious calibration site for all NASA-supported ocean color
missions. NOAA has continuously operated MOBY since 1996 as the in-situ calibration source
for vicarious calibration and a source of high-quality R, data [77,78]. There are 523 co-located,
coincident MODIS Aqua-MOBY matchups, to date, of which a smaller fraction are used for
the system vicarious calibration to derive the gain corrections at the TOA. Our approach relies
on estimating the total uncertainty between the observed and predicted TOA reflectance in this
work. Similar to [78], we calculate the predicted TOA reflectance by propagating the in-situ
MOBY R, to the TOA while simultaneously solving for the aerosol properties.

The residual uncertainly between the observed and predicted TOA reflectance represents
the total uncertainty at TOA defined below:

Se=Sp+Sa+ Sy + S, @)

where these terms represent error covariance matrices, with subscripts ¢ for the total
uncertainty, n for random noise, a is for ancillary data uncertainty, w is for the in-water
component from MOBY, and b for the uncertainty due to instrumental systematic artifacts as
well as the forward model uncertainty (e.g., RT simplifications). It is valid to sum these terms
assuming that each is independent. The terms Sy, and S, are known given the SNR model and
the ancillary data uncertainty. The uncertainty in MOBY R, observations is not well known for
all conditions, but is expected to be a few percent [79]; thus, we assume it is negligible in this
work as a first approximation. The term Sp can then be estimated and taken as a measure of
systematic and forward model uncertainty used in the retrieval process.

4. Optimal Estimation (OE)

Optimal Estimation finds the most probable values of the unknown parameters in Table 1 by
minimizing a cost function that incorporates the likelihood function, priors, and uncertainties.
The likelihood and priors are assumed to be normal distributions, characterized by a one sigma
width and correlations for all measurement pairs. The cost function near the solution is typically
the weighted sum of squared differences between the forward model and the measurements,
plus a similar weighted squared difference between the state and prior knowledge of the state.
For non-linear problems such as the radiative transfer in the AO system, an iterative constrained
optimization is used to minimize the cost function. Also, for simplicity, a conjugate Gaussian
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distribution of the error covariance matrices is assumed, and, therefore, the computationally
intensive sampling of the distributions is unnecessary. Note strictly that these are “uncertainty”
rather than “error” covariance matrices, as in this case, the true value is not known (uncertainty
is a measure of dispersion, and error is a departure from the truth) [12]. However, we use the
common “error covariance” terminology for convenience (JCGM, 2008). OE involves
determining the maximum a posteriori (MAP) solution, which is a single point estimate of the
approximately normal distribution at the mode of the posterior, obtained by minimizing the
negative log posterior (known as the cost function, ¥?):

~21oge P(X | YobsXa) = [y — F(xb)]TSg [y — F(xb)] + [x — X,]TS; ' [x —xa].  (®)

For this study, the forward model, F(x,b), is the forward radiative transfer calculated for a
given state vector X and, while b represents the parameters that are used as an input to the
forward model, but not part of the state vector. Yobs is a vector that contains the spectral
observed TOA reflectance, while X, is the prior state vector (knowledge of the state vector X
before measurements). Se is the measurement error covariance matrix, and S, is the prior error
covariance matrix. The diagonal elements of these matrices are the variances, while the off-
diagonal elements represent the correlated standard uncertainties in the state variables. Both
matrices need to be positive semi-definite (i.e., non-negative). The forward model parameters
(state vector) are:

X = [RH,03, PrWsS,wWv, fmf,ra,aph,adg,bbp]. ©)

The state vector x in Eq. (9) includes the ancillary data as retrievable parameters, which is
different from many other approaches that either assume they are known perfectly or that they
are known imperfectly with some uncertainty (in which case this uncertainty is typically
propagated to TOA and included in S¢). Suppose the uncertainty of the ancillary data is known
or assumed. In that case, it is logical to have them as part of the state vector X since the ancillary
data do influence the observations. Meanwhile, the non-retrievable parameters b include Chl-
aandy.

The iterative process to find a solution to the state vector, X, follows the modified Gauss-
Newton optimization method by Levenberg-Marquardt (LM) [80,81] . We used the Python
library SciPy which implements the least-squares algorithm. The LM algorithm is very efficient
and provides a high convergence rate. Once a solution is found, we can estimate the error
covariance matrix at the estimated parameters. This is calculated using error propagation
through the Jacobian matrix, K, expressed as:

-1
S= (knglﬁ + sa—l) , (10)
where K is the partial first derivative of the forward function with respect to the state vector
(ie., 6F/?x).

This S term is the retrieval uncertainty of the state vector parameters and combines
uncertainty introduced by the measurements with the a priori constraints (Sa, see later).

The OE technique described here is based on the normal distribution approximation of prior,
likelihood, and measurement uncertainty that may cause problems [12]. The LM algorithm may
converge to a local rather than the global minimum when the posterior is multi-modal. This can
occur for high-dimensional retrievals that are not properly constrained. The retrieval
uncertainty may also be over-or under-estimated if the forward model is highly nonlinear near
the solution, which is typically only an issue for poorly constrained parameters.
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Fig. 1. Flow diagram of the OE algorithm

Figure 1 shows the OE algorithm flow diagram. The required inputs include the TOA
reflectance observed from MODIS, the ancillary data, and a priori information about the
atmospheric and oceanic state. The prior distribution describes our current knowledge of the
parameters of interest, and its mean is used as the first guess in the iterative inversion. Typically
there are three types of priors: non-informative such as unbounded uniform distribution; weakly
informative, such as bounded uniform or normal distribution with large variance; and
informative such as normal with small variance. When non-informative priors are used, the
prior does not affect the posterior, and the inference is then identical to the estimate of the
likelihood. We used a normal prior distribution with no correlation between parameters in our
analysis. RH,03, Pr,WS, and WV are obtained from ancillary data sources (National Centers
for Environmental Prediction; NCEP). Assuming the mean is known, the uncertainty (standard
deviation of the normal distribution) is assumed to be 1 mbar for Pr, 1 m/s for WS, 5% of the
mean for RH, 1% of the mean for 03, and 10% of the mean for WV [82,83]. The fmf,ta, apn,
Aqg, and bpy, priors are assumed weakly informative normal with mean values obtained from
the 4-km MODIS Aqua climatology obtained from the OB.DAAC and with a large standard
deviation of 10. The standard deviation is much larger than the range of data, but the priors are
bounded within their physical values in the inversion. The values for y and Chl-a were used as
the first guess and are obtained from climatology data as well. Given the latitude and longitude
of each observation, we interpolate to the nearest neighbor of the global L3 image.

