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Introduction The supporting information provides additional information about the

simulations and methods. Text S1 shows the derivation for the change in head with

cylindrical and non-cylindrical moulins. Text S2 describes our moulin shape parameter-

ization for constant meltwater input. Text S3 describes the 1D discretized version of the

single-channel model used to test assumptions made in the 0D model. Figure S1 and
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Figure S2 provide visualizations of the damping and oscillation timescales. Figure S3

is an additional figure showing how an abrupt change in radius impacts the equilibration

timescales. Figure S4 demonstrates how the equilibrium head changes across the ice

sheet. Figure S5 shows the parametrization of moulin shape for an oscillating meltwater

input. Figures S6 and S7 compare the single-channel model with a discretized sub-

glacial channel model. Figure S8 compares several damping moulin head timeseries at

different positions on the ice sheet. Tables S1 to S6 summarize the input and fitting

parameters for all the simulations and figures in the paper.

Text S1. Here we derive the moulin radius as a function of elevation

Case for a cylinder:

The continuity equation says that for ∆t, the change in storage, ∆V , equals the input

meltwater, Qin, minus the discharge out of the channel, Qout, times ∆t, or

∆V

∆t
= Qin −Qout (1)

For each time-step, the storage of water ∆V = Ar∆h. If we plug in this relationship to

Equation 1, then we get:

∆(hAr)

∆t
= Qin −Qout (2)

If we rearrange then we obtain:

∆h

∆t
=
Qin −Qout

Ar

(3)

If ∆t −→ 0 then:

lim
∆t→0

[
∆h

∆t
] =

dh

dt
⇒ dh

dt
=
Qin −Qout

Ar

(4)

Case for a conical frustum:
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If we use Equation 1 and plug in the volume of a frustum ∆V = 1
3
π(r2

top + rtoprbase +

r2
base) ∗∆h. We obtain

∆h

∆t
=

Qin −Qout
1
3
π(r2

top + rtoprbase + r2
base)

(5)

We then define rtop, rbase w.r.t. ∆h or ∆t. The slope m = ∆h
∆r

and the change between the

radius ∆r = rbase − rtop = ∆h
m

. Therefore, we can express rbase = rtop + ∆h
m

and replace

rbase in Equation 5, giving

∆h

∆t
=

Qin −Qout

π
3
[r2

top + rtop(rtop + ∆h
m

) + (rtop + ∆h
m

)2]
(6)

We distribute and reorganize the denominator and get

∆h

∆t
=

Qin −Qout

πr2
top + πrtop

∆h
m

+ π
3

∆h2

m2

(7)

If ∆t −→ 0, ∆h −→ 0 , then 2rtop∆h
m

and ∆h2

m2 −→ 0 , we are left with πr2 at the

denominator and we recover the continuity equation (1) for a cylindrical moulin:

dh

dt
=
Qin −Qout

πr2
=
Qin −Qout

Ar

(8)

Text S2. Here we describe our moulin shape parameterization for constant meltwater

input. We use a cone-shaped moulin with various wall slopes and the radius fixed at

a certain depth. To explore equilibration timescales, we use a conical frustum where

rbase/rtop can be greater than or less than 0.

Ar(z) = π(mz + rbase)
2 (9)

To fix the radius at the middle of the ice thickness, we define the base radius to be

rbase = rheq −m(H/2) (10)

. To fix the radius at equilibrium head, we define the base radius to be

rbase = rheq −mheq (11)
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Text S3.

Here we describe the discretized subglacial channel model used as a comparison in

Supplemental Figures S6 and S7. The model uses Equations 1-3 from the main text,

which are the same as for the 0D model. However, instead of calculating the effective

pressure at the moulin only, we use a one dimensional grid with nodes spaced evenly

along the channel length (in this case: 76 nodes, every 400 m). The model begins with

initial head values at the upstream and downstream end of the channel. We solve for

discharge by noting that:

∆hTOT =
n∑
i=1

∆hi, (12)

where ∆hTOT is the total head loss over the channel length, and ∆hi is the head loss over

an individual segment, with n total segments. For fixed node spacing, ∆x, substituting

the Darcy-Weisbach equation for each channel segment (Equation 2 in the main text) into

Equation 12 produces

∆hTOT =
Q2∆x

C2
3ρwg

n∑
i=1

1

S
5/2
i

, (13)

where Si is the cross-sectional area of the ith channel segment. This equation can be

rearranged to solve for the discharge in the channel, Q, and we then use Q to calculate the

head loss within each individual segment. Once heads and discharge are known, the melt

and creep are calculated within each individual segment and segment cross-sections, Si

are updated. Finally, moulin head is updated using the input discharge, channel discharge

and Equation 1 from the main text. This procedure is repeated for every timestep.

