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13 Abstract: Ocean color remote sensing requires compensation for atmospheric scattering and 
14 absorption (aerosol, Rayleigh, and trace gases), referred to as atmospheric correction (AC). AC 
15 allows inference of parameters such as spectrally resolved remote sensing reflectance (Rrs(); 
16 sr-1) at the ocean surface from the top-of-atmosphere reflectance. Often, the uncertainty of this 
17 process is not fully explored. Bayesian inference techniques provide a simultaneous AC and 
18 uncertainty assessment via a full posterior distribution of the relevant variables, given the prior 
19 distribution of those variables and the radiative transfer (RT) likelihood function. Given 
20 uncertainties in the algorithm inputs, the Bayesian framework enables better constraints on the 
21 AC process by using the complete spectral information compared to traditional approaches that 
22 use only a subset of bands for AC. This paper investigates a Bayesian inference research method 
23 (Optimal Estimation, OE) for ocean color AC by simultaneously retrieving atmospheric and 
24 ocean properties using all visible and near-infrared spectral bands. The OE algorithm 
25 analytically approximates the posterior distribution of parameters based on normality 
26 assumptions and provides a potentially viable operational algorithm with a reduced 
27 computational expense. We developed a Neural Network (NN) RT forward model look-up-
28 table-based emulator to increase algorithm efficiency further and thus speed up the likelihood 
29 computations. We then applied the OE algorithm to synthetic data and observations from the 
30 MODerate resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua spacecraft. We 
31 compared the Rrs() retrieval and its uncertainty estimates from the OE method with in-situ 
32 validation data from the SeaWiFS Bio-optical Archive and Storage System (SeaBASS) and 
33 Aerosol Robotic Network Ocean Color (AERONET-OC) datasets. The OE algorithm improved 
34 Rrs() estimates relative to the NASA standard operational algorithm by improving all 
35 statistical metrics at 443, 555, and 667 nm. Unphysical negative Rrs(), which often appear in 
36 complex water conditions, was reduced by a factor of 3. The OE-derived pixel-level Rrs() 
37 uncertainty estimates were also assessed relative to in-situ data and were shown to have skill. 

38 © 2021 Optica Publishing Group under the terms of the Optica Publishing Group Open Access Publishing 
39 Agreement

40 1. Introduction
41 The atmospheric correction (AC) process in ocean color (OC) remote sensing involves 
42 separating and removing the atmospheric contributions (aerosol and gas scattering and 
43 absorption) and ocean surface signal from the spectral reflectances observed by a satellite 
44 radiometer at the top of the atmosphere (TOA)  [1–4]. The science of OC aims to quantify and 
45 assess the biogeochemical properties of aquatic ecosystems by interpreting their visible water-
46 leaving spectra. These spectral reflectance signals emerging from the water body primarily 
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47 depend on the inherent optical properties (IOPs; absorption and scattering properties) of the 
48 biogeochemical constituents dissolved or suspended within the water column, in combination 
49 with the IOPs of seawater itself. These constituents include organic and inorganic hydrosols 
50 suspended in seawater, colored dissolved organic matter (CDOM), and photosynthetic 
51 pigments within phytoplankton. The primary heritage OC data product is the near-surface 
52 concentration of the photosynthetic pigment chlorophyll-a (Chl-a; mg m-3), which provides a 
53 convenient and widely-used proxy for phytoplankton biomass  [5]. Phytoplankton biomass is 
54 an essential component of the Earth’s carbon cycle, and producing climate-quality OC data 
55 records is generally necessary for Earth climate studies  [6–8]. 
56 Chlorophyll-a concentrations are typically derived through an empirical relationship based 
57 on coincident in-situ observations of Chl-a and the aforementioned water-leaving radiometric 
58 signal, namely spectral remote sensing reflectances (Rrs(); sr-1), which are the radiances 
59 exiting the water column normalized to downwelling surface irradiance. However, since the 
60 atmospheric radiance contribution to the TOA signal is typically between 85-90% of the total, 
61 a small uncertainty in the AC can lead to large uncertainties in the ocean radiances and derived 
62 OC products  [3]. The Rayleigh scattering of the atmosphere is effectively known, based on 
63 assumed molecular properties  [9], yet it can introduce additional uncertainties in the AC [10]. 
64 However, the aerosol signal must be inferred from the satellite observations since the aerosol 
65 type and concentration vary spatially and temporally in the atmosphere  [11].
66 Inferring useful information from satellite-derived radiometry is accomplished by solving 
67 the inverse problem, which is ill-posed and under-constrained for AC  [12,13]. The TOA 
68 reflectance of multi-spectral, single viewing sensors such as the Sea-viewing Wide Field-of-
69 view Sensor (SeaWiFS)  [14], MODerate resolution Imaging Spectroradiometer 
70 (MODIS)  [15], and Visible Infrared Imaging Radiometer Suite (VIIRS)  [16], contain less 
71 information than what is required to find an unambiguous solution to a complex Atmosphere-
72 Ocean (AO) model. To address this issue, future NASA missions will dedicate more advanced 
73 instruments to increase the observed information. For example, NASA’s Plankton, Aerosol, 
74 Cloud, ocean Ecosystem (PACE) mission will host three instruments that will measure the AO 
75 system with unprecedented spectral and angular information [17]. The primary instrument is 
76 the Ocean Color Instrument (OCI), which is being developed at the Goddard Space Flight 
77 Center (GSFC) and is a hyperspectral scanning radiometer that measures the light from 320 to 
78 890 nm at 5-nm spectral resolution and 2.5-nm spectral sampling, and at seven discrete short-
79 wave infrared (SWIR) channels: 940, 1,038, 1,250, 1,378, 1,615, 2,130, and 2,260 nm. The two 
80 other instruments, the Hyper-Angular Rainbow Polarimeter 2 (HARP2) and the Spectro-
81 Polarimeter for Exploration (SPEXone), are aimed at studying aerosols and clouds and are 
82 multi-angular polarimeters (MAPs) developed and contributed by external partners. To employ 
83 OCI’s unprecedented hyperspectral capabilities for ocean applications, an accurate AC process 
84 with capabilities beyond the current algorithm designed for multispectral sensors is necessary. 
85 One such OCI algorithm has been developed, which relies on the proven heritage AC 
86 capabilities of the NASA standard algorithm, extended to hyperspectral data and with added 
87 capabilities to seamlessly utilize the SWIR channels for AC in coastal and inland waters (e.g., 
88 the multiband AC (MBAC) algorithm)  [18]. In addition to this OCI-only AC, the MAPs will 
89 provide more complex aerosol information to constrain the AC for OCI  [19]. Thus, 
90 establishing a probabilistic framework that can combine the information from two or three 
91 independent instruments with different spatial and spectral resolutions, information content, 
92 and measurement uncertainty characteristics using a Bayesian framework is a logical next step 
93 to advance the AC performance and the quality of OC retrievals from PACE.
94 Deterministic (that is, non-stochastic) AC methods have been and are currently being used 
95 as the standard processing algorithms for satellite remote sensing of OC  [3,4,11,20,21]. These 
96 methods maximize the likelihood (i.e., match radiative transfer prediction models to the 
97 observations) of the AC parameters such as the aerosol, surface, and ocean optical properties 
98 and often do not directly provide an estimate of the uncertainty on these parameters or consider 



99 the uncertainty in the algorithm inputs and parameters. The forward likelihood model is 
100 parametrized from radiative transfer simulations in a (pre-computed) look-up-table (LUT) for 
101 computational efficiency. These LUTs contain the modeled TOA reflectances for a pre-
102 determined set of relevant parameters within a typical range. 
103 NASA’s current operational AC algorithm for OC sensors is based on Gordon and 
104 Wang  [11], with the current implementation detailed in  [20]. The algorithm determines and 
105 removes atmospheric (i.e., Rayleigh and aerosol) and surface (i.e., whitecaps, glint) 
106 reflectances through a LUT search of pre-computed reflectances as derived using vector 
107 radiative transfer (VRT) simulations. One LUT contains the spectral TOA Rayleigh reflectance 
108 for different geometries and surface wind speeds. The aerosol reflectance LUTs are 
109 parametrized for 80 different aerosol optical models representing the range of relative humidity 
110 (RH) and fine-mode volume fractions  [22]. These models assume a complex refractive index 
111 and bimodal effective radius and variance for coarse and fine aerosol particles, determined from 
112 Aerosol Robotic Network (AERONET) observations  [23,24]. The absorption coefficients of 
113 trace gases such as ozone, water vapor, oxygen, and methane are stored in LUTs and applied 
114 to compensate for atmospheric path absorption given the gas concentration and an assumed 
115 vertical profile. Ancillary information, including relative humidity, ozone and water vapor 
116 concentrations, and wind speed, are provided as auxiliary inputs to constrain the inversion.
117 The aforementioned models are explicitly parameterized to ensure that the inversion is not 
118 mathematically ill-posed and act as a constraint to reduce ambiguity and the potential for 
119 degenerate solutions. The aerosol optical models are assumed to be non- to weakly- absorbing 
120 and to have a fixed vertical profile. With these assumptions, only two pieces of information are 
121 needed for the AC: aerosol optical depth (AOD, i.e., loading) and spectral dependence (i.e., 
122 from the optical model), both of which can be determined using a pair of near-infrared (NIR) 
123 or SWIR wavelengths (dependent on the sensor). However, the presence of strongly absorbing 
124 aerosol types confounds this process, and the AC typically produces either underestimated or 
125 non-physical negative ocean radiances in the blue part of the spectrum  . This is because the 
126 algorithm relies on the extrapolation of the model information determined from the longer NIR 
127 or SWIR wavelengths (where the ocean is dark) to the visible (where it is not). The spectral 
128 information in the longer wavelengths is insufficient to discern absorbing from non-absorbing 
129 aerosols, as they differ primarily in the shorter wavelengths and do not have a discriminating 
130 signature in the NIR. Thus, the solution can be ambiguous and aerosol absorption cannot be 
131 reliably inferred unless the algorithm is constrained by additional external information. 
132 Pixel-level Uncertainty Quantification (UQ) is critical in assessing the fidelity of 
133 geophysical retrievals within the Earth system. UQ also allows for identifying issues and 
134 limitations in retrieval algorithms due to inherent modeling assumptions, measurement 
135 uncertainties, and gaps in knowledge and sources of uncertainties. Traditionally, uncertainties 
136 in Rrs are based on the reported average discrepancy between the satellite-derived and in-situ 
137 Rrs  [27,28]. UQ has been attempted through various techniques such as Bayesian 
138 approaches  [29,30], Monte Carlo simulations  [31], or analytical error propagation of sensor 
139 random noise  [32]. A new approach was developed to estimate pixel-level uncertainties for 
140 Sentinel-3 Ocean and Land Colour Imager (OLCI) based on an ensemble of neural network 
141 atmospheric correction models for coastal waters, showing an estimate of the Rrs uncertainty 
142 product that is feasible to apply operationally  [33]. 
143 Because of the ill-posed nature of the problem, Bayesian approaches are well-suited for AC 
144 and indeed have been applied widely for aerosol  [34,35], cloud  [36,37], atmospheric trace gas 
145 profiling  [38,39], and OC  [29,40–42] retrievals. For a given model, the aerosol and ocean 
146 properties can be inferred, along with the associated uncertainties, in the form of a posterior 
147 distribution. Bayes theorem calculates conditional probabilities and updates a prior belief when 
148 new data (evidence) is introduced  [43] such that 𝑃(𝑥| 𝑦𝑜𝑏𝑠) ∝ 𝑃(𝑦𝑜𝑏𝑠|𝑥) × 𝑃(𝑥), where 𝑃
149 (𝑥| 𝑦𝑜𝑏𝑠) is the posterior distribution or probability of the variables needed for AC, 𝑥, given the 
150 observed data, 𝑦𝑜𝑏𝑠. The posterior distribution is proportional to the likelihood function, 𝑃(𝑦𝑜𝑏𝑠