With the initial values of the input parameters, the TOA reflectance is calculated by
evaluating the NN forward likelihood model, and a x? value is calculated (Eq. 8). The algorithm
iteratively updates the state vector until it converges. In the next step, we calculate the R, by
performing the AC outlined in the following section. Neither Chl-a nor the backscattering slope
is part of the state vector. Including them creates a highly ill-posed problem. The spectral
backscattering requires simultaneously solving for its shape and magnitude. To avoid this
problem, but provide a calculation of both, we utilize empirical relationships to estimate y and
Chl-a from R,;. We use the OCx algorithm for Chl-a [84], and we use the Quasi Analytical
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Algorithm (QAA) for y [85]. The Chl-a and y are iteratively adjusted and the OE AC correction
is repeated until they converge (i.e., they change by >2%), with a maximum of 10 iterations
(typically 2-3 are needed). It is important to note that we assume the uncertainty from Chl-a
and Y do not propagate into the R, uncertainty since Chl-a would only impact the uncertainty
in the BRDF correction, while y does not play a role in the R, uncertainty estimate other than
constraining the AC.

4.1 Remote sensing reflectance (R,s) retrieval

Our approach to the AC is a two-step one. First, the OE algorithm estimates the atmosphere-
related parameters in the previous section. Second, the inferred parameters are ingested into a
proper atmospheric correction similar to the operational algorithm. That involves removing the
atmospheric and glint signal from TOA observations and compensating for the atmospheric
diffuse and direct transmittance once these properties are inferred. We start by relating R, to
the normalized water-leaving radiance (for simpler notation, 4 is not included in the following
equations),

LWTL —_—
Rrsz_o (sr 1); (1D

where Ly, is the normalized water-leaving radiance after the BRDF correction and Fy is the
extraterrestrial solar irradiance at 1 astronomical unit. Ly, is connected to TOA observations
by

__ Sorartly (12)

L =
wn Lsen tsol Ho fsul’

where tL,, is the water-leaving radiance measured at TOA, tgepn and tso; represent the diffuse
transmittance along the viewing and solar direction, respectively, U is the cosine of the solar
zenith angle, f 501 is the earth-sun distance correction factor, and fprq ¢ is the BRDF correction
factor:

Foyo P (1 3)
tLy, =—X |—~ — .
w . T gsot Tgsen ppath+surf

Pt is the observed TOA reflectance. T gsor and T gsen represent the gas transmittance (ozone
and water vapor in this case) along the solar and viewing directions, respectively, Ppath+surf
is the TOA reflectance with a black ocean that includes only the reflectance from Rayleigh,

aerosols, glint, and white caps reflectance. The dark ocean TOA reflectance is calculated using
LUTs such that:

Ppath+surf = Fo(Pr, WS, RH, fmf, 14,00,9,00). (14)

The diffuse transmittance of the atmosphere needs to be calculated and is simply estimated
from the LUTs:

tsot = Fesot(PT,RH, fmf, 74,60), (15)
and
tsen = Fesen(Pr,RH, fmf, 14,0,). (16)
The above equations can therefore be used to solve for R,
Rys = % X m - ppath+surf]' an

To estimate the uncertainty in the R, estimate, we can easily propagate the uncertainties
from the inferred parameters through the above equations step-by-step. In the OE method, we
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can calculate the Jacobian matrices of Fq, Ftso1, and Fesen which are denoted as Kg, K¢so1, and
Kisen, respectively. We can then simplify the estimate of the R, as follows:
RT‘S(A) = FAC(pt(/‘{); RH1031 Pr,WS,WV,FMF,Ta, 901 (plev)’ (18)

where Fac is the Atmospheric Correction function. Using the chain rule, we can efficiently
calculate its Jacobian matrix, Kac, to estimate the error covariance matrix of the remote sensing
reflectance, Sgys, as follows: .

Skrs = KacTS Kac + K10aTSe Kt0a. (19)

The second term in Eq. (19) accounts for propagating sensor noise to R, directly where
Kro04 is the Jacobian of R, with respect to the TOA reflectance. This method is a two-step
approach, where both terms on the right-hand side of Eq. (19) are assumed to be independent.

5. Validation data

5.1 In-situ radiometry

The in-situ R,; data were obtained from the NASA SeaBASS database (seabass.gsfc.nasa.gov)
includes above and in-water radiometry as well as retrievals from AERONET-OC (Version 2.0,
Level 2.0) sites (aeronet.gsfc.nasa.gov) [86,87]. The AERONET-OC sites shown in Figure 2,
marked in red circles, are primarily located in coastal water near land. We used Version 2.0 for
consistency with the latest validation statistics used in the operational algorithm of the SeaWiFS
Data Analysis System (SeaDAS) and applied Level 2.0 quality filtering to ensure the highest
quality data. A complete list of the locations and characteristics of the AERONET-OC sites are
found on the AERONET-OC webpage and in [86]. The SeaBASS data points are marked in
blue circles shown in Figure 2, including samples in open ocean conditions. Accordingly, the
data exhibits a large dynamic range of R,,. Full details on the R,; dynamic range for all datasets
are available on the SeaBASS web page.

Fig. 2. Map of the SeaBASS (blue circles) and AERONET-OC (red circles) sites used in the validation.

5.2 MODIS Aqua

TOA reflectance data from MODIS onboard the Aqua satellite (MODIS-A) were used in this
study to validate R,; matchups. MODIS-A level-1A (L1A) data were obtained from NASA’s
OB.DAAC and processed to level-1B (L1B) after georeferencing. Satellite match-ups
coincident with the in situ validation dataset were identified following [88]. Satellite
measurements are derived from a box of pixels (i.e., 5 km x5 km) centered on the location of
the in situ measurement. The satellite value is defined as the filtered mean of unflagged pixels
in the box, and the spatial homogeneity and other quality criteria at the validation point are
evaluated. Since in-situ data are rarely collected at the precise moment when a satellite views
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its location, we allow a time window threshold of £3-hours around the ground truth
observations. The length of that window is a compromise between being short enough to
minimize differences due to temporal variability in the ocean and being long enough to create
a sufficient volume of successful match-ups with satellite observations. The L1B file was then
processed to L2 using the SeaDAS standard algorithms to obtain geophysical products as well
as the TOA reflectance after applying the Ocean Biology Processing Group (OBPG)
calibrations of reprocessing R.2018 (e.g., polarization correction and vicarious
calibration) [78]. The standard L2 products were stored and used for the validation
comparisons. Since the vicarious calibration is an AC-specific procedure, we removed the
vicarious gains from the TOA reflectance by dividing the standard algorithm gains for the OE
L2 processing. We then use the modified TOA reflectance in the OE algorithm, as shown in
Figure 1.