151 |𝑥), and the prior probability of the variables 𝑃(𝑥). The likelihood function describes the 
152 probability of the observed TOA reflectance, 𝑦𝑜𝑏𝑠, given the variables 𝑥. Here, the likelihood 
153 function is the forward model based on RT and 𝑥 are the variables that describe the state of the 
154 ocean and atmosphere, such as the aerosol and ocean optical properties or ancillary data. The 
155 AC algorithm requires some prior information, 𝑃(𝑥), such as the relative humidity, surface 
156 pressure, ozone, and water vapor that can, along with their uncertainties, be directly 
157 incorporated into the prior (in contrast to a non-Bayesian retrieval where these values are 
158 assumed to be true). In the deterministic sense, the likelihood is typically written as 𝐲𝐨𝐛𝐬 = 𝐅(𝐱)
159 + 𝛜, where 𝐅(𝐱) is the forward operator (model), and 𝛜 is the uncertainty associated with that 
160 model. In Bayesian terminology, the likelihood probability is modeled as a statistical 
161 distribution, assumed normal in this case, with mean and variance determined from the forward 
162 model. 
163 There are various numerical techniques that approximate Bayes’ theorem. The grid 
164 approximation is the most straightforward inference engine by approximating the continuous 
165 variables, 𝑥, on a finite parameters grid. The posterior is calculated by multiplying the 
166 likelihood probability and prior probability evaluated at each grid point: a non-iterative brute 
167 force approach. The Generalized Nonlinear Retrieval Analysis (GENRA) algorithm for cloud 
168 properties retrievals utilizes the grid approximation to retrieve, for example, the posterior of 
169 two independent parameters: cloud optical depth and effective radius  [44]. Expanding the grid 
170 to higher dimensions, however, can be computationally challenging. But, when the dimension 
171 is low (e.g., <5), the method is tractable and yields inference results within a reasonable 
172 computational time  [30]. This manuscript will focus on the normal or quadratic inference 
173 approximation, Optimal Estimation (OE), as used in Rodgers’s (2000) formalism [45]. This is 
174 a widely used inverse algorithm within the atmospheric science community  [34,35,37–39,46].
175 Due to the high computational demand of an OE inference algorithm that fully considers 
176 the correlation structure in the observations and model, a fast likelihood function (i.e., forward 
177 model) evaluation is necessary. There are several ways to approximate the forward model in 
178 the iterative inversion process. A rigorous RT computation is the most accurate; however, it is 
179 computationally slow for a complex AO system. The LUT parametrization of the RT, such as 
180 NASA’s operational tables, are pre-computed and stored for a pre-determined grid of 
181 parameters, thus requiring multi-dimensional interpolation for each iteration in the retrieval. 
182 The LUT parametrization is accurate and sufficiently fast (for low-dimensional problems) for 
183 deterministic inversion using, for example, non-Bayesian methods or low-dimensional OE. 
184 However, in the high-dimensional inverse problem of the coupled AO system, the likelihood 
185 function based on the associated LUT interpolations becomes computationally costly. We 
186 developed a deep Neural Network (NN) with a simple multi-layer perceptron (MLP) 
187 architecture that efficiently and accurately emulates the forward RT LUT parameterization to 
188 speed up the forward model computations. In this case, the Forward RT NN is a non-linear 
189 function approximator of the radiative transfer equation. 
190 Forward model emulators using MLP-NN have been used to speed up the RT computations 
191 in modeling solar radiation  [47] and satellite sensor simulators  [48]. A forward model 
192 emulator was also used in inverting geophysical properties using a Gaussian Process model for 
193 land surface parameter inference in spectroscopic remote sensing of land and ocean 
194 surfaces  [50,51], and polarimetric remote sensing of aerosols  [52,53]. Note that the NN is not 
195 required for a Bayesian retrieval; it is merely a tool adopted to increase the computational 
196 efficiency of the analysis. A forward RT NN emulator provides advantages over an inverse RT 
197 NN model that estimates geophysical parameters from observations. The forward NN model is 
198 easier to train as there is a 1-1 mapping between the geophysical inputs to the RT and the 
199 predicted TOA reflectances, avoiding the ill-posed, non-uniqueness, and overfitting problem 
200 common with inverse neural networks due to multicollinearity among variables [54]. The 
201 Jacobian matrix (see later) is necessary for the iterative inversion scheme. A NN forward model 
202 can efficiently provide the Jacobian using the backpropagation chain rule algorithm and, with 



203 modern computer languages, Automatic Differentiation (AD) [55–57]. Additionally, the 
204 forward RT NN can be used in any iterative or stochastic inversion models that allow 
205 uncertainty propagation or estimation, which is more challenging for an inverse NN. However, 
206 several studies aimed at assessing the variability in NN weights and their relationship to 
207 geophysical parameter uncertainties showed promising results within their application 
208 domain  [54,58,59].
209 This work aims to establish an inference framework for the AC that can be potentially 
210 applied to global datasets for a wide range of environmental conditions and provide pixel-level 
211 uncertainty. The algorithm relies on the simultaneous estimation of the atmospheric parameters 
212 (i.e., AOD and fine-mode fraction, and ancillary related parameters), as well as the ocean’s 
213 inherent optical properties established through the Generalized Inherent Optical Properties 
214 (GIOP) model  [60] (i.e., absorption coefficients of seawater, phytoplankton and colored 
215 dissolved plus detrital matter and backscattering coefficients for seawater and particle matter). 
216 It can exploit the information content of all spectral bands available for an instrument. Our OE 
217 algorithm finds the optimal solution to the TOA reflectance state vector and estimates the pixel-
218 level uncertainty (i.e., the error covariance matrix) of Rrs. The availability of a spectral error 
219 covariance matrix can be used as an input for estimating IOP and biogeochemical product 
220 uncertainties  [61]. The model considers the uncertainty at the TOA due to instrument random 
221 noise, ancillary data uncertainty, and the systematic and forward model uncertainty estimated 
222 at the Marine Optical BuoY (MOBY) site. 
223 The OE algorithm effectively recasts the standard NASA algorithm approach into a 
224 Bayesian framework. The goal of this framework, however, manifests in several ways:
225 • We aim to assess the performance of the algorithm’s retrievals of Rrs for a wide range of 
226 water conditions and provide validation metrics relative to in-situ data and compared to 
227 the NASA standard algorithm.
228 • We aim to assess the performance of the pixel-level uncertainty of Rrs relative to the 
229 error between the in-situ data and the satellite retrievals.
230 • We aim to assess the algorithm’s performance on an entire scene retrieval since the 
231 algorithm is computationally fast as it relies on the NN model to emulate the forward 
232 calculations and provide the Jacobian matrix necessary for the optimization and the 
233 uncertainty estimates.
234
235 The structure of this paper is as follows. Section 2 provides details of the physical forward 
236 model based on radiative transfer computations for the atmospheric LUTs, with the analytical 
237 forward model of the GIOP algorithm described in Supplement 1. We follow that with a 
238 discussion on the development of the NN model that serves as the likelihood function for the 
239 OE algorithm and the associated NN training process. Section 3 details the assumed uncertainty 
240 sources. Section 4 describes the OE algorithm architecture, selection of priors, uncertainty 
241 propagation, and derivation of Rrs through the AC process. Section 5 describes the validation 
242 datasets, including the in-situ SeaBASS and AERONET-OC datasets and satellite imagery 
243 from the Moderate Resolution Imaging Spectroradiometer (MODIS), along with matchup 
244 statistics and uncertainty validation metrics. In Section 6, we evaluate the performance of the 
245 NN model as well as the Rrs retrieval from the OE algorithm. The OE algorithm is also evaluated 
246 on a real validation dataset and compared with the operational algorithm. Finally, we discuss 
247 the results and provide a conclusion in Section 7.
248
249 2. Methods
250 2.1 Forward model
251 The TOA reflectance is based on a radiative coupling of various components of the atmosphere, 
252 ocean, and surface  [20]. The forward model relates the retrievable geophysical parameters to 



253 the TOA observations measured by the satellite sensor. For a clear (cloud-free) ocean pixel, the 
254 TOA reflectance is calculated as follows:

𝜌𝑡(𝜆;𝐺𝑒𝑜𝑚) = 𝜌𝑝𝑎𝑡ℎ(𝜆;𝐺𝑒𝑜𝑚) + 𝜌′𝑤(𝜆;𝐺𝑒𝑜𝑚) + 𝜌′𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝜆;𝐺𝑒𝑜𝑚) × 𝑇𝑔

(𝜆;𝐺𝑒𝑜𝑚). 

(1)

255 It is a function of 𝐺𝑒𝑜𝑚 (i.e., solar zenith 𝜃0, sensor zenith 𝜃, and relative azimuth 𝜑), and 
256 wavelength, 𝜆; 𝜌𝑝𝑎𝑡ℎ(𝜆;𝐺𝑒𝑜𝑚) is the path reflectance due to scattering and absorption by air 
257 molecules (Rayleigh scattering) and aerosols bounded by the sea surface; 𝜌′𝑤(𝜆;𝐺𝑒𝑜𝑚) is the 
258 ocean body reflectance, and 𝜌′𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝜆;𝐺𝑒𝑜𝑚) is the reflectance contribution from surface 
259 glint and whitecaps, where both 𝜌′𝑤(𝜆;𝐺𝑒𝑜𝑚) and 𝜌′𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝜆;𝐺𝑒𝑜𝑚) are expressed at the TOA 
260 after propagation through the atmosphere. 𝑇𝑔(𝜆;𝐺𝑒𝑜𝑚) is the two-way absorbing gas 
261 transmittance along the solar and sensor zenith. The path reflectance is a summation of two 
262 terms, the Rayleigh reflectance and the aerosol reflectance (including the aerosol-Rayleigh 
263 interaction):

𝜌𝑝𝑎𝑡ℎ(𝜆;𝐺𝑒𝑜𝑚) = 𝜌𝑟(𝜆;𝐺𝑒𝑜𝑚) + 𝜌𝑎(𝜆;𝐺𝑒𝑜𝑚). (2)

264 The 𝜌𝑟(𝜆;𝐺𝑒𝑜𝑚) term is calculated through the tabulation of VRT simulations. The 
265 Rayleigh optical depth is calculated from  [9]. Although the path reflectance term is shown in 
266 Eqs. (1) and (2) as a function of only wavelengths and geometry, the Rayleigh reflectance is 
267 also a function of surface pressure and wind speed. The former is needed to know the total 
268 number of air molecules in the atmospheric column. The latter is to account for the interaction 
269 of Rayleigh scattering with the wind-roughened sea surface. The surface roughness model is 
270 from Cox and Munk (1954), and the effect of pressure variation is modeled by  [62].

271 The second term in Eq. (2) is the aerosol reflectance, calculated through the VRT 
272 simulations for each of 80 different bimodal aerosol models from [22], consisting of assumed 
273 aerosol microphysical properties for a pre-determined set of 8 near-surface atmospheric RHs 
274 and 10 fine-mode volume fractions. The aerosol vertical profile in the atmosphere is taken 
275 from  [63]. The aerosol reflectance calculations include the effects of multiple scattering and 
276 molecule-aerosol interaction within the atmosphere. Note that these simulations also provide 
277 the molecule-aerosol diffuse transmittance along the solar and sensor directions, 𝑡𝑠𝑜𝑙(𝜆, 𝐺𝑒𝑜𝑚) 
278 and 𝑡𝑠𝑒𝑛(𝜆,𝐺𝑒𝑜𝑚), respectively, used later to propagate the water and surface reflectance to the 
279 TOA.

280 𝜌′𝑤(𝜆;𝐺𝑒𝑜𝑚) is the ocean reflectance at TOA. The bottom of atmosphere (BOA) ocean 
281 reflectance 𝜌𝑤(𝜆;𝐺𝑒𝑜𝑚) is calculated through a forward model that provides the ocean 
282 reflectance as a function of Chl-a, 𝐺𝑒𝑜𝑚, and spectral IOPs. The BOA reflectance contribution 
283 is attenuated by the diffuse transmittance of the atmosphere, such that 𝜌′𝑤(𝜆;𝐺𝑒𝑜𝑚) = 𝑡𝑠𝑒𝑛
284 (𝜆,𝐺𝑒𝑜𝑚) ×  𝜌𝑤(𝜆;𝐺𝑒𝑜𝑚). The BOA ocean reflectance are generated from an ocean 
285 reflectance model (ORM) that derives the above-water remote sensing reflectance, Rrs(𝜆; sr-1), 
286 which is converted from nadir geometry to the desired solar and sensor path geometries using 
287 the bidirectional reflectance distribution function (𝑓𝑏𝑟𝑑𝑓) of  [64],  and then propagated to the 
288 TOA as:

𝜌′𝑤(𝜆;𝐺𝑒𝑜𝑚) =  𝜋𝑅𝑟𝑠𝑡𝑠𝑜𝑙𝑡𝑠𝑒𝑛 𝑓𝑏𝑟𝑑𝑓. (3)



289 Rrs(𝜆) is modeled using the quasi-single scattering approximation ORM  [65] included 
290 within the Generalized Inherent Optical Property algorithm framework (GIOP) [60]. Given the 
291 IOP data as an input to the GIOP ORM forward model, we can simulate a realistic Rrs(𝜆) 
292 distribution for various conditions observed by ocean color sensors. Details of the GIOP 
293 forward model are provided in Supplement 1.