5.2 Statistical metrics

When comparing satellite-derived R, with the in-situ value, we use several metrics, primarily
mean bias, §, and the mean absolute error (MAE or |§]) both of which are routinely used to
assess model skill in SeaBASS [89]. We also calculated the root mean squared errors (RMSE)
(A) and the Pearson and Spearman squared, R? correlation as well as the centered (bias-
corrected) MAE [8] . and RMSE A, and the mean absolute relative error, |{|,. We adopt the
IOCCG report 18 [28] notation assuming the satellite observations are denoted x;—; y and in-
situ denoted y;—; y and the following metrics are:

0= X I, yi— % 20)

161 = 5 X by — ey
A= \/%XZ?I:l i —x)?, (22)
[l =100 x T x TN izl (23)

Xi

The centered statistics |8 . and A, simply involve removing the average bias between y;
and x;, thus showing the algorithm performance without any potential bias either in the
algorithm or the in-situ data.

5.2 Uncertainty validation

Our assumption to account for all sources of uncertainties at TOA relies on the MOBY
vicarious calibration to be representative of the global oceans. To validate this assumption, we
provide a closure analysis by comparing the satellite-derived Rrs and their associated
uncertainties to the in-situ measurements. Since we derive the pixel-level uncertainty, we can
use a statistical ensemble method to compare the derived uncertainty to the error between the
satellite-derived R, and the in-situ R,,. The uncertainty estimated by OE is a normal distribution
with a standard deviation obtained through the analytical error propagation technique.
Meanwhile, the error defined as the difference between the retrieved and in-situ truth R, is an
instantaneous realization of that uncertainty distribution. Thus, a direct pixel-level comparison
between pixel-level uncertainty and retrieval errors is irrelevant. A more appropriate approach
to compare the two quantities is to calculate the normalized error distribution Ay following the
approach of [90,91], where
A (24)

AN = : u?at + uzef.
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A is the error (i.e., difference) between the satellite-derived and in-situ R,. u?,; is the
variance in the pixel-level uncertainty derived from the OE algorithm, while uge £ is the variance
in the in-situ measurements. In an ideal scenario, where all sources of uncertainties are
accounted for in the satellite and in-situ data, with perfect error propagation and with
uncertainties following a normal distribution, the normalized error distribution should follow a
normal distribution with a zero mean (i.e., no bias) and with 1 variance (or standard deviation).
It is possible to examine the normality of the normalized error by plotting the cumulative
distribution function (CDF). This provides an assessment of the average comparison between
the total error and the OE-provided uncertainties. It is also possible to extend this analysis to
assess the variability of the error to uncertainty relationship across the dynamic range of errors
which would require stratifying the errors and comparing the 68™ percentile of the error to the
mean of the uncertainty within a bin (i.e., dividing the data by the expected error into equally
populated bins) [91]. The choice of the number of bins depends on the available data volume
in order to have a representative sample within each. In our analysis, we choose not to bin the
data and provide a comparison between the 68™ percentile of the error Ag, and the mean of the
uncertainty, Usqz.

6. Results

6.1 Neural network performance

Our initial analysis of the NN prediction error on the testing dataset indicates that the error
varies systematically with radiant path geometry. Figure 3 shows the percent prediction error
histogram of the independent dataset (i.e., the 15% of the dataset reserved for testing) for three
visible wavelengths (443, 547, and 678 nm) and three NIR wavelengths (748, 859, and 869
nm).

The percent error is calculated as follows:
% error =100 x (ot () — pr"T A/t (D). (25)

where pNV (A) is the TOA reflectance calculated by the forward NN model, and ,D%UT(A) is
the TOA reflectance calculated from the atmosphere-ocean RT-based LUT model. We also
calculate the mean absolute error, |§|, where y; is retrieved data (i.e., pItV N (1)), x; is the truth

(i.e., p%UT(/l)), and N is the number of data points (approximately 1.3 million).
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Fig. 3. Histograms of the percent error between the NN derived TOA reflectance and the LUT using an independent
validation data set for 443, 547, and 678 nm (right panel), and 748, 859, and 869 nm (left panel). Errors are mostly

smaller than 0.2% in reflectance. O is the standard deviation of the absolute error, while the value in parenthesis is for
the percent error. MAE is the mean absolute error.

Figure 3 shows a larger percent error at longer wavelengths, with a slight bias at 859 and
869 nm. Overall, the performance of the NN is excellent with an error < 0.2% for 82% of the
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testing cases in the worst-case scenario and <0.06% in the best case, similar to the instrument’s
radiometric noise and within the bounds of the vicarious calibration uncertainty [78]. We
parametrized the NN model uncertainty, oy, as a function of the geometry to account for the
forward model uncertainty needed in the inference process. The NN was trained with the AC
LUTs, which were calculated with a coarse grid that can cause interpolation errors. However,
in [18], we showed that the LUT interpolation error is the smallest fraction of the total
uncertainty. Therefore, this forward model uncertainty here is a fraction of the total forward
model uncertainty, which is unknown and likely systematic because of the simplification of the
physics (i.e., not accounting for absorbing aerosols and not including other unknown
unknowns) [12].

6.2 Synthetic data analysis

Out of the NN test dataset, we extracted 10,000 cases of TOA reflectances and the ‘truth’
geophysical parameters used in the OE algorithm. Before passing to the algorithm, we added
random and systematic radiometric uncertainty to the TOA reflectance derived in section 3 and
to the ancillary data input as a prior. The input data set spanned a wide range of environmental
conditions and geometries with statistical samples representing the NN training and testing
data. In Figure 4, rather than showing a scatter plot, we show the scatter density histogram plot
for each retrieved parameter of the OE algorithm. The color bar indicates the normalized
density of the data frequency. The plot shows the difference (error) between the retrieved data
and the truth. Thus a perfect retrieval would show a zero error on the y-axis. We choose the x-
axis that is relevant to the AC process. Since the AC and the TOA reflectance strongly depend
on the AOD, dependence between the AC parameters and the R,,is expected. The black dashed
lines are the mean of the difference between the retrieved and the truth, while the red dashed
lines indicate the +/- standard deviation around the mean of the difference. A bias between the
retrieval and the truth would manifest in the black dashed line deviating away from zero. Above
zero, the retrieval is overestimated and vice versa for underestimated retrieval. A larger spread
between the retrieval and truth would lead to a more significant deviation of the red dashed

lines away from the mean black dashed lines.
fm] (OF) o K0 mlOE) o aph(u3)(0F) o adgas) (OE) oo

MAE = 0.09054 MAE = 0.00562 2{ " MAE = 009142
11 . 2= 0933625 + 0.0030 0.9952; + 0.0011 ;= 084492, + 0.0068

o

3 —2{. - .
0.0 02 0.4 0.0 02 0.4 0.0 0.2 0.4 0.0 02 0.4
x10-2bbp(443) (OF) 100 x 1073 R5(443) (OF) 100 %1073 R(555) (OF 100 % 10-3Ry(667) (O 100

M AE = 0.00155 MAE = 0.00066

. MAE = 0.00038 MAE = 0.00012
21+ 934625 -+ 0.0006 e o] em=l0Mz 400
. 2

9830, + 0.0 T = 0954z, + 00 .
: 0.75 .

retrieved — in-situ

-2

0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4
T (truth) Ta (truth) 7o (truth) T (truth)

Fig. 4: Scatters density histogram of the synthetic data retrievals using the OE algorithm. The color bar indicates the
data normalized density ranging from 0 to 1. MAE is the mean absolute error between the retrieved and truth, while

X1 = axz +b is the regression line between retrieved and truth with @ being the slope and b is the bias.

Figure 4 shows the retrieval performance for two parameters related to the AC (finf, T4) and
three ocean-related parameters from the GIOP model app, adg,bbp all at 443 nm. The R,s at
443, 555, and 665 nm were calculated after performing the AC by removing the atmospheric
signal contribution from the TOA. There is a negligible bias in the retrieval for all parameters,
particularly for Rys with no dependence on the 7,. The fmf error shows a slight dependence
on T4 at low values, where the uncertainty is increased at low AOD. The MAE (|8]) of Ry is
0.00066, 0.00038, 0.00012 for 443, 555, and 665nm, respectively, showing that the absolute
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magnitude of uncertainty is higher at shorter wavelengths consistent with what is observed
based on real data validation statistics [27].

To evaluate the retrieval uncertainty for each case, we calculate the CDF of the normalized
error distribution, Ay, for each retrieval parameter. For a perfect retrieval and uncertainty
estimate, the calculated normalized error would agree with the ideal case across the normalized
error range. Figure 5 shows the CDF of Ay in red compared to the ideal case of a standard
normal in black. When the red curve is within the grey shaded region, the uncertainty is
underestimated and overestimated when the curve is in the white region. Overall, there is a
good agreement for all parameters except bpp, where the uncertainty is underestimated.

fmf (OF) 7, (OF) aph(443) (OF) adg(443) (OE)
1.0 1.0 1.0 1.0
0.8 0.8 0.81 0.8
0.6 0.6 0.61 0.6
0.4 0.4 0.41 0.4
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Fig. 5. CDF plot of the absolute normalized error, An, for all retrieval parameters of the synthetic dataset. The
estimated CDF from the OE algorithm is shown in red, and the ideal CDF for a standard normal is shown in black.
The grey shaded region shows where the uncertainty is underestimated.

In Table 2, we compare the mean uncertainty estimate Usg of the retrieval as compared to

the 68™ percentile of the retrieval error, As.

Table 2. A_s is the 68" percentile of the error between the truth and the retrieval and Wsat is the mean
uncertainty for each parameter.

fmf Ta Aph Adqg bpy R,5(443) Ry5(555) R,5(667)
As 0.00865 0.0054 0.0373 0.0564 0.00140 0.00076 0.000449  0.00015
Tyq: 0.00633  0.0050 0.0372  0.0460 0.00063 0.00078 0.000363  0.00016

The results in Table 2 complement Figure 5, indicating a good agreement between the two
results, except for underestimation of by uncertainty.

6.3 In-situ validation

6.3.1 SeaBASS

The SeaBASS dataset provides an overall assessment of the OE algorithm in a wide range of
water conditions. Figure 6 shows the error between the Ry retrieval and the in-situ truth for
three wavelengths at 443, 555, and 667nm. The first row is for the OE algorithm, while the
second row is for the operational retrieval using the SeaDAS/12gen L2 processing software.
The matchup analysis shows a lower MAE for the three OE algorithm bands than the
operational one. There is no apparent correlation with 7,4, as a primary source of AC errors in
all cases.
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;8% Fig. 6. Scatter density histograms of the SeaBASS data retrievals using the OE algorithm. The first row is for the OE
709 algorithm, and the second row is for the operational algorithm. The color bar indicates the data normalized density

710 ranging from 0 to 1. MAE is the mean absolute error between the retrieved and truth, while X1 = axz +b is the
711 regression line between retrieved and truth with @ being the slope and b is the bias.

712

713 For a quantitative assessment, we provide in Table 3 all metrics and validation statistics of

714 the matchups for Ry. In Table 3, the numbers highlighted in bold are for the OE algorithm,
715 while the non-bolded numbers in parentheses are for NASA’s current operational AC
716  algorithm.

717
718 Table 3. Matchups statistics for the SeaBASS dataset. OE statistics are in bold font-weight, while NASA’s
operationa are in normal font and in parentheses. N"is the number of negative Rrs retrievals.
719 ional AC are i 1 f di heses. N-is th ber of ive R ievall
N@®N) ) [Ylm 16 18] ¢ A Ac R? R?
(%) (Pearson)  (Spearman)
R, (443) 589 -1x10-¢ 22.0 9x10 9x10+ 1.39x1073 1.39x1073 0.69 0.73
0, 1) (-8.1x10%)  (23.7) (9.2x10%)  (9.2x10%)  (1.39x103)  (1.40x103)  (0.69) (0.71)
R, (555) 438 -1.3x10* 13.7 4.3x104 4.5x104 1.12x1073 1.14x1073 0.76 0.73
(0, 0) (-5%10%) (18.6) (6.1x10%)  (1x1073) (1.28%103%)  (1.54x103%)  (0.76) (0.66)
R (667) 490 -5.5x10° 43.4 1.1x10+* 1.4x10* 2.02x10* 2.23x10* 0.8 0.3
(1,14)  (2x10%)  (63.1) (13x10%)  (1.3x10%) (217104 (2.19x10%)  (0.75) (0.23)
720
721 The mean bias, 8§, between the in-situ and retrieved Ry is smaller for the OE algorithm,

722 while the || and | 5] is reduced for all bands. The improvement at 443nm is marginal at 1.7%,
723 however, the ||, is reduced by 4.9% and 19.7% for the OE algorithm for 555 and 667nm,
724 respectively. We also calculate the centered statistics after removing the mean bias showing
725 consistent results where the OE algorithm outperforms the operational algorithm. The
726 Spearman correlation is improved for the OE algorithm. In contrast, the Pearson correlation
727 shows no improvement except for 667 nm, possibly due to spurious outliers that the metric can
728  be sensitive to.