294 The surface reflectance, 𝜌′𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝜆;𝐺𝑒𝑜𝑚), is the light scattered by the air-sea interface. It 
295 has two terms: the direct sun glint reflectance and the whitecap reflectance, both of which are 
296 driven by the ocean surface wind speed. It is important to remember that the sky glint reflection 
297 was calculated through the VRT model of the Rayleigh signal. However, the direct glint signal 
298 is calculated by the two-way attenuation of the direct solar beam that is modulated by the 
299 surface glint reflectance, 𝐿𝐺𝑁(𝜆), which is modeled using Cox and Munk (1954) wave slope 
300 statistics  [66]. The TOA direct glint reflectance is then 𝜋𝐿𝐺𝑁𝑇𝑠𝑜𝑙𝑇𝑠𝑒𝑛 𝜇0, where 𝜇0 is the 
301 cosine of the solar zenith angle, and spectral (and geometric for T) dependency is implied. The 
302 whitecap irradiance reflectance at the BOA, 𝜌𝑤𝑐(𝜆), is based on Koepke (1984)  [67] combined 
303 with the windspeed-dependent fractional coverage model of Stramksa and Petelski (2003)  [68] 
304 and the whitecap albedo spectral-dependence in the red and near-infrared from  [69]. The BOA 
305 irradiance reflectance is then propagated to TOA, similar to the ocean reflectance, as 𝜌𝑤𝑐𝑡𝑠𝑜𝑙
306 𝑡𝑠𝑒𝑛, with spectral and geometric dependency implied.

307 We also account for the main absorbing gases in the atmosphere, including O3, H2O, and 
308 O2. The H2O and O2 transmittance are based on the HITRAN 2016 line by line (LBL) 
309 spectroscopic dataset  [70]. Assuming the US standard atmospheric profile, we calculate the 
310 LBL transmittance for different column water vapor (CWV) values. Then we apply the 
311 instrument spectral response function (SRF) to the LBL transmittances and store them in a 
312 LUT. Spectral H2O transmittance at each 𝐺𝑒𝑜𝑚, 𝑇𝑤𝑣, is then interpolated from the LUT for a 
313 given slant water vapor (WV) concentration along the path as 𝑐𝑤𝑣 𝜇, where 𝜇 is the cosine of 
314 the path zenith angle. The O2 transmittance is calculated similarly for different path lengths of 
315 the atmosphere given the observation geometry. The O3 transmittance is calculated from the O3 
316 optical depth assuming the Beer-Lambert-Bougier law, where the optical depth is determined 
317 from the spectral O3 absorption coefficient  [71] integrated with the sensor SRFs, and the O3 
318 concentration.  H2O and O3 concentrations are taken from ancillary sources.

319 2.2 Neural network forward model

320 2.2.1 Data generation
321 In this work, the NN training dataset is derived from NASA’s operational atmospheric LUTs. 
322 Hence, the TOA reflectance can be represented as

𝜌𝑡(𝜆) = 𝐅(𝑅𝐻,𝑂3, 𝑃𝑟,𝑊𝑆,𝑊𝑉,𝑓𝑚𝑓,𝜏𝑎,𝑎𝑝ℎ,𝑎𝑑𝑔,𝑏𝑏𝑝, 𝛾,𝐶ℎ𝑙 ― 𝑎, 𝜃0, 𝜑,𝜃𝑣), (4)
323
324 where 𝐅 is the atmospheric LUT and ORM forward model operator, 𝜆 is sensor (here MODIS 
325 Aqua) band center wavelengths within the solar spectrum, 𝑅𝐻 is the relative humidity in the 
326 atmosphere, 𝑂3 is the column ozone concentration in Dobson units, 𝑃𝑟 is the atmospheric 
327 pressure in mbar, 𝑊𝑆 is the wind speed in m/s, 𝑊𝑉 is the column water vapor concentration in 
328 cm, 𝑓𝑚𝑓 is the aerosol volume fine-mode fraction, 𝜏𝑎 is the AOD at 869 nm,  𝑎𝑝ℎ is the 
329 phytoplankton absorption coefficient at 443nm, 𝑎𝑑𝑔 is the colored dissolved and detrital matter 
330 absorption coefficient at 443nm, 𝑏𝑏𝑝 is the particulate backscattering coefficient at 443mn, and 
331 𝛾 is the slope of the backscattering coefficient. 
332
333 Table 1. The range of all the parameters used in the NN training.



Variable Range Distribution Distribution Log10  
mean

Distribution Log10 
standard deviation 

𝝀 (nm) 412:869 - - -
𝑹𝑯 (%) 30:95 Uniform - -
𝑶𝟑 (DU) 200:500 Uniform - -

𝑷𝒓 (mbar) 800:1100 Uniform - -
𝑾𝑺 (m/s) 0.1:15 Uniform - -
𝑾𝑽(cm) 0.01:30 Lognormal 0.173 0.53

𝒇𝒎𝒇 (unitless) 0:1 Uniform - -
𝝉𝒂(unitless) 0:0.4 Lognormal -1.03 0.316

𝒂𝒑𝒉 (m-1) 0.001:5 Lognormal -1.5 0.45
𝒂𝒅𝒈(m-1) 0.001:5 Lognormal -1.2 0.63
𝒃𝒃𝒑(m-1) 0.0001:0.1 Lognormal -2.35 0.44

Chl-a (mg m-3) 0.05:50 Lognormal -0.217 0.724
𝜸 (nm-1) 0:2 Uniform - -

𝜽𝟎(°) 5:77 MODISA 
geometry

- -

𝝋 (°) 0:180 MODISA 
geometry

- -

𝜽𝒗(°) 0:65 MODISA 
geometry

- -

334
335 The input parameters were generated for random uniform distribution with data ranges 
336 given in Table 1, with a few exceptions. Aerosol optical depth, 𝜏𝑎 which was modeled with a 
337 log-normal distribution such that low optical depth cases have greater representation than 
338 higher optical depths  [29,72,73]. Similarly, we assumed a log-normal distribution for the 
339 column water vapor, 𝑊𝑉, 𝑎𝑝ℎ, 𝑎𝑑𝑔,  and 𝑏𝑏𝑝 with the distribution mean and standard deviation 
340 reported in Table 1. The ocean IOPs are based on monthly mean (Level-3, L3) climatology 
341 products from MODIS Aqua, as distributed by the OB.DAAC, but the range was extended to 
342 include more extreme cases as observed in Level-2 (L2) data. The geometric parameters 𝜃0, 𝜑, 
343 and 𝜃𝑣 were all sampled from two MODIS Aqua orbits for a day in the summer and winter 
344 seasons, thus covering the entire solar geometry range of the sensor’s imaging duty cycle. As 
345 expected, the NN training is highly sensitive to the choice of geometries since radiant path 
346 geometry is a primary driver for signal variations at TOA. Sampling from observed orbit 
347 geometries ensures that the NN training considers only realistic solar and viewing geometry 
348 combinations, thus improving performance. However, we did not include covariance between 
349 the other parameters, which are all assumed independent.

350 2.2.2 Training process
351 We generated spectral TOA reflectance, 𝜌𝑡, from the standard algorithm LUT for 16 million 
352 different data points. After excluding data points with the normalized sun glint radiance > 
353 0.005, similar to the operational algorithm, we ended with ~ 9 million data points for the 
354 training. The training was performed using the open-source machine learning platform Keras-
355 TensorFlow (Keras.io). The NN input layer vector has 15 parameters (Table 1), and the output 
356 layer is the TOA reflectance, 𝜌𝑡, at 13 MODIS wavelengths from 412 to 869 nm. We found by 
357 trial and error that four hidden layers provide a good performance of the NN, with additional 
358 layers just adding forward model computational cost in the retrieval with negligible 
359 performance improvement. The Rectified Linear Unit (ReLU) activation function was used for 
360 the NN hidden layers  [74]. We trained the NN with the Adam optimization algorithm for 
361 10,000 epochs and with a batch size of 1,000  [75]. The dataset was split into the training set 
362 (85%) and a test set (15%). The mean squared error cost function between the training dataset 
363 (i.e., 𝜌𝑡) and the predicted values was minimized through the optimization process of the NN 
364 weights. We compared the NN performance on the training and test (independent) sets for all 



365 the training epochs, showing a continuous decline in the cost function for both training and 
366 testing, indicating that the NN did not overfit the training data.

367 3. Uncertainty sources
368 It is important to properly account for an instrument’s measurement uncertainty when 
369 validating the uncertainty estimates of the inferred variables. The measurement uncertainty 
370 includes both random and systematic components. The random component (noise) is calculated 
371 using the instrument's signal-to-noise ratio (SNR). In this work, we assume the sensor’s 
372 uncorrelated random noise effects. We calculate the noise-equivalent radiance as follows:

𝑁𝐸∆𝐿(𝜆) = [𝐶0(𝜆) + 𝐶1(𝜆) × 𝐿𝑡(𝜆)] × 𝑆(𝜆), (5)
373
374 where, 𝐶0(𝜆) and 𝐶1(𝜆) are linear fit coefficients of the noise model from  [76]   , and 𝑆(𝜆) 
375 is the spectrally-dependent spatial weight that brings all bands to a common 1 km spatial 
376 resolution  [18]. The standard deviation of the signal is radiance-dependent and calculated as:

𝜎𝑛(𝜆) =
𝑁𝐸∆𝐿(𝜆)

𝐿𝑡(𝜆)  .
(6)

377
378 The standard deviation of the radiance is then converted to noise-equivalent reflectance after 
379 normalizing by the solar irradiance at a specific solar angle. 
380 Systematic (calibration) errors in measurements are challenging to characterize post-launch 
381 due to the lack of an accurate absolute calibration apparatus on-orbit. Typically, the systematic 
382 uncertainty is correlated between bands. The Marine Optical BuoY (MOBY) site, off the coast 
383 of Lanai, Hawaii, is the system vicarious calibration site for all NASA-supported ocean color 
384 missions. NOAA has continuously operated MOBY since 1996 as the in-situ calibration source 
385 for vicarious calibration and a source of high-quality Rrs data  [77,78]. There are 523 co-located, 
386 coincident MODIS Aqua-MOBY matchups, to date, of which a smaller fraction are used for 
387 the system vicarious calibration to derive the gain corrections at the TOA. Our approach relies 
388 on estimating the total uncertainty between the observed and predicted TOA reflectance in this 
389 work. Similar to  [78], we calculate the predicted TOA reflectance by propagating the in-situ 
390 MOBY Rrs to the TOA while simultaneously solving for the aerosol properties. 
391 The residual uncertainly between the observed and predicted TOA reflectance represents 
392 the total uncertainty at TOA defined below:

𝑆𝑡 = 𝑆𝑛 + 𝑆𝑎 + 𝑆𝑤 + 𝑆𝑏, (7)
393
394 where these terms represent error covariance matrices, with subscripts t for the total 
395 uncertainty, n for random noise, a is for ancillary data uncertainty, w is for the in-water 
396 component from MOBY, and b for the uncertainty due to instrumental systematic artifacts as 
397 well as the forward model uncertainty (e.g., RT simplifications). It is valid to sum these terms 
398 assuming that each is independent. The terms 𝑆𝑛 and 𝑆𝑎 are known given the SNR model and 
399 the ancillary data uncertainty. The uncertainty in MOBY Rrs observations is not well known for 
400 all conditions, but is expected to be a few percent  [79]; thus, we assume it is negligible in this 
401 work as a first approximation. The term 𝑆𝑏 can then be estimated and taken as a measure of 
402 systematic and forward model uncertainty used in the retrieval process. 