729
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Fig. 7. Top row is a histogram of the difference between the retrieved and in-situ Rrs at 443, 555, and 667nm,
respectively for the OE algorithm in red, and the operational algorithm in black. The bottom row is the CDF of the

absolute normalized error An for Rrs at the same three bands, where the red curve is estimated from the OE
algorithm, and the black curve is the ideal case for a standard normal.

Figure 7 shows the histogram of the error as the difference between R;-s in-situ and retrieved
at 443, 555, and 667 nm, respectively in the top row. The error is mostly centered around zero,
and the histogram follows a normal distribution indicating that a random process likely
dominates the error. The mode of the R, histogram is closer to zero for the OE algorithm than
for the operational algorithm, for the green and red bands, while the distributions look very
similar for the blue band. The bottom row of Figure 7 is the CDF of the absolute normalized
error Ay. These results indicate that Rys uncertainty is underestimated relative to the in-situ
matchup errors for the blue and green bands with higher underestimation for larger errors. At
667 nm, the uncertainty was overestimated for lower errors and vice versa for higher errors. It
is important to note that the matchup errors would implicitly include other sources of errors
such as in-situ data uncertainties, adjacency effects, and temporal and spatial mismatch.

Table 4. As is the 68 percentile of the error between the truth and the retrieval and Wsat is the mean
uncertainty for SeaBASS Rrs matchups.

— Ry5(443) Ry5(555) Ry5(667)
Ag 0.00091 0.00030 0.00008
Tt 0.00071 0.00025 0.00012

We also compare the mean uncertainty estimate Wsqr of the retrieval as compared to the 68
percentile of the retrieval error, As for the SeaBASS matchups in Table 4. There is a good
agreement between the two metrics, however, the uncertainty is underestimated slightly at 443
and 555 nm and overestimated for 667 nm.

6.3.2 AERONET-OC

We extended our matchup validation analysis to the AERONET-OC coastal water sites. The
plot in Figure 8 shows the retrieval error for Rys at 443, 555, 667nm versus the retrieved 7.
The results for the OE algorithm show a smaller MAE but comparable spread to the operational
algorithm. The plot shows little dependence of the error on the retrieved 7, indicating no
aerosol-dependent bias in the AC.
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Fig. 8. Same as Fig. 6, but for the AERONET-OC dataset.

764
765 The detailed matchup statistics in Table 5 show better metrics for OE, with a smaller mean
766 bias except for 667 nm and lower ||, and |§| across all bands. ||, was reduced by 1.5, 1.9,
767  and 6.6% for 443, 555, and 667nm, respectively. The centered metrics |8| cand A. are
768 consistently better for the OE algorithm, except for the red band, while the correlations are
769  improved for all bands, except for the Pearson metric at 443 nm.
770
771 Table 5. Matchup statistics for the AERONET-OC dataset. OE statistics are in bold font-weight, while
772 operational are in normal font. N-is the number of negative Rrs retrievals.
N 6 ¥Im  16] 18] A A¢ R R
(%) (Pearson) (Spearman)
Rrs(443) 4300 LIx104 377 8x10- 83x10%  110x103  1.12x10%  0.83 0.82
(16,47)  (3.2x10%)  (39.2)  (8.8x104) (I1x103)  (1.25x103)  (1.37x10%)  (0.84) (0.78)
Rrs(555) 3746 35x104 12,0 7x10 8.6x10%  1.16x103  1.31x10%  0.92 0.92
(0,0) (-4.1x10%)  (14.1)  (7.6x10%)  (1x103)  (1.14x103)  (1.34x103)  (0.91) (0.90)
Rrs(667) 3815 -1.8x104  30.8 27x10%  41x104  419x104  531x10¢  0.87 0.82
(13,157)  (-1x10%)  (374)  (3x10%)  (3.5x10%)  (4.68x10)  (4.98x10%)  (0.85) (0.77)
773
774 Similar to the SeaBASS analysis, in Figure 9, we show the histogram of the matchup errors
775  and the CDF of the absolute normalized error Ay in the top row. The histogram shows a
776 distribution similar to normal for both algorithms. The modes of the distributions are
777 consistently close to zero, where at 555 nm, the OE algorithm is closer to zero than the
778 operational algorithm. In the bottom row, the CDF comparison indicates a close agreement
779  between the estimated uncertainty from the OE algorithm and the matchup errors for 443 nm.
780 The 555 and 667 nm uncertainty are underestimated. This indicates that we did not account for
781  all sources of errors in the algorithm.

782
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Fig. 9. Same as Fig. 7, but for the AERONET-OC matchups.

Stratification of data by location provides more insight into the performance of the OE
algorithm for different environmental conditions. Figure 10 presents results at a more granular
level by showing site-by-site CDFs of Ay for the 9 sites with at least 250 matchups, plus the
remaining sites pooled together (labeled “Others”). The overall performance shows a good
agreement in the uncertainty estimate at 443 nm for all sites with slight underestimation. For
550 and 667 nm, the underestimation of the uncertainty is more significant, particularly for
MVCO (a highly productive region) and Palgrunden (an inland site). The best agreement was
for the Helsinki site, followed by Gustav, both characterized by their high CDOM
concentrations [86]. Although Venise provides the most significant volume of data, the
uncertainty was underestimated in the green and red bands.
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Fig. 10. Same as Fig. 9, but stratified for different AERONET-OC sites.
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It is important to note that Ay shows a combined effect of retrieval bias and scatter; thus, a
highly biased retrieval that is not captured in the uncertainty estimate would lead to a significant
over-or underestimation of the normalized error. .

We also provide (Table 6) the comparison between the 68t percentile of the error, Ag, and
the mean uncertainty from the retrieval, Usq¢ for all sites and a breakdown of the 5 best-sampled
sites. Similar to Figure 10, there is a good agreement for all sites at 443 nm, however, the
uncertainty is underestimated for the green and red bands.

Table 6. A_s is the 68" percentile of the error between the truth and the retrieval and Wsat is the mean
uncertainty for AERONET-OC Rrs matchups.

R (443) R(555) R(667)

Site As Wg Ag L As Wt

Allsites 0.000814  0.000724 0.000483  0.000257 0.000245 0.000137
Venise ~ 0.000910  0.000720 0.000546  0.000241 0.000252 0.000125
Helsinki  0.000683  0.000721 0.000290  0.000272 0.000192 0.000150
MVCO  0.000846  0.000741 0.001150  0.000267 0.000425 0.000140
Gloria  0.000794  0.000726 0.000393  0.000253 0.000280 0.000134
Gustay  0.000854  0.000720 0.000297  0.000262 0.000154 0.000146

6.3.3 MODIS Aqua imagery analysis

Figures 11 and 12 show results of the OE and NASA operational algorithms from a MODIS-
Aqua image over the eastern coast of the United States and extending into the Atlantic Ocean
on September 215, 2010. The scene includes a wide range of water conditions, including coastal
waters such as the Chesapeake Bay region and open ocean low Chl-a regions further away from
the coast. Figure 11 shows a true-color composite, highlighting four pixels (labeled A-D),
representing different water conditions based on the Chl-a and the fitting residual x? of the OE
algorithm.

11° N [ gy @ - =

40°N fm R ey 2202020909090

39°N

3 8 o A\ —

80°W T8°W 76°W T4°W T2°W T0°W
Fig. 11. True-color image composite of MODIS-Aqua from TOA reflectance over the eastern coast of the United
States from September, 215, 2010.

Figure 12 shows the L2 image of R,s at 443, 555, and 667 nm. Spatial patterns and
magnitudes are similar for both the OE (top row) and operational (middle) algorithms,
particularly in waters further away from the coast. However, there are differences in coastal
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waters in regions where R;-5(555) are high, indicative of optically complex conditions with high
particulate backscattering. The OE algorithm does not perform a cloud screening step similar
to the operational approach. However, this caused artifacts in the OE R, retrieval around cloud
edges, which can be mitigated by using additional cloud screening and masking approaches,
such as limiting the retrieval with extremely high fitting error y2.

In the third row of Figure 12, we show the pixel-level uncertainty produced by the OE
algorithm for the three bands. On average, the magnitude of the uncertainty is higher for the
blue bands than the green/red bands; it is mainly affected by the atmospheric correction of the
aerosol optical depth and fine mode fraction, which are (in this scene) spatially smooth. The
fourth row shows the R relative uncertainty (%). These images show a more pronounced
spatial structure; for example, in the optically-complex Chesapeake Bay waters, the water
column’s absorption coefficient is so significant that R, is small in the blue bands, thus the
relative uncertainty is substantial. This is reversed in the bright blue waters further from the
coast, where the uncertainty is smaller (5-10%). Similarly, in coastal waters, the Ry in the
green band is relatively large, so the uncertainty is smaller than in low Chl-a waters. This is
also consistent for the red bands, where the low Chl-a conditions show very significant
uncertainties (>50% and in some cases >100%), however, this is expected since the R, is near
zero in the red band.
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Fig. 12. MODIS-A image of Rrs retrieval at 443, 555, 667nm. The top row is the OE algorithm retrieval, and the
middle is the operational algorithm. The third row is the absolute uncertainty estimated from the OE algorithm. The

last row is for the relative percent uncertainty.

Figure 13 shows the Chl-a retrieval using the OC3 band ratio algorithm after performing the
AC to retrieve Rys [84]. The spatial distribution of Chl-a exhibits the typical spatial pattern in
that region with high Chl-a values in the Chesapeake Bay (and its estuaries), Delaware Bay,
Albemarle Sound, and low Chl-a values in offshore waters of the mid-Atlantic Bight. 74 and
fmf spatial distributions are smooth and do not show artifacts, particularly in very bright
waters, where the non-negligible water-leaving radiance in the longer wavelengths can be
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erroneously attributed as an aerosol signal. However, there is a slight artifact near the mouth of
the Chesapeake Bay and adjacent to the southeast of the Delmarva Peninsula between 37° and
38° N in a region where Ry values are relatively high. It is not clear if these are finer aerosol
values or retrieval errors due to the high water reflectance signal; however, some of these
artifacts are reflected as a higher uncertainty in R,s and )(,21, as shown in Figures 12 and 13,
respectively. Note that )(,21 is the normalized ¥? where it is divided by the number of bands used
in the fitting, such that the theoretical )(% should have the mode close to 1.
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Fig. 13. The top row is the OE algorithm retrieval from MODIS-A of Chl —a, 7,(869), fmf. The bottom row is
the OE algorithm retrieval of @nw and Dy both at 443nm and Xa.

As intermediate products of the OE algorithm, the absorption and scattering coefficients of
the GIOP model can be retrieved. The ocean non-water absorption, anw, and particulate
backscattering, bpp, coefficients at 443 nm are shown in Figure 13 as well. The focus of this
algorithm is on the AC. Thus, any detailed evaluation of the IOPs retrieved we consider to be
beyond the scope of this manuscript. However, we show the spatial distribution of the IOPs
since the OE algorithm relies on a realistic estimate of the surface reflectance to better constrain
the AC process by utilizing more bands, including the visible bands. Both IOPs show realistic
spatial distributions with relatively high values in coastal waters, particularly within the
Chesapeake Bay, which is typically dominated by high CDOM absorption. Both coefficients
are smaller further away from the coast, indicating less presence of absorbing and scattering
matter in the open ocean.

The final panel of Figure 13 shows X2, a good metric to indicate the performance of both
the forward model and the assumed TOA uncertainty estimate. X% values around 1 show a good
match between the residual of the forward model at the solution and the uncertainty of the
signal; higher x2 values mean underfitting the forward model and vice versa for lower x2.
Interestingly, in most of the scene, X2 is close to 1, particularly in pixels away from the coast.
However, in coastal waters, 2 values are, for example, higher than 5, indicating either more
difficulty fitting the observations with the forward model or underestimating the assumed
measurement/forward model uncertainty. This is expected as coastal waters are significantly
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more challenging to model with only three parameters, while the atmosphere could also be
more complex in these regions (i.e., absorbing aerosols).

Lastly, Figure 14 compared Ry from the OE and operational algorithms at the four locations
A-D in Figure 11. Cases A and B represent low Chl-a conditions with values of 0.11 and 0.2
mg m3, and X% of 0.6 and 0.69, respectively. There is an excellent agreement between both
retrievals as expected due to the simplicity of the environmental conditions in these waters.
This demonstrates that the OE algorithm does provide viable R,s estimates, and low X
indicates a good fit of the forward model to the measurements. Since the OE algorithm provides
the uncertainty estimate, we also show 1 and 2 standard deviations of Rys estimated by the OE

algorithm.
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Fig. 14. Spectral Rys retrieval using the OE algorithm (red dashed lines) vs the Operational algorithm (blue
dashed lines) for 4 different cases (locations). The 10 and 20 envelope of the Rrs uncertainty estimated using the OE
algorithm is shown in red and grey shading, respectively. The 4 different cases (indicated in Fig. 11) highlight Rrs at

different water conditions, from low to high Chl-a and X;zq.