403 4. Optimal Estimation (OE)
404 Optimal Estimation finds the most probable values of the unknown parameters in Table 1 by 
405 minimizing a cost function that incorporates the likelihood function, priors, and uncertainties. 
406 The likelihood and priors are assumed to be normal distributions, characterized by a one sigma 
407 width and correlations for all measurement pairs. The cost function near the solution is typically 
408 the weighted sum of squared differences between the forward model and the measurements, 
409 plus a similar weighted squared difference between the state and prior knowledge of the state. 
410 For non-linear problems such as the radiative transfer in the AO system, an iterative constrained 
411 optimization is used to minimize the cost function. Also, for simplicity, a conjugate Gaussian 



412 distribution of the error covariance matrices is assumed, and, therefore, the computationally 
413 intensive sampling of the distributions is unnecessary. Note strictly that these are “uncertainty” 
414 rather than “error” covariance matrices, as in this case, the true value is not known (uncertainty 
415 is a measure of dispersion, and error is a departure from the truth)  [12]. However, we use the 
416 common “error covariance” terminology for convenience (JCGM, 2008). OE involves 
417 determining the maximum a posteriori (MAP) solution, which is a single point estimate of the 
418 approximately normal distribution at the mode of the posterior, obtained by minimizing the 
419 negative log posterior (known as the cost function, 𝜒2):

―2 loge P 𝐱│𝐲𝐨𝐛𝐬,𝐱a = [𝐲 ― 𝐅(𝐱,𝐛)]T𝐒―1
e [𝐲 ― 𝐅(𝐱,𝐛)] + [𝐱 ― 𝐱a]T𝐒―1

a [𝐱 ― 𝐱a]. (8)
420
421 For this study, the forward model, 𝐅(𝐱,𝐛), is the forward radiative transfer calculated for a 
422 given state vector 𝐱 and, while b represents the parameters that are used as an input to the 
423 forward model, but not part of the state vector. 𝐲𝐨𝐛𝐬 is a vector that contains the spectral 
424 observed TOA reflectance, while 𝐱𝐚 is the prior state vector (knowledge of the state vector 𝐱 
425 before measurements). 𝐒e is the measurement error covariance matrix, and 𝐒a is the prior error 
426 covariance matrix. The diagonal elements of these matrices are the variances, while the off-
427 diagonal elements represent the correlated standard uncertainties in the state variables. Both 
428 matrices need to be positive semi-definite (i.e., non-negative). The forward model parameters 
429 (state vector) are:

𝐱 = 𝑅𝐻,𝑂3, 𝑃𝑟,𝑊𝑆,𝑊𝑉,𝑓𝑚𝑓,𝜏𝑎,𝑎𝑝ℎ,𝑎𝑑𝑔,𝑏𝑏𝑝 . (9)

430
431 The state vector x in Eq. (9) includes the ancillary data as retrievable parameters, which is 
432 different from many other approaches that either assume they are known perfectly or that they 
433 are known imperfectly with some uncertainty (in which case this uncertainty is typically 
434 propagated to TOA and included in 𝐒e). Suppose the uncertainty of the ancillary data is known 
435 or assumed. In that case, it is logical to have them as part of the state vector 𝐱 since the ancillary 
436 data do influence the observations. Meanwhile, the non-retrievable parameters 𝐛 include Chl-
437 a and 𝛾.
438 The iterative process to find a solution to the state vector, 𝐱, follows the modified Gauss-
439 Newton optimization method by Levenberg-Marquardt (LM)  [80,81] . We used the Python 
440 library SciPy which implements the least-squares algorithm. The LM algorithm is very efficient 
441 and provides a high convergence rate. Once a solution is found, we can estimate the error 
442 covariance matrix at the estimated parameters. This is calculated using error propagation 
443 through the Jacobian matrix, 𝐊, expressed as:

𝐒 = 𝐊
𝑇

𝐒―1
e 𝐊 + 𝐒―1

a
―1

,
(10)

444 where 𝐊 is the partial first derivative of the forward function with respect to the state vector 
445 (i.e., ∂𝐅 ∂𝐱).
446 This 𝐒 term is the retrieval uncertainty of the state vector parameters and combines 
447 uncertainty introduced by the measurements with the a priori constraints (𝐒𝐚, see later). 
448 The OE technique described here is based on the normal distribution approximation of prior, 
449 likelihood, and measurement uncertainty that may cause problems [12]. The LM algorithm may 
450 converge to a local rather than the global minimum when the posterior is multi-modal. This can 
451 occur for high-dimensional retrievals that are not properly constrained. The retrieval 
452 uncertainty may also be over-or under-estimated if the forward model is highly nonlinear near 
453 the solution, which is typically only an issue for poorly constrained parameters.
454



455456 Fig. 1. Flow diagram of the OE algorithm
457
458 Figure 1 shows the OE algorithm flow diagram. The required inputs include the TOA 
459 reflectance observed from MODIS, the ancillary data, and a priori information about the 
460 atmospheric and oceanic state. The prior distribution describes our current knowledge of the 
461 parameters of interest, and its mean is used as the first guess in the iterative inversion. Typically 
462 there are three types of priors: non-informative such as unbounded uniform distribution; weakly 
463 informative, such as bounded uniform or normal distribution with large variance; and 
464 informative such as normal with small variance. When non-informative priors are used, the 
465 prior does not affect the posterior, and the inference is then identical to the estimate of the 
466 likelihood. We used a normal prior distribution with no correlation between parameters in our 
467 analysis. 𝑅𝐻,𝑂3, 𝑃𝑟,𝑊𝑆, and 𝑊𝑉 are obtained from ancillary data sources (National Centers 
468 for Environmental Prediction; NCEP). Assuming the mean is known, the uncertainty (standard 
469 deviation of the normal distribution) is assumed to be 1 mbar for 𝑃𝑟, 1 m/s for 𝑊𝑆, 5% of the 
470 mean for 𝑅𝐻, 1% of the mean for 𝑂3, and 10% of the mean for 𝑊𝑉  [82,83]. The 𝑓𝑚𝑓,τa, 𝑎𝑝ℎ,
471 𝑎𝑑𝑔, and 𝑏𝑏𝑝 priors are assumed weakly informative normal with mean values obtained from 
472 the 4-km MODIS Aqua climatology obtained from the OB.DAAC and with a large standard 
473 deviation of 10. The standard deviation is much larger than the range of data, but the priors are 
474 bounded within their physical values in the inversion. The values for 𝛾 and Chl-a were used as 
475 the first guess and are obtained from climatology data as well. Given the latitude and longitude 
476 of each observation, we interpolate to the nearest neighbor of the global L3 image. 
477 With the initial values of the input parameters, the TOA reflectance is calculated by 
478 evaluating the NN forward likelihood model, and a 𝜒2 value is calculated (Eq. 8). The algorithm 
479 iteratively updates the state vector until it converges. In the next step, we calculate the Rrs by 
480 performing the AC outlined in the following section. Neither Chl-a nor the backscattering slope 
481 is part of the state vector. Including them creates a highly ill-posed problem. The spectral 
482 backscattering requires simultaneously solving for its shape and magnitude. To avoid this 
483 problem, but provide a calculation of both, we utilize empirical relationships to estimate 𝛾 and 
484 Chl-a from Rrs. We use the OCx algorithm for Chl-a  [84], and we use the Quasi Analytical 



485 Algorithm (QAA) for 𝛾  [85]. The Chl-a and 𝛾 are iteratively adjusted and the OE AC correction 
486 is repeated until they converge (i.e., they change by >2%),  with a maximum of 10 iterations 
487 (typically 2-3 are needed). It is important to note that we assume the uncertainty from Chl-a 
488 and 𝛾 do not propagate into the Rrs uncertainty since Chl-a would only impact the uncertainty 
489 in the BRDF correction, while 𝛾 does not play a role in the Rrs uncertainty estimate other than 
490 constraining the AC. 

491 4.1  Remote sensing reflectance (Rrs) retrieval 
492 Our approach to the AC is a two-step one. First, the OE algorithm estimates the atmosphere-
493 related parameters in the previous section. Second, the inferred parameters are ingested into a 
494 proper atmospheric correction similar to the operational algorithm. That involves removing the 
495 atmospheric and glint signal from TOA observations and compensating for the atmospheric 
496 diffuse and direct transmittance once these properties are inferred. We start by relating Rrs to 
497 the normalized water-leaving radiance (for simpler notation, 𝜆 is not included in the following 
498 equations), 

𝑅𝑟𝑠 = 𝐿𝑤𝑛

𝐹0
,  (𝑠𝑟―1), (11)

499
500 where 𝐿𝑤𝑛 is the normalized water-leaving radiance after the BRDF correction and 𝐹0 is the 
501 extraterrestrial solar irradiance at 1 astronomical unit. 𝐿𝑤𝑛 is connected to TOA observations 
502 by

𝐿𝑤𝑛 =
𝑓𝑏𝑟𝑑𝑓 𝑡𝐿𝑤

𝑡𝑠𝑒𝑛 𝑡𝑠𝑜𝑙 𝜇0 𝑓𝑠𝑜𝑙
, (12)

503
504 where 𝑡𝐿𝑤 is the water-leaving radiance measured at TOA, 𝑡𝑠𝑒𝑛 and 𝑡𝑠𝑜𝑙 represent the diffuse 
505 transmittance along the viewing and solar direction, respectively, 𝜇0 is the cosine of the solar 
506 zenith angle, 𝑓𝑠𝑜𝑙 is the earth-sun distance correction factor, and 𝑓𝑏𝑟𝑑𝑓 is the BRDF correction 
507 factor: 

𝑡𝐿𝑤 = 𝐹0𝜇0

𝜋 × 𝜌𝑡
𝑇𝑔𝑠𝑜𝑙 𝑇𝑔𝑠𝑒𝑛

― 𝜌𝑝𝑎𝑡ℎ+𝑠𝑢𝑟𝑓 . (13)

508
509 𝜌𝑡 is the observed TOA reflectance. 𝑇𝑔𝑠𝑜𝑙 and 𝑇𝑔𝑠𝑒𝑛 represent the gas transmittance (ozone 
510 and water vapor in this case) along the solar and viewing directions, respectively, 𝜌𝑝𝑎𝑡ℎ+𝑠𝑢𝑟𝑓 
511 is the TOA reflectance with a black ocean that includes only the reflectance from Rayleigh, 
512 aerosols, glint, and white caps reflectance. The dark ocean TOA reflectance is calculated using 
513 LUTs such that:

𝜌𝑝𝑎𝑡ℎ+𝑠𝑢𝑟𝑓 = 𝐅𝒂(𝑃𝑟, 𝑊𝑆, 𝑅𝐻, 𝑓𝑚𝑓, 𝜏𝑎,𝜃0,𝜑,𝜃0). (14)
514
515 The diffuse transmittance of the atmosphere needs to be calculated and is simply estimated 
516 from the LUTs:

𝑡𝑠𝑜𝑙 = 𝐅𝒕𝒔𝒐𝒍(𝑃𝑟,𝑅𝐻, 𝑓𝑚𝑓, 𝜏𝑎,𝜃0), (15)
517
518 and

𝑡𝑠𝑒𝑛 = 𝐅𝒕𝒔𝒆𝒏(𝑃𝑟,𝑅𝐻, 𝑓𝑚𝑓, 𝜏𝑎,𝜃𝑣). (16)
519
520 The above equations can therefore be used to solve for Rrs

𝑅𝑟𝑠 = 𝑓𝑏𝑟𝑑𝑓

𝜋  𝑡𝑠𝑒𝑛 𝑡𝑠𝑜𝑙 
× 𝜌𝑡

𝑇𝑔𝑠𝑜𝑙 𝑇𝑔𝑠𝑒𝑛
― 𝜌𝑝𝑎𝑡ℎ+𝑠𝑢𝑟𝑓 . (17)

521
522 To estimate the uncertainty in the Rrs estimate, we can easily propagate the uncertainties 
523 from the inferred parameters through the above equations step-by-step. In the OE method, we 



524 can calculate the Jacobian matrices of 𝐅𝒂, 𝐅𝒕𝒔𝒐𝒍, and 𝐅𝒕𝒔𝒆𝒏 which are denoted as 𝐊𝑎, 𝐊𝑡𝑠𝑜𝑙, and 
525 𝐊𝑡𝑠𝑒𝑛, respectively. We can then simplify the estimate of the Rrs as follows:

𝑅𝑟𝑠(𝜆) = 𝐅𝐀𝐂(𝜌𝑡(𝜆), 𝑅𝐻,𝑂3, 𝑃𝑟,𝑊𝑆,𝑊𝑉,𝐹𝑀𝐹,𝜏𝑎, 𝜃0, 𝜑,𝜃𝑣), (18)
526
527 where 𝐅𝐀𝐂 is the Atmospheric Correction function. Using the chain rule, we can efficiently 
528 calculate its Jacobian matrix, 𝐊𝐀𝐂, to estimate the error covariance matrix of the remote sensing 
529 reflectance, 𝐒𝑹𝒓𝒔, as follows:

𝐒𝑹𝒓𝒔 = 𝐊𝐀𝐂
𝐓𝐒 𝐊𝐀𝐂 + 𝐊𝐓𝐎𝐀

𝐓𝐒𝐞 𝐊𝐓𝐎𝐀. (19)
530
531 The second term in Eq. (19) accounts for propagating sensor noise to Rrs directly where 
532 𝐊𝐓𝐎𝐀 is the Jacobian of Rrs with respect to the TOA reflectance. This method is a two-step 
533 approach, where both terms on the right-hand side of Eq. (19) are assumed to be independent. 

534 5. Validation data
535 5.1 In-situ radiometry
536 The in-situ Rrs data were obtained from the NASA SeaBASS database (seabass.gsfc.nasa.gov) 
537 includes above and in-water radiometry as well as retrievals from AERONET-OC (Version 2.0, 
538 Level 2.0) sites (aeronet.gsfc.nasa.gov)  [86,87]. The AERONET-OC sites shown in Figure 2, 
539 marked in red circles, are primarily located in coastal water near land. We used Version 2.0 for 
540 consistency with the latest validation statistics used in the operational algorithm of the SeaWiFS 
541 Data Analysis System (SeaDAS) and applied Level 2.0 quality filtering to ensure the highest 
542 quality data. A complete list of the locations and characteristics of the AERONET-OC sites are 
543 found on the AERONET-OC webpage and in  [86]. The SeaBASS data points are marked in 
544 blue circles shown in Figure 2, including samples in open ocean conditions. Accordingly, the 
545 data exhibits a large dynamic range of Rrs. Full details on the Rrs dynamic range for all datasets 
546 are available on the SeaBASS web page. 

547548 Fig. 2. Map of the SeaBASS (blue circles) and AERONET-OC (red circles) sites used in the validation.

549 5.2 MODIS Aqua
550 TOA reflectance data from MODIS onboard the Aqua satellite (MODIS-A) were used in this 
551 study to validate Rrs matchups. MODIS-A level-1A (L1A) data were obtained from NASA’s 
552 OB.DAAC and processed to level-1B (L1B) after georeferencing. Satellite match-ups 
553 coincident with the in situ validation dataset were identified following  [88]. Satellite 
554 measurements are derived from a box of pixels (i.e., 5 km ×5 km) centered on the location of 
555 the in situ measurement. The satellite value is defined as the filtered mean of unflagged pixels 
556 in the box, and the spatial homogeneity and other quality criteria at the validation point are 
557 evaluated. Since in-situ data are rarely collected at the precise moment when a satellite views 



558 its location, we allow a time window threshold of ±3-hours around the ground truth 
559 observations. The length of that window is a compromise between being short enough to 
560 minimize differences due to temporal variability in the ocean and being long enough to create 
561 a sufficient volume of successful match-ups with satellite observations. The L1B file was then 
562 processed to L2 using the SeaDAS standard algorithms to obtain geophysical products as well 
563 as the TOA reflectance after applying the Ocean Biology Processing Group (OBPG) 
564 calibrations of reprocessing R.2018 (e.g., polarization correction and vicarious 
565 calibration)  [78]. The standard L2 products were stored and used for the validation 
566 comparisons. Since the vicarious calibration is an AC-specific procedure, we removed the 
567 vicarious gains from the TOA reflectance by dividing the standard algorithm gains for the OE 
568 L2 processing. We then use the modified TOA reflectance in the OE algorithm, as shown in 
569 Figure 1.

570 5.2 Statistical metrics
571 When comparing satellite-derived Rrs with the in-situ value, we use several metrics, primarily 
572 mean bias, 𝛿, and the mean absolute error (MAE or |𝛿|) both of which are routinely used to 
573 assess model skill in  SeaBASS  [89]. We also calculated the root mean squared errors (RMSE) 
574 (∆) and the Pearson and Spearman squared, 𝑅2 correlation as well as the centered (bias-
575 corrected) MAE |𝛿| 𝑐 and RMSE ∆𝑐 and the mean absolute relative error, |𝜓|𝑚. We adopt the 
576 IOCCG report 18  [28] notation assuming the satellite observations are denoted xi=1,N and in-
577 situ denoted yi=1,N and the following metrics are:

𝛿 = 1
𝑁 × ∑𝑁

𝑖=1 𝑦𝑖 ― 𝑥𝑖, (20)

|𝛿| = 1
𝑁 × ∑𝑁

𝑖=1|𝑦𝑖 ― 𝑥𝑖|, (21)

578
∆ =  1

𝑁
× ∑𝑁

𝑖=1 (𝑦𝑖 ― 𝑥𝑖)2, (22)

579
|𝜓|𝑚 = 100 × 1

𝑁 × ∑𝑁
𝑖=1

|𝑦𝑖 ― 𝑥𝑖|
𝑥𝑖

. (23)

580
581 The centered statistics |𝛿| 𝑐 and ∆𝑐 simply involve removing the average bias between 𝑦𝑖 
582 and 𝑥𝑖, thus showing the algorithm performance without any potential bias either in the 
583 algorithm or the in-situ data. 

584 5.2 Uncertainty validation
585 Our assumption to account for all sources of uncertainties at TOA relies on the MOBY 
586 vicarious calibration to be representative of the global oceans. To validate this assumption, we 
587 provide a closure analysis by comparing the satellite-derived Rrs and their associated 
588 uncertainties to the in-situ measurements. Since we derive the pixel-level uncertainty, we can 
589 use a statistical ensemble method to compare the derived uncertainty to the error between the 
590 satellite-derived Rrs and the in-situ Rrs. The uncertainty estimated by OE is a normal distribution 
591 with a standard deviation obtained through the analytical error propagation technique. 
592 Meanwhile, the error defined as the difference between the retrieved and in-situ truth Rrs is an 
593 instantaneous realization of that uncertainty distribution. Thus, a direct pixel-level comparison 
594 between pixel-level uncertainty and retrieval errors is irrelevant. A more appropriate approach 
595 to compare the two quantities is to calculate the normalized error distribution ∆𝑁 following the 
596 approach of  [90,91], where

∆𝑁 =
∆𝑠

𝑢2
𝑠𝑎𝑡 + 𝑢2

𝑟𝑒𝑓
. (24)



597 ∆𝑠 is the error (i.e., difference) between the satellite-derived and in-situ Rrs. 𝑢2
𝑠𝑎𝑡 is the 

598 variance in the pixel-level uncertainty derived from the OE algorithm, while 𝑢2
𝑟𝑒𝑓 is the variance 

599 in the in-situ measurements. In an ideal scenario, where all sources of uncertainties are 
600 accounted for in the satellite and in-situ data, with perfect error propagation and with 
601 uncertainties following a normal distribution, the normalized error distribution should follow a 
602 normal distribution with a zero mean (i.e., no bias) and with 1 variance (or standard deviation). 
603 It is possible to examine the normality of the normalized error by plotting the cumulative 
604 distribution function (CDF). This provides an assessment of the average comparison between 
605 the total error and the OE-provided uncertainties. It is also possible to extend this analysis to 
606 assess the variability of the error to uncertainty relationship across the dynamic range of errors 
607 which would require stratifying the errors and comparing the 68th percentile of the error to the 
608 mean of the uncertainty within a bin (i.e., dividing the data by the expected error into equally 
609 populated bins)  [91]. The choice of the number of bins depends on the available data volume 
610 in order to have a representative sample within each. In our analysis, we choose not to bin the 
611 data and provide a comparison between the 68th percentile of the error ∆𝑠, and the mean of the 
612 uncertainty, 𝑢𝑠𝑎𝑡.

613 6. Results
614 6.1 Neural network performance
615 Our initial analysis of the NN prediction error on the testing dataset indicates that the error 
616 varies systematically with radiant path geometry. Figure 3 shows the percent prediction error 
617 histogram of the independent dataset (i.e., the 15% of the dataset reserved for testing) for three 
618 visible wavelengths (443, 547, and 678 nm) and three NIR wavelengths (748, 859, and 869 
619 nm). 
620 The percent error is calculated as follows:

% 𝑒𝑟𝑟𝑜𝑟 = 100 × (𝜌𝑁𝑁
𝑡 (𝜆) ― 𝜌𝐿𝑈𝑇

𝑡 (𝜆))/𝜌𝐿𝑈𝑇
𝑡 (𝜆),. (25)

621
622 where 𝜌𝑁𝑁

𝑡 (𝜆) is the TOA reflectance calculated by the forward NN model, and 𝜌𝐿𝑈𝑇
𝑡 (𝜆) is 

623 the TOA reflectance calculated from the atmosphere-ocean RT-based LUT model. We also 
624 calculate the mean absolute error, |𝛿|, where 𝑦𝑖 is retrieved data (i.e., 𝜌𝑁𝑁

𝑡 (𝜆)), 𝑥𝑖 is the truth 
625 (i.e., 𝜌𝐿𝑈𝑇

𝑡 (𝜆)), and N is the number of data points (approximately 1.3 million).

626627 Fig. 3. Histograms of the percent error between the NN derived TOA reflectance and the LUT using an independent 
628 validation data set for 443, 547, and 678 nm (right panel), and 748, 859, and 869 nm (left panel). Errors are mostly 
629 smaller than 0.2% in reflectance. σ is the standard deviation of the absolute error, while the value in parenthesis is for 
630 the percent error. MAE is the mean absolute error.
631
632 Figure 3 shows a larger percent error at longer wavelengths, with a slight bias at 859 and 
633 869 nm. Overall, the performance of the NN is excellent with an error < 0.2% for 82% of the 



634 testing cases in the worst-case scenario and <0.06% in the best case, similar to the instrument’s 
635 radiometric noise and within the bounds of the vicarious calibration uncertainty  [78]. We 
636 parametrized the NN model uncertainty, 𝜎𝑁𝑁, as a function of the geometry to account for the 
637 forward model uncertainty needed in the inference process. The NN was trained with the AC 
638 LUTs, which were calculated with a coarse grid that can cause interpolation errors. However, 
639 in  [18], we showed that the LUT interpolation error is the smallest fraction of the total 
640 uncertainty. Therefore, this forward model uncertainty here is a fraction of the total forward 
641 model uncertainty, which is unknown and likely systematic because of the simplification of the 
642 physics (i.e., not accounting for absorbing aerosols and not including other unknown 
643 unknowns)  [12]. 

644 6.2 Synthetic data analysis
645 Out of the NN test dataset, we extracted 10,000 cases of TOA reflectances and the ‘truth’ 
646 geophysical parameters used in the OE algorithm. Before passing to the algorithm, we added 
647 random and systematic radiometric uncertainty to the TOA reflectance derived in section 3 and 
648 to the ancillary data input as a prior. The input data set spanned a wide range of environmental 
649 conditions and geometries with statistical samples representing the NN training and testing 
650 data. In Figure 4, rather than showing a scatter plot, we show the scatter density histogram plot 
651 for each retrieved parameter of the OE algorithm. The color bar indicates the normalized 
652 density of the data frequency. The plot shows the difference (error) between the retrieved data 
653 and the truth. Thus a perfect retrieval would show a zero error on the y-axis. We choose the x-
654 axis that is relevant to the AC process. Since the AC and the TOA reflectance strongly depend 
655 on the AOD, dependence between the AC parameters and the Rrs is expected. The black dashed 
656 lines are the mean of the difference between the retrieved and the truth, while the red dashed 
657 lines indicate the +/- standard deviation around the mean of the difference. A bias between the 
658 retrieval and the truth would manifest in the black dashed line deviating away from zero. Above 
659 zero, the retrieval is overestimated and vice versa for underestimated retrieval. A larger spread 
660 between the retrieval and truth would lead to a more significant deviation of the red dashed 
661 lines away from the mean black dashed lines.