Figure 14 panels C and D are the R, retrievals for the coastal sites with Chl-a values of
11.38 and 13.39 mg m™ and X2 of 5.36 and 11.86, respectively. There is a good agreement
between the two algorithms for the green-red bands with larger deviation in the shorter bands
for case C. Furthermore, in case C, the OE is higher than the operational algorithm, where Ry
is (unphysically) negative for the operational retrieval. The agreement between both retrievals
is mostly within one standard deviation of the OE algorithm, except for the 412 nm band, where
the OE retrieval appears unrealistically high, likely due to not applying the vicarious calibration
gain (which would have reduced TOA reflectance at 412 nm by approximately 2%, which is
significant). The last case (D) is from inland Chesapeake Bay waters that are typically highly
absorbing (high CDOM concentration) and highly scattering due to sediment discharge from
several estuaries in the region. Case D shows the worst mismatch between both algorithms. The
OE R, is lower across the whole spectrum than the operational algorithm, except for 412 nm,
where (similar to case C) it may be overestimated. Cases C and especially D show a high X2,
indicating the forward model likely is not fully capturing the radiative conditions of the
atmosphere and the ocean. Although it is challenging to conclude which algorithm provides a
more correct retrieval in this case, our previous in-situ matchup analysis indicates that the OE
algorithm performs better than the operational algorithm overall.

7. Discussion and conclusion

In this paper, we have developed a framework based on the optimal estimation algorithm as
presented in Rodgers 2000, which relies on Bayes’ theorem to find the optimal solution to the
atmospheric correction problem given a representative model of the atmosphere-ocean system
and prior information on the state of that system. The advantage of this framework are as
follows:

e The ability to calculate pixel-level uncertainty estimates and fully consider the
covariance of the uncertainty in the system. Since the algorithm propagates the error
covariance, rather than just the diagonal elements of the covariance (i.e., without
correlation), it is possible to fully account for the correlation in the R,s uncertainty
when further propagating the uncertainty in subsequent products such as IOPs and
Chl-a [61].



e Improved computational speed and differentiability through the NN forward model
approach. The algorithm has been accelerated using a NN model that can accurately
perform the forward calculations necessary for the iterative approach to find the
optimal solution. The NN replaces the LUT interpolation of the AC and the analytical
ORM, and also provides the Jacobian matrix needed for the optimization and error
propagation.

e Potential for better utilization of the information-rich multi-angle polarimeter
instruments for the PACE mission to improve the AC of the Ocean Color Instrument
(OCI). OE can utilize prior information from external sources such as ancillary data
sources. This knowledge about the state of the AO system can be fed into OE,
improving and better constraining the AC problem.

e Because of the speed, differentiability of the algorithm, and its ability to process the
full dynamic range of atmospheric and oceanic conditions, and it is operationally
capable.

e The algorithm is flexible in its band set configurations since a spectral weight is
assigned to the cost function, similar to the multi-band AC (MBAC) algorithm [18].
This allows for the use of information from across the spectrum (i.e., using NIR and/or
SWIR only, or using the entire spectrum, including the UV).

Although this work demonstrates an improved framework for the AC problem, there are
limitations. This OE framework is a research algorithm and has not been thoroughly tested on
large-scale global data. Also, the OE algorithm requires an accurate uncertainty model of the
TOA reflectance with a reasonable spectral dependence that influences the cost function. To
the best of our knowledge, there has been no standardized approach to model the TOA
uncertainty post-launch, including the covariance in uncertainties. In our work, we attempted
to estimate the TOA uncertainty using MOBY matchups generated during system vicarious
calibration, assuming that the most significant portion of the uncertainty budget is the
instrument's systematic and forward modeling uncertainty. The assumption that the uncertainty
estimates at MOBY can be applied to the global ocean is strong but may not be valid for the
coastal AERONET-OC dataset, as evident from the underestimation of uncertainty relative to
the error, particularly for 550 and 667nm.

In the synthetic data analysis, we found that the uncertainty estimate, compared to the truth,
is slightly underestimated on average. The ratio between As and Ty of 1 indicates a perfect
uncertainty estimate, and for a ratio >1, it indicates underestimation in the OE uncertainty,
while <1 means overestimation. For the AC parameters, the ratio was 1.36 and 1.08 for fmf
and Tq, respectively. The uncertainty in the IOPs showed an excellent agreement for a,, with
a ratio of 1.002 and a good agreement for g4 with a ratio of 1.22, however, the uncertainty
was severely underestimated for bpy where the ratio is 2.22. On the other hand, it is important
to note that the focus of this paper is to improve the estimate of R,s and its associated
uncertainty. The ratios between A and Tsg; for Ry at 443, 555, and 667 nm are 0.98, 1.23, and
0.94, respectively, showing a slight overestimation in the blue and red bands and
underestimation in the green bands.

We tested the OE algorithm and its uncertainty estimation technique using the SeaBASS
dataset, encompassing a large dynamic range of water conditions spanning coastal to open
waters. While the overall validation statistics showed an improvement for the OE algorithm
relative to the operational one, the improvement was not significant, where |Y | was reduced
by 1.7, 5, and 19.7% for 443, 555, and 667 nm, respectively, likely because both algorithms
forward models rely on the same aerosol microphysical assumptions [22]. This is expected
since a large portion of the uncertainty is likely from the modeling assumptions and the inherent
limitations in the validation process that would apply to any newly developed algorithm.
However, the OE algorithm shows an improved bias in the retrieval with fewer negative Ry



retrievals, particularly for 667 nm, where the error is the most reduced. This improvement is
likely due to an improved AC and not an effect of lack of the vicarious calibration since the
standard vicarious gain does increase the TOA reflectance by approximately 1%. The ratio
between Ag and Usgr (1.27, 1.2, for 443 and 555 nm, respectively) indicates underestimated
uncertainties at those wavelengths, while the ratio of 0.67 at 667 nm indicates an overestimate.
These ratios show a relatively good agreement, given that we are not fully considering the
uncertainty in the in-situ data and other error sources. Large outliers would significantly impact
the analysis for small signals in the red. However, there is no clear explanation for why 667 nm
uncertainty is overestimated, other than the retrieval error for the SeaBASS dataset is
significantly smaller than that at MOBY (where the uncertainty at TOA is calculated).

By extending this analysis to the AERONET-OC sites, we stratified the dataset by different
locations. This is due to the large variability of environmental conditions, proximity to land,
and water conditions [86]. Since the AERONET-OC sites are predominantly coastal, the
validation process is expected to be more challenging. Similar to the SeaBASS dataset, all
statistical metrics show an improvement in the matchups using the OE algorithm relative to the
operational algorithm with a reduction in bias and improvement in error metrics. The matchups
showed a significant decrease in negative Ry retrievals, particularly for 443 nm, where it is
reduced nearly three times and 12 times for 667 nm. This is a remarkable improvement and
shows that the simultaneous AO retrieval process using multiple bands for the AC provides a
valuable advantage over using only NIR bands in coastal waters. Moving to validating
uncertainties, in the case of using all available data, the agreement between Ag and W47 is good
for 443 nm with a ratio of 1.12, showing a slight underestimation. However, for 555 and 667
nm, the ratio of 1.88 and 1.78 shows a significant underestimation of the uncertainty. This
underestimation happens at all sites, with the worst two performing sites being MVCO and
Palgrunden. Both are characterized by low aerosol loadings and smaller fine mode fractions
than average. MVCO showed a higher median wind speed (4.6 m/s compared to the median of
all cases of 2.5 m/s). Palgrunden is also a high latitude site where the solar angle is typically
larger than 40°. Some of these environmental conditions can impact the assessment of the
uncertainty validation due to underestimating the TOA reflectance uncertainty characterized at
MOBY and retrieval bias. At 443 nm, all sites showed a good agreement with a ratio that ranges
from 1.26 to 0.94 (Helsinki being the only site showing slight overestimation). Helsinki and
Gustav also showed the best agreement for 550 and 665nm; however, they are underestimated.

There are a few theoretical and practical reasons that could explain the underestimation of
the satellite-derived uncertainty:

e The OE algorithm relies on the assumption of a Gaussian posterior distribution, where
the variance of the distribution should capture the uncertainty estimate within one
standard deviation. This is not necessarily true for the atmosphere-ocean system, as
demonstrated using the grid approximation Bayesian inference method in [30], which
showed that the full posterior uncertainty is typically larger than the standard deviation
of a normal distribution.

e The error propagation relies on the estimate of the Jacobian matrix (i.e., the first
derivative). This approximation would not hold for a highly nonlinear relationship
between the observations and the state parameters. This issue manifests in the
optimization procedure that relies on the derivative of the cost function, which could
lead to a local minima leading to a biased inversion.

e  The absolute normalized error metric requires complete knowledge of the uncertainty
in the in-situ data for each measurement. This encompasses instrument calibration and
radiometry knowledge, the effect of environmental conditions on the measurements
uncertainty, and spatio-temporal mismatch with the satellite retrieval. This is
consistent with the findings of Zibordi et al., 2022 [92], which found that when



assuming 5% uncertainty in the satellite-derived water-leaving radiance, the absolute
normalized error metric consistently shows an underestimation of the uncertainty.
They attributed that to the overly optimistic 5% uncertainty typically set as a gold
standard for ocean color requirements. Additionally, ignoring complex spatio-
temporal uncertainties does play a significant role in the underestimation as well as
possible biases either in in-situ data or satellite retrievals due to, for example, land
adjacency effects [93].

e We assumed ancillary data uncertainty based on fixed absolute and relative
uncertainties that do not vary with space or time. Recent work has shown that the
uncertainty varies geographically and could have a significant impact on the R
retrieval, particularly due to relative humidity and windspeed uncertainty which has a
large impact on the aerosol quantification [27].

e  We assumed that the uncertainty of the TOA observations estimated at the MOBY site
is representative of the global oceans. However, in coastal sites, the forward modeling
errors are likely larger than in the open ocean due to more complexity in the
atmosphere and ocean optical properties, such as the presence of strongly absorbing
aerosols and errors in the BRDF correction.

Finally, in our analysis here of the OE algorithm performance, we did not apply the standard
vicarious gains that are otherwise applied to the input TOA radiances when operating the
standard NASA AC algorithm. Our justification is that these vicarious gains are tuned for the
standard algorithm, which relies on the black-pixel (NIR bands) assumption for the AC rather
than utilizing the entire visible spectrum as the OE algorithm does. As the OE approach relies
on all measurements simultaneously, it is less sensitive to measurement uncertainties than NIR-
based AC algorithms that typically use only two bands (unless there is a large systematic bias
in the observations). For MODIS-A, the standard vicarious gains are mostly close to 1, except
for water vapor bands near 645 and 869 nm (likely due to systematic uncertainty in the water
vapor correction) and 412 nm. The gain coefficient at 412 nm reduces the TOA reflectance by
~2%, which is significant (and likely instrument-specific) and would be realized as a large bias
in Ry for the OE algorithm. We noticed that R, at that band was consistently overestimated
relative to the operational algorithm, partially explaining less negative R;s at that band.
However, negative Ry at all other bands are significantly reduced, likely because of the better
constraint on the surface properties using the GIOP forward model. Future work will implement
a vicarious calibration procedure for the OE algorithm. Therefore, this research algorithm’s
performance can only improve beyond what is presented here. That includes improving the
aerosol modeling, the RT accuracy, and the bio-optical modeling of the ocean. Our future work
plan includes the following steps:

o  Further investigate the impact of the prior information either from models or other
external sources on the reduction of R,s uncertainty.

e Assess the performance of the full error covariance matrix estimated from the OE
algorithm.

e Develop and apply a system vicarious calibration (SVC) procedure for the OE
algorithm.

e Develop an operational implementation of the OE algorithm for the PACE mission, to
fully exploit the combined capabilities of the OCI sensor and MAPs for ocean color
retrievals.

In summary, this work presents a practical recasting of ocean color AC within a Bayesian
framework. It demonstrates slightly better quantitative retrieval performance than the current
standard approach, as well as quantitatively relevant pixel-level uncertainty estimates that have
been missing until now. The OE framework can be applied to current and heritage ocean color
sensors. Looking to the future, the Bayesian approach would allow the OCI instrument on



PACE, for example, to utilize retrieval products from its companion instruments, the
information-rich MAPs, as informative priors to further constrain the AC process for OCI. In
a general sense, the OE framework provides a pathway to take advantage of complementary
instruments on the same satellite platform or atmospheric measurements from ancillary sources
to improve the quality of satellite ocean color retrievals.
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