662663 Fig. 4: Scatters density histogram of the synthetic data retrievals using the OE algorithm. The color bar indicates the 
664 data normalized density ranging from 0 to 1. MAE is the mean absolute error between the retrieved and truth, while 
665 𝑥1 = 𝑎𝑥2 +𝑏 is the regression line between retrieved and truth with 𝑎 being the slope and 𝑏 is the bias.
666
667 Figure 4 shows the retrieval performance for two parameters related to the AC (fmf, 𝜏𝑎) and 
668 three ocean-related parameters from the GIOP model 𝑎𝑝ℎ, 𝑎𝑑𝑔,𝑏𝑏𝑝 all at 443 nm. The 𝑅𝑟𝑠 at 
669 443, 555, and 665 nm were calculated after performing the AC by removing the atmospheric 
670 signal contribution from the TOA. There is a negligible bias in the retrieval for all parameters, 
671 particularly for 𝑅𝑟𝑠 with no dependence on the 𝜏𝑎. The 𝑓𝑚𝑓 error shows a slight dependence 
672 on 𝜏𝑎 at low values, where the uncertainty is increased at low AOD. The MAE (|𝛿|) of 𝑅𝑟𝑠 is 
673 0.00066, 0.00038, 0.00012 for 443, 555, and 665nm, respectively, showing that the absolute 



674 magnitude of uncertainty is higher at shorter wavelengths consistent with what is observed 
675 based on real data validation statistics  [27].
676 To evaluate the retrieval uncertainty for each case, we calculate the CDF of the normalized 
677 error distribution, ∆𝑁, for each retrieval parameter. For a perfect retrieval and uncertainty 
678 estimate, the calculated normalized error would agree with the ideal case across the normalized 
679 error range. Figure 5 shows the CDF of ∆𝑁 in red compared to the ideal case of a standard 
680 normal in black. When the red curve is within the grey shaded region, the uncertainty is 
681 underestimated and overestimated when the curve is in the white region. Overall, there is a 
682 good agreement for all parameters except 𝑏𝑏𝑝, where the uncertainty is underestimated. 

683
684 Fig. 5. CDF plot of the absolute normalized error, ∆𝑁, for all retrieval parameters of the synthetic dataset. The 
685 estimated CDF from the OE algorithm is shown in red, and the ideal CDF for a standard normal is shown in black. 
686 The grey shaded region shows where the uncertainty is underestimated.
687
688 In Table 2, we compare the mean uncertainty estimate 𝑢𝑠𝑎𝑡 of the retrieval as compared to 
689 the 68th percentile of the retrieval error, ∆𝑠.
690
691
692 Table 2. ∆𝒔 is the 68th percentile of the error between the truth and the retrieval and 𝒖𝒔𝒂𝒕 is the mean 
693 uncertainty for each parameter.

𝒇𝒎𝒇 𝝉𝒂 𝒂𝒑𝒉 𝒂𝒅𝒈 𝒃𝒃𝒑 𝑹𝒓𝒔(𝟒𝟒𝟑) 𝑹𝒓𝒔(𝟓𝟓𝟓) 𝑹𝒓𝒔(𝟔𝟔𝟕)

∆𝑠 0.00865 0.0054 0.0373 0.0564 0.00140 0.00076 0.000449 0.00015

𝑢𝑠𝑎𝑡 0.00633 0.0050 0.0372 0.0460 0.00063 0.00078 0.000363 0.00016

694
695 The results in Table 2 complement Figure 5, indicating a good agreement between the two 
696 results, except for underestimation of 𝑏𝑏𝑝 uncertainty.

697 6.3 In-situ validation

698 6.3.1 SeaBASS
699 The SeaBASS dataset provides an overall assessment of the OE algorithm in a wide range of 
700 water conditions. Figure 6 shows the error between the 𝑅𝑟𝑠 retrieval and the in-situ truth for 
701 three wavelengths at 443, 555, and 667nm. The first row is for the OE algorithm, while the 
702 second row is for the operational retrieval using the SeaDAS/l2gen L2 processing software. 
703 The matchup analysis shows a lower MAE for the three OE algorithm bands than the 
704 operational one. There is no apparent correlation with 𝜏𝑎, as a primary source of AC errors in 
705 all cases. 
706



707708 Fig. 6. Scatter density histograms of the SeaBASS data retrievals using the OE algorithm. The first row is for the OE 
709 algorithm, and the second row is for the operational algorithm. The color bar indicates the data normalized density 
710 ranging from 0 to 1. MAE is the mean absolute error between the retrieved and truth, while 𝑥1 = 𝑎𝑥2 +𝑏 is the 
711 regression line between retrieved and truth with 𝑎 being the slope and 𝑏 is the bias.
712
713 For a quantitative assessment, we provide in Table 3 all metrics and validation statistics of 
714 the matchups for 𝑅𝑟𝑠. In Table 3, the numbers highlighted in bold are for the OE algorithm, 
715 while the non-bolded numbers in parentheses are for NASA’s current operational AC 
716 algorithm. 
717
718 Table 3. Matchups statistics for the SeaBASS dataset. OE statistics are in bold font-weight, while NASA’s 
719 operational AC are in normal font and in parentheses. N- is the number of negative 𝑹𝒓𝒔 retrievals.

N (N-) 𝜹   |𝝍|𝒎 
(%)

|𝜹| |𝜹| 𝒄 ∆ ∆𝒄 𝑹𝟐 
(Pearson)

𝑹𝟐 
(Spearman)

Rrs(443) 589
(0, 1)

-1×10-6

(-8.1×10-3)
22.0
(23.7)

9×10-4

(9.2×10-4)
9×10-4

(9.2×10-4)
1.39×10-3

(1.39×10-3)
1.39×10-3

(1.40×10-3)
0.69
(0.69)

0.73
(0.71)

Rrs (555) 438
(0, 0)

-1.3×10-4

(-5×10-4)
13.7
(18.6)

4.3×10-4

(6.1×10-4)
4.5×10-4

(1×10-3)
1.12×10-3

(1.28×10-3)
1.14×10-3

(1.54×10-3)
0.76
(0.76)

0.73
(0.66)

Rrs (667) 490
(1, 14)

-5.5×10-5

(-2×10-5)
43.4
(63.1)

1.1×10-4

(1.3×10-4)
1.4×10-4

(1.3×10-4)
2.02×10-4

(2.17×10-4)
2.23×10-4

(2.19×10-4)
0.8
(0.75)

0.3
(0.23)

720
721 The mean bias, 𝛿, between the in-situ and retrieved 𝑅𝑟𝑠 is smaller for the OE algorithm, 
722 while the |𝜓|𝑚 and |𝛿| is reduced for all bands. The improvement at 443nm is marginal at 1.7%, 
723 however, the |𝜓|𝑚 is reduced by 4.9% and 19.7% for the OE algorithm for 555 and 667nm, 
724 respectively. We also calculate the centered statistics after removing the mean bias showing 
725 consistent results where the OE algorithm outperforms the operational algorithm. The 
726 Spearman correlation is improved for the OE algorithm. In contrast, the Pearson correlation 
727 shows no improvement except for 667 nm, possibly due to spurious outliers that the metric can 
728 be sensitive to.
729



730
731 Fig. 7. Top row is a histogram of the difference between the retrieved and in-situ 𝑅𝑟𝑠 at 443, 555, and 667nm, 
732 respectively for the OE algorithm in red, and the operational algorithm in black. The bottom row is the CDF of the 
733 absolute normalized error ∆𝑁 for 𝑅𝑟𝑠 at the same three bands, where the red curve is estimated from the OE 
734 algorithm, and the black curve is the ideal case for a standard normal.
735
736 Figure 7 shows the histogram of the error as the difference between 𝑅𝑟𝑠 in-situ and retrieved 
737 at 443, 555, and 667 nm, respectively in the top row. The error is mostly centered around zero, 
738 and the histogram follows a normal distribution indicating that a random process likely 
739 dominates the error. The mode of the 𝑅𝑟𝑠 histogram is closer to zero for the OE algorithm than 
740 for the operational algorithm, for the green and red bands, while the distributions look very 
741 similar for the blue band. The bottom row of Figure 7 is the CDF of the absolute normalized 
742 error ∆𝑁. These results indicate that 𝑅𝑟𝑠 uncertainty is underestimated relative to the in-situ 
743 matchup errors for the blue and green bands with higher underestimation for larger errors. At 
744 667 nm, the uncertainty was overestimated for lower errors and vice versa for higher errors. It 
745 is important to note that the matchup errors would implicitly include other sources of errors 
746 such as in-situ data uncertainties, adjacency effects, and temporal and spatial mismatch.
747
748 Table 4. ∆𝒔 is the 68th percentile of the error between the truth and the retrieval and 𝒖𝒔𝒂𝒕 is the mean 
749 uncertainty for SeaBASS 𝑹𝒓𝒔 matchups.

𝑹𝒓𝒔(𝟒𝟒𝟑) 𝑹𝒓𝒔(𝟓𝟓𝟓) 𝑹𝒓𝒔(𝟔𝟔𝟕)
∆𝑠 0.00091 0.00030 0.00008
𝑢𝑠𝑎𝑡 0.00071 0.00025 0.00012

750
751 We also compare the mean uncertainty estimate 𝑢𝑠𝑎𝑡 of the retrieval as compared to the 68th 
752 percentile of the retrieval error, ∆𝑠 for the SeaBASS matchups in Table 4. There is a good 
753 agreement between the two metrics, however, the uncertainty is underestimated slightly at 443 
754 and 555 nm and overestimated for 667 nm.

755 6.3.2 AERONET-OC
756 We extended our matchup validation analysis to the AERONET-OC coastal water sites. The 
757 plot in Figure 8 shows the retrieval error for 𝑅𝑟𝑠 at 443, 555, 667nm versus the retrieved 𝜏𝑎. 
758 The results for the OE algorithm show a smaller MAE but comparable spread to the operational 
759 algorithm. The plot shows little dependence of the error on the retrieved 𝜏𝑎 indicating no 
760 aerosol-dependent bias in the AC. 
761



762763 Fig. 8. Same as Fig. 6, but for the AERONET-OC dataset.
764
765 The detailed matchup statistics in Table 5 show better metrics for OE, with a smaller mean 
766 bias except for 667 nm and lower |𝜓|𝑚 and |𝛿| across all bands. |𝜓|𝑚 was reduced by 1.5, 1.9, 
767 and 6.6% for 443, 555, and 667nm, respectively. The centered metrics |𝛿| 𝑐and ∆𝑐 are 
768 consistently better for the OE algorithm, except for the red band, while the correlations are 
769 improved for all bands, except for the Pearson metric at 443 nm.
770
771 Table 5. Matchup statistics for the AERONET-OC dataset. OE statistics are in bold font-weight, while 
772 operational are in normal font. N- is the number of negative 𝑹𝒓𝒔 retrievals.

N (N-) 𝜹 |𝝍|𝒎 
(%)

|𝜹| |𝜹| 𝒄 ∆ ∆𝒄 𝑹𝟐 
(Pearson)

𝑹𝟐 
(Spearman)

Rrs(443) 4300
(16, 47)

1.1×10-4

(3.2×10-4)
37.7
(39.2)

8×10-4

(8.8×10-4)
8.3×10-4

(1×10-3)
1.10×10-3

(1.25×10-3)
1.12×10-3

(1.37×10-3)
0.83
(0.84)

0.82
(0.78)

Rrs(555) 3746
(0, 0)

-3.5×10-4

(-4.1×10-4)
12.0
(14.1)

7×10-4

(7.6×10-4)
8.6×10-4

(1×10-3)
1.16×10-3

(1.14×10-3)
1.31×10-3

(1.34×10-3)
0.92
(0.91)

0.92
(0.90)

Rrs(667) 3815
(13, 157)

-1.8×10-4

(-1×10-4)
30.8
(37.4)

2.7×10-4

(3×10-4)
4.1×10-4

(3.5×10-4)
4.19×10-4

(4.68×10-4)
5.31×10-4

(4.98×10-4)
0.87
(0.85)

0.82
(0.77)

773
774 Similar to the SeaBASS analysis, in Figure 9, we show the histogram of the matchup errors 
775 and the CDF of the absolute normalized error ∆𝑁 in the top row. The histogram shows a 
776 distribution similar to normal for both algorithms. The modes of the distributions are 
777 consistently close to zero, where at 555 nm, the OE algorithm is closer to zero than the 
778 operational algorithm. In the bottom row, the CDF comparison indicates a close agreement 
779 between the estimated uncertainty from the OE algorithm and the matchup errors for 443 nm. 
780 The 555 and 667 nm uncertainty are underestimated. This indicates that we did not account for 
781 all sources of errors in the algorithm. 
782



783784 Fig. 9. Same as Fig. 7, but for the AERONET-OC matchups.
785
786 Stratification of data by location provides more insight into the performance of the OE 
787 algorithm for different environmental conditions. Figure 10 presents results at a more granular 
788 level by showing site-by-site CDFs of ∆𝑁 for the 9 sites with at least 250 matchups, plus the 
789 remaining sites pooled together (labeled “Others”). The overall performance shows a good 
790 agreement in the uncertainty estimate at 443 nm for all sites with slight underestimation. For 
791 550 and 667 nm, the underestimation of the uncertainty is more significant, particularly for 
792 MVCO (a highly productive region) and Palgrunden (an inland site). The best agreement was 
793 for the Helsinki site, followed by Gustav, both characterized by their high CDOM 
794 concentrations  [86]. Although Venise provides the most significant volume of data, the 
795 uncertainty was underestimated in the green and red bands. 
796

797798 Fig. 10. Same as Fig. 9, but stratified for different AERONET-OC sites.
799



800 It is important to note that ∆𝑁 shows a combined effect of retrieval bias and scatter; thus, a 
801 highly biased retrieval that is not captured in the uncertainty estimate would lead to a significant 
802 over-or underestimation of the normalized error.
803 We also provide (Table 6) the comparison between the 68th percentile of the error, ∆𝑠, and 
804 the mean uncertainty from the retrieval, 𝑢𝑠𝑎𝑡 for all sites and a breakdown of the 5 best-sampled 
805 sites. Similar to Figure 10, there is a good agreement for all sites at 443 nm, however, the 
806 uncertainty is underestimated for the green and red bands.
807
808 Table 6. ∆𝒔 is the 68th percentile of the error between the truth and the retrieval and 𝒖𝒔𝒂𝒕 is the mean 
809 uncertainty for AERONET-OC 𝑹𝒓𝒔 matchups.

Rrs(443) Rrs(555) Rrs(667)
Site ∆𝒔 𝒖𝒔𝒂𝒕 ∆𝒔 𝒖𝒔𝒂𝒕 ∆𝒔 𝒖𝒔𝒂𝒕
All sites 0.000814 0.000724 0.000483 0.000257 0.000245 0.000137
Venise 0.000910 0.000720 0.000546 0.000241 0.000252 0.000125
Helsinki 0.000683 0.000721 0.000290 0.000272 0.000192 0.000150
MVCO 0.000846 0.000741 0.001150 0.000267 0.000425 0.000140
Gloria 0.000794 0.000726 0.000393 0.000253 0.000280 0.000134
Gustav 0.000854 0.000720 0.000297 0.000262 0.000154 0.000146

810
811 6.3.3 MODIS Aqua imagery analysis
812 Figures 11 and 12 show results of the OE and NASA operational algorithms from a MODIS-
813 Aqua image over the eastern coast of the United States and extending into the Atlantic Ocean 
814 on September 21st, 2010. The scene includes a wide range of water conditions, including coastal 
815 waters such as the Chesapeake Bay region and open ocean low Chl-a regions further away from 
816 the coast. Figure 11 shows a true-color composite, highlighting four pixels (labeled A-D), 
817 representing different water conditions based on the Chl-a and the fitting residual 𝜒2 of the OE 
818 algorithm.

819820 Fig. 11. True-color image composite of MODIS-Aqua from TOA reflectance over the eastern coast of the United 
821 States from September, 21st, 2010.
822
823 Figure 12 shows the L2 image of 𝑅𝑟𝑠 at 443, 555, and 667 nm. Spatial patterns and 
824 magnitudes are similar for both the OE (top row) and operational (middle) algorithms, 
825 particularly in waters further away from the coast. However, there are differences in coastal 



826 waters in regions where 𝑅𝑟𝑠(555) are high, indicative of optically complex conditions with high 
827 particulate backscattering. The OE algorithm does not perform a cloud screening step similar 
828 to the operational approach. However, this caused artifacts in the OE 𝑅𝑟𝑠 retrieval around cloud 
829 edges, which can be mitigated by using additional cloud screening and masking approaches, 
830 such as limiting the retrieval with extremely high fitting error 𝜒2.
831 In the third row of Figure 12, we show the pixel-level uncertainty produced by the OE 
832 algorithm for the three bands. On average, the magnitude of the uncertainty is higher for the 
833 blue bands than the green/red bands; it is mainly affected by the atmospheric correction of the 
834 aerosol optical depth and fine mode fraction, which are (in this scene) spatially smooth. The 
835 fourth row shows the 𝑅𝑟𝑠 relative uncertainty (%). These images show a more pronounced 
836 spatial structure; for example, in the optically-complex Chesapeake Bay waters, the water 
837 column’s absorption coefficient is so significant that 𝑅𝑟𝑠 is small in the blue bands, thus the 
838 relative uncertainty is substantial. This is reversed in the bright blue waters further from the 
839 coast, where the uncertainty is smaller (5-10%). Similarly, in coastal waters, the 𝑅𝑟𝑠 in the 
840 green band is relatively large, so the uncertainty is smaller than in low Chl-a waters. This is 
841 also consistent for the red bands, where the low Chl-a conditions show very significant 
842 uncertainties (>50% and in some cases >100%), however, this is expected since the 𝑅𝑟𝑠 is near 
843 zero in the red band.



844
845 Fig. 12. MODIS-A image of 𝑅𝑟𝑠 retrieval at 443, 555, 667nm. The top row is the OE algorithm retrieval, and the 
846 middle is the operational algorithm. The third row is the absolute uncertainty estimated from the OE algorithm. The 
847 last row is for the relative percent uncertainty.
848
849 Figure 13 shows the Chl-a retrieval using the OC3 band ratio algorithm after performing the 
850 AC to retrieve 𝑅𝑟𝑠  [84]. The spatial distribution of Chl-a exhibits the typical spatial pattern in 
851 that region with high Chl-a values in the Chesapeake Bay (and its estuaries), Delaware Bay, 
852 Albemarle Sound, and low Chl-a values in offshore waters of the mid-Atlantic Bight. 𝜏𝑎 and 
853 𝑓𝑚𝑓 spatial distributions are smooth and do not show artifacts, particularly in very bright 
854 waters, where the non-negligible water-leaving radiance in the longer wavelengths can be 



855 erroneously attributed as an aerosol signal. However, there is a slight artifact near the mouth of 
856 the Chesapeake Bay and adjacent to the southeast of the Delmarva Peninsula between 37° and 
857 38° N in a region where 𝑅𝑟𝑠 values are relatively high. It is not clear if these are finer aerosol 
858 values or retrieval errors due to the high water reflectance signal; however, some of these 
859 artifacts are reflected as a higher uncertainty in 𝑅𝑟𝑠 and 𝜒2

𝑛, as shown in Figures 12 and 13, 
860 respectively. Note that 𝜒2

𝑛 is the normalized 𝜒2 where it is divided by the number of bands used 
861 in the fitting, such that the theoretical 𝜒2

𝑛 should have the mode close to 1.

862
863 Fig. 13. The top row is the OE algorithm retrieval from MODIS-A of Chl ― a,  𝜏𝑎(869), 𝑓𝑚𝑓. The bottom row is 
864 the OE algorithm retrieval of 𝑎𝑛𝑤 and 𝑏𝑏𝑝 both at 443nm and 𝜒2

𝑛.
865
866 As intermediate products of the OE algorithm, the absorption and scattering coefficients of 
867 the GIOP model can be retrieved. The ocean non-water absorption, 𝑎𝑛𝑤, and particulate 
868 backscattering, 𝑏𝑏𝑝, coefficients at 443 nm are shown in Figure 13 as well. The focus of this 
869 algorithm is on the AC. Thus, any detailed evaluation of the IOPs retrieved we consider to be 
870 beyond the scope of this manuscript. However, we show the spatial distribution of the IOPs 
871 since the OE algorithm relies on a realistic estimate of the surface reflectance to better constrain 
872 the AC process by utilizing more bands, including the visible bands. Both IOPs show realistic 
873 spatial distributions with relatively high values in coastal waters, particularly within the 
874 Chesapeake Bay, which is typically dominated by high CDOM absorption. Both coefficients 
875 are smaller further away from the coast, indicating less presence of absorbing and scattering 
876 matter in the open ocean.
877 The final panel of Figure 13 shows 𝜒2

𝑛, a good metric to indicate the performance of both 
878 the forward model and the assumed TOA uncertainty estimate. 𝜒2

𝑛 values around 1 show a good 
879 match between the residual of the forward model at the solution and the uncertainty of the 
880 signal; higher 𝜒2

𝑛 values mean underfitting the forward model and vice versa for lower 𝜒2
𝑛. 

881 Interestingly, in most of the scene, 𝜒2
𝑛 is close to 1, particularly in pixels away from the coast. 

882 However, in coastal waters, 𝜒2
𝑛 values are, for example, higher than 5, indicating either more 

883 difficulty fitting the observations with the forward model or underestimating the assumed 
884 measurement/forward model uncertainty. This is expected as coastal waters are significantly 



885 more challenging to model with only three parameters, while the atmosphere could also be 
886 more complex in these regions (i.e., absorbing aerosols).
887 Lastly, Figure 14 compared 𝑅𝑟𝑠 from the OE and operational algorithms at the four locations 
888 A-D in Figure 11. Cases A and B represent low Chl-a conditions with values of 0.11 and 0.2 
889 mg m-3, and 𝜒2

𝑛 of 0.6 and 0.69, respectively. There is an excellent agreement between both 
890 retrievals as expected due to the simplicity of the environmental conditions in these waters. 
891 This demonstrates that the OE algorithm does provide viable 𝑅𝑟𝑠 estimates, and low 𝜒2

𝑛 
892 indicates a good fit of the forward model to the measurements. Since the OE algorithm provides 
893 the uncertainty estimate, we also show 1 and 2 standard deviations of 𝑅𝑟𝑠 estimated by the OE 
894 algorithm.

895
896 Fig. 14. Spectral 𝑅𝑟𝑠 retrieval using the OE algorithm (red dashed lines) vs the Operational algorithm (blue 
897 dashed lines) for 4 different cases (locations). The 1𝜎 and 2𝜎 envelope of the 𝑅𝑟𝑠 uncertainty estimated using the OE 
898 algorithm is shown in red and grey shading, respectively. The 4 different cases (indicated in Fig. 11) highlight 𝑅𝑟𝑠 at 
899 different water conditions, from low to high Chl-a and 𝜒2

𝑛.
900
901 Figure 14 panels C and D are the 𝑅𝑟𝑠 retrievals for the coastal sites with Chl-a values of 
902 11.38 and 13.39 mg m-3 and 𝜒2

𝑛 of 5.36 and 11.86, respectively. There is a good agreement 
903 between the two algorithms for the green-red bands with larger deviation in the shorter bands 
904 for case C. Furthermore, in case C, the OE  is higher than the operational algorithm, where 𝑅𝑟𝑠 
905 is (unphysically) negative for the operational retrieval. The agreement between both retrievals 
906 is mostly within one standard deviation of the OE algorithm, except for the 412 nm band, where 
907 the OE retrieval appears unrealistically high, likely due to not applying the vicarious calibration 
908 gain (which would have reduced TOA reflectance at 412 nm by approximately 2%, which is 
909 significant). The last case (D) is from inland Chesapeake Bay waters that are typically highly 
910 absorbing (high CDOM concentration) and highly scattering due to sediment discharge from 
911 several estuaries in the region. Case D shows the worst mismatch between both algorithms. The 
912 OE 𝑅𝑟𝑠 is lower across the whole spectrum than the operational algorithm, except for 412 nm, 
913 where (similar to case C) it may be overestimated. Cases C and especially D show a high 𝜒2

𝑛, 
914 indicating the forward model likely is not fully capturing the radiative conditions of the 
915 atmosphere and the ocean. Although it is challenging to conclude which algorithm provides a 
916 more correct retrieval in this case, our previous in-situ matchup analysis indicates that the OE 
917 algorithm performs better than the operational algorithm overall.

918 7. Discussion and conclusion
919 In this paper, we have developed a framework based on the optimal estimation algorithm as 
920 presented in Rodgers 2000, which relies on Bayes’ theorem to find the optimal solution to the 
921 atmospheric correction problem given a representative model of the atmosphere-ocean system 
922 and prior information on the state of that system. The advantage of this framework are as 
923 follows:
924 • The ability to calculate pixel-level uncertainty estimates and fully consider the 
925 covariance of the uncertainty in the system. Since the algorithm propagates the error 
926 covariance, rather than just the diagonal elements of the covariance (i.e., without 
927 correlation), it is possible to fully account for the correlation in the 𝑅𝑟𝑠 uncertainty 
928 when further propagating the uncertainty in subsequent products such as IOPs and 
929 Chl-a  [61].



930 • Improved computational speed and differentiability through the NN forward model 
931 approach. The algorithm has been accelerated using a NN model that can accurately 
932 perform the forward calculations necessary for the iterative approach to find the 
933 optimal solution. The NN replaces the LUT interpolation of the AC and the analytical 
934 ORM, and also provides the Jacobian matrix needed for the optimization and error 
935 propagation. 
936 • Potential for better utilization of the information-rich multi-angle polarimeter 
937 instruments for the PACE mission to improve the AC of the Ocean Color Instrument 
938 (OCI). OE can utilize prior information from external sources such as ancillary data 
939 sources. This knowledge about the state of the AO system can be fed into OE, 
940 improving and better constraining the AC problem.
941 • Because of the speed, differentiability of the algorithm, and its ability to process the 
942 full dynamic range of atmospheric and oceanic conditions, and it is operationally 
943 capable. 
944 • The algorithm is flexible in its band set configurations since a spectral weight is 
945 assigned to the cost function, similar to the multi-band AC (MBAC) algorithm  [18]. 
946 This allows for the use of information from across the spectrum (i.e., using NIR and/or 
947 SWIR only, or using the entire spectrum, including the UV).
948
949 Although this work demonstrates an improved framework for the AC problem, there are 
950 limitations. This OE framework is a research algorithm and has not been thoroughly tested on 
951 large-scale global data. Also, the OE algorithm requires an accurate uncertainty model of the 
952 TOA reflectance with a reasonable spectral dependence that influences the cost function. To 
953 the best of our knowledge, there has been no standardized approach to model the TOA 
954 uncertainty post-launch, including the covariance in uncertainties. In our work, we attempted 
955 to estimate the TOA uncertainty using MOBY matchups generated during system vicarious 
956 calibration, assuming that the most significant portion of the uncertainty budget is the 
957 instrument's systematic and forward modeling uncertainty. The assumption that the uncertainty 
958 estimates at MOBY can be applied to the global ocean is strong but may not be valid for the 
959 coastal AERONET-OC dataset, as evident from the underestimation of uncertainty relative to 
960 the error, particularly for 550 and 667nm.
961 In the synthetic data analysis, we found that the uncertainty estimate, compared to the truth, 
962 is slightly underestimated on average. The ratio between ∆𝑠 and 𝑢𝑠𝑎𝑡 of 1 indicates a perfect 
963 uncertainty estimate, and for a ratio >1, it indicates underestimation in the OE uncertainty, 
964 while <1 means overestimation. For the AC parameters, the ratio was 1.36 and 1.08 for 𝑓𝑚𝑓 
965 and 𝜏𝑎, respectively. The uncertainty in the IOPs showed an excellent agreement for 𝑎𝑝ℎ with 
966 a ratio of 1.002 and a good agreement for 𝑎𝑑𝑔 with a ratio of 1.22, however, the uncertainty 
967 was severely underestimated for 𝑏𝑏𝑝 where the ratio is 2.22. On the other hand, it is important 
968 to note that the focus of this paper is to improve the estimate of 𝑅𝑟𝑠 and its associated 
969 uncertainty. The ratios between ∆𝑠 and 𝑢𝑠𝑎𝑡 for 𝑅𝑟𝑠 at 443, 555, and 667 nm are 0.98, 1.23, and 
970 0.94, respectively, showing a slight overestimation in the blue and red bands and 
971 underestimation in the green bands.
972 We tested the OE algorithm and its uncertainty estimation technique using the SeaBASS 
973 dataset, encompassing a large dynamic range of water conditions spanning coastal to open 
974 waters. While the overall validation statistics showed an improvement for the OE algorithm 
975 relative to the operational one, the improvement was not significant, where |𝝍|𝒎 was reduced 
976 by 1.7, 5, and 19.7% for 443, 555, and 667 nm, respectively, likely because both algorithms 
977 forward models rely on the same aerosol microphysical assumptions  [22]. This is expected 
978 since a large portion of the uncertainty is likely from the modeling assumptions and the inherent 
979 limitations in the validation process that would apply to any newly developed algorithm. 
980 However, the OE algorithm shows an improved bias in the retrieval with fewer negative 𝑅𝑟𝑠 



981 retrievals, particularly for 667 nm, where the error is the most reduced. This improvement is 
982 likely due to an improved AC and not an effect of lack of the vicarious calibration since the 
983 standard vicarious gain does increase the TOA reflectance by approximately 1%. The ratio 
984 between ∆𝑠 and 𝑢𝑠𝑎𝑡 (1.27, 1.2, for 443 and 555 nm, respectively) indicates underestimated 
985 uncertainties at those wavelengths, while the ratio of 0.67 at 667 nm indicates an overestimate. 
986 These ratios show a relatively good agreement, given that we are not fully considering the 
987 uncertainty in the in-situ data and other error sources. Large outliers would significantly impact 
988 the analysis for small signals in the red. However, there is no clear explanation for why 667 nm 
989 uncertainty is overestimated, other than the retrieval error for the SeaBASS dataset is 
990 significantly smaller than that at MOBY (where the uncertainty at TOA is calculated).
991
992 By extending this analysis to the AERONET-OC sites, we stratified the dataset by different 
993 locations. This is due to the large variability of environmental conditions, proximity to land, 
994 and water conditions  [86]. Since the AERONET-OC sites are predominantly coastal, the 
995 validation process is expected to be more challenging. Similar to the SeaBASS dataset, all 
996 statistical metrics show an improvement in the matchups using the OE algorithm relative to the 
997 operational algorithm with a reduction in bias and improvement in error metrics. The matchups 
998 showed a significant decrease in negative 𝑅𝑟𝑠 retrievals, particularly for 443 nm, where it is 
999 reduced nearly three times and 12 times for 667 nm. This is a remarkable improvement and 

1000 shows that the simultaneous AO retrieval process using multiple bands for the AC provides a 
1001 valuable advantage over using only NIR bands in coastal waters. Moving to validating 
1002 uncertainties, in the case of using all available data, the agreement between ∆𝑠 and 𝑢𝑠𝑎𝑡 is good 
1003 for 443 nm with a ratio of 1.12, showing a slight underestimation. However, for 555 and 667 
1004 nm, the ratio of 1.88 and 1.78 shows a significant underestimation of the uncertainty. This 
1005 underestimation happens at all sites, with the worst two performing sites being MVCO and 
1006 Palgrunden. Both are characterized by low aerosol loadings and smaller fine mode fractions 
1007 than average. MVCO showed a higher median wind speed (4.6 m/s compared to the median of 
1008 all cases of 2.5 m/s). Palgrunden is also a high latitude site where the solar angle is typically 
1009 larger than 40°. Some of these environmental conditions can impact the assessment of the 
1010 uncertainty validation due to underestimating the TOA reflectance uncertainty characterized at 
1011 MOBY and retrieval bias. At 443 nm, all sites showed a good agreement with a ratio that ranges 
1012 from 1.26 to 0.94 (Helsinki being the only site showing slight overestimation). Helsinki and 
1013 Gustav also showed the best agreement for 550 and 665nm; however, they are underestimated.
1014
1015 There are a few theoretical and practical reasons that could explain the underestimation of 
1016 the satellite-derived uncertainty:
1017 • The OE algorithm relies on the assumption of a Gaussian posterior distribution, where 
1018 the variance of the distribution should capture the uncertainty estimate within one 
1019 standard deviation. This is not necessarily true for the atmosphere-ocean system, as 
1020 demonstrated using the grid approximation Bayesian inference method in  [30], which 
1021 showed that the full posterior uncertainty is typically larger than the standard deviation 
1022 of a normal distribution.
1023 • The error propagation relies on the estimate of the Jacobian matrix (i.e., the first 
1024 derivative). This approximation would not hold for a highly nonlinear relationship 
1025 between the observations and the state parameters. This issue manifests in the 
1026 optimization procedure that relies on the derivative of the cost function, which could 
1027 lead to a local minima leading to a biased inversion.
1028 • The absolute normalized error metric requires complete knowledge of the uncertainty 
1029 in the in-situ data for each measurement. This encompasses instrument calibration and 
1030 radiometry knowledge, the effect of environmental conditions on the measurements 
1031 uncertainty, and spatio-temporal mismatch with the satellite retrieval. This is 
1032 consistent with the findings of Zibordi et al., 2022  [92], which found that when 



1033 assuming 5% uncertainty in the satellite-derived water-leaving radiance, the absolute 
1034 normalized error metric consistently shows an underestimation of the uncertainty. 
1035 They attributed that to the overly optimistic 5% uncertainty typically set as a gold 
1036 standard for ocean color requirements. Additionally, ignoring complex spatio-
1037 temporal uncertainties does play a significant role in the underestimation as well as 
1038 possible biases either in in-situ data or satellite retrievals due to, for example, land 
1039 adjacency effects  [93].
1040 • We assumed ancillary data uncertainty based on fixed absolute and relative 
1041 uncertainties that do not vary with space or time. Recent work has shown that the 
1042 uncertainty varies geographically and could have a significant impact on the 𝑅𝑟𝑠 
1043 retrieval, particularly due to relative humidity and windspeed uncertainty which has a 
1044 large impact on the aerosol quantification  [27].
1045 • We assumed that the uncertainty of the TOA observations estimated at the MOBY site 
1046 is representative of the global oceans. However, in coastal sites, the forward modeling 
1047 errors are likely larger than in the open ocean due to more complexity in the 
1048 atmosphere and ocean optical properties, such as the presence of strongly absorbing 
1049 aerosols and errors in the BRDF correction. 
1050
1051 Finally, in our analysis here of the OE algorithm performance, we did not apply the standard 
1052 vicarious gains that are otherwise applied to the input TOA radiances when operating the 
1053 standard NASA AC algorithm. Our justification is that these vicarious gains are tuned for the 
1054 standard algorithm, which relies on the black-pixel (NIR bands) assumption for the AC rather 
1055 than utilizing the entire visible spectrum as the OE algorithm does. As the OE approach relies 
1056 on all measurements simultaneously, it is less sensitive to measurement uncertainties than NIR-
1057 based AC algorithms that typically use only two bands (unless there is a large systematic bias 
1058 in the observations). For MODIS-A, the standard vicarious gains are mostly close to 1, except 
1059 for water vapor bands near 645 and 869 nm (likely due to systematic uncertainty in the water 
1060 vapor correction) and 412 nm. The gain coefficient at 412 nm reduces the TOA reflectance by 
1061 ~2%, which is significant (and likely instrument-specific) and would be realized as a large bias 
1062 in 𝑅𝑟𝑠 for the OE algorithm. We noticed that 𝑅𝑟𝑠 at that band was consistently overestimated 
1063 relative to the operational algorithm, partially explaining less negative 𝑅𝑟𝑠 at that band. 
1064 However, negative 𝑅𝑟𝑠 at all other bands are significantly reduced, likely because of the better 
1065 constraint on the surface properties using the GIOP forward model. Future work will implement 
1066 a vicarious calibration procedure for the OE algorithm. Therefore, this research algorithm’s 
1067 performance can only improve beyond what is presented here. That includes improving the 
1068 aerosol modeling, the RT accuracy, and the bio-optical modeling of the ocean. Our future work 
1069 plan includes the following steps:
1070 • Further investigate the impact of the prior information either from models or other 
1071 external sources on the reduction of 𝑅𝑟𝑠 uncertainty. 
1072 • Assess the performance of the full error covariance matrix estimated from the OE 
1073 algorithm.
1074 • Develop and apply a system vicarious calibration (SVC) procedure for the OE 
1075 algorithm.
1076 • Develop an operational implementation of the OE algorithm for the PACE mission, to 
1077 fully exploit the combined capabilities of the OCI sensor and MAPs for ocean color 
1078 retrievals.
1079 In summary, this work presents a practical recasting of ocean color AC within a Bayesian 
1080 framework. It demonstrates slightly better quantitative retrieval performance than the current 
1081 standard approach, as well as quantitatively relevant pixel-level uncertainty estimates that have 
1082 been missing until now. The OE framework can be applied to current and heritage ocean color 
1083 sensors. Looking to the future, the Bayesian approach would allow the OCI instrument on 



1084 PACE, for example, to utilize retrieval products from its companion instruments, the 
1085 information-rich MAPs, as informative priors to further constrain the AC process for OCI.  In 
1086 a general sense, the OE framework provides a pathway to take advantage of complementary 
1087 instruments on the same satellite platform or atmospheric measurements from ancillary sources 
1088 to improve the quality of satellite ocean color retrievals. 
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