At any given timestep, one can calculate the equivalent uniform channel cross-sectional

area, Sequiv, for a pipe of total length, LTOT, that would produce the calculated discharge
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and the current head gradient using

∆hTOT =
LTOTQ

2

c2
3ρwgS

5/2
equiv

, (14)

in combination with Equation 12 and the Darcy-Weisbach Equation for each channel

segment. This leads to the relation

Sequiv =

[
n∑n

i=1 S
−5/2
i

]2/5

. (15)

This is the equivalent cross-sectional area needed in our 0D model to reproduce the moulin

head that is predicted in the 1D model. Figure S7 shows that, for margin distances

between 5 and 25 km, and discharges of 1 and 10 m3s−1, our 0D model reproduces this

equivalent cross-section to within a few percent.

The ice thickness is calculated with the square-root glacier function from equation 5 in

Section 2, to enable testing of the assumptions underlying our 0D model. The subglacial

channel pressure at the last node on the margin is set to zero, and runs presented here

use a timestep of 500 seconds and divide the channel into 50 segments.

The code “onedim channel model.py” for the 1D model is in the Github repository of

the project (Trunz & Covington, 2022) in the folder “Compare 0D 1D”.
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Figure S1. Oscillation of head during equilibration. The solid line shows the full numerical

result, and the dashed line shows the fit of an idealized solution for a damped harmonic oscillator.

The simulation is for a cylindrical moulin, with Qin = 3 m3s−1 and r = 10 m.
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Figure S2. Comparison between simulated and fitted oscillations for different cases. The initial

head and initial subglacial channel sectional area, are set to 110% of the equilibrium values, and

are the same for all the simulations.
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Figure S3. Timeseries of head (h) and channel cross-sectional area (S) for a fixed

meltwater input Qin for bottle-shaped moulins (red and yellow), a cylindrical moulin (black) and

goblet-shaped moulins (blue and purple)
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Figure S4. Equilibrium head (heq) along an ice sheet profile for a wide range of Qin. Equi-

librium head (heq) calculated with the model depends on channel length, ice thickness, and Qin.

Meierbachtol et al. (2013); Röthlisberger (1972) described similar profiles.
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Figure S5. Cartesian coordinates of the moulin shape used for the simulation with oscillat-

ing meltwater input. Parameterization for hourglass, diamond and superposed-cylinder shaped

moulin. To explore oscillating meltwater input, we define the shape by interpolating the radius

defined in the cartesian coordinate system, with r in the x axis, and z in the y axis. Shape

coordinates are displayed in Figure S6. The radius (r) is interpolated every meter along the

axis z. (a) Hourglass and diamond shaped moulins are defined by five points. (b) Goblet and

bottle-shaped moulins defined by four points.
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Figure S6. Comparison between the 0D single-channel model used in the paper and a similar

1D single-channel model, where each node along the channel has a different effective pressure

and cross-sectional area, using an idealized square-root glacier (see equation 5 in Section 2). (a)

Meltwater input (Qin): we use the same sinusoidal meltwater input as for the simulations in

the paper: Qmean = 3 m3s−1, Qa = 0.3 m3s−1; (b) Hydraulic head and (c) subglacial channel

cross-sectional area (S ) at the moulin (where the ice thickness is 1000m) for the 0D and the 1D

model.
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Figure S7. Ratio of equivalent channel cross-sectional areas calculated from 1D model runs and

the channel cross-sections obtained in 0D simulations. Here we ran six simulations to equilibrium

using discharges of 1 and 10 m3s−1 and channel lengths of 5, 15, and 25 km. For these cases the

0D model comes within a few percent of reproducing the equivalent cross-sectional areas, Sequiv.
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Figure S8. Comparison between simulated moulin head oscillations (solid lines) and os-

cillations reproduced with the damped harmonic oscillator function (dashed black lines) from

Equation 6 in the main text. The graph displays the first four days of the head timeseries simu-

lated at different positions on the icesheet for a moulin of radius 5m (Figure 3e, red line). Blue

lines represent timeseries with at least one apparent full oscillation cycle, and purple lines mark

the timeseries without a complete oscillation period (represented by a dashed line in Figure 3).
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Table S1. Constants and model parameters used in the simulations.

Symbol Value Description
ρw 1000 kgm−3 Water density
ρi 910 kgm−3 Ice density
g 9.8 m/s2 Gravitational acceleration
f 0.1 Darcy-Weissbach friction factor
Lf 3.32e5 J/kg Latent heat of fusion
B 6e-24 1/Pa3s Glen’s law fluidity coefficient (Basal softness)
n 3 Glen’s law exponent
C1 1/(ρi ∗ Lf ) Melt opening parameter
C2 2Bn−n Closure parameter
C3 25/4

√
π/(π1/4

√
π + 2

√
ρwf) Flux parameter

Table S2. Model parameters for simulations with constant Qin in Figure 2 (main text). For

the simulations with this parameters, the equilibrium head heq = 745, and equilibrium subglacial

channel cross-section area Seq = 1.3

Parameter Value Unit Description
Qin 3 m3s−1 Constant meltwater input
t0 0 d Initial time
tf 100 d Final time
H0 6 m Ice thickness
h0 1.1heq m Initial head
S0 1.1Seq m Initial subglacial channel cross-section
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Table S3. Moulin shape parameters for simulations with constant Qin in Figure 2 (main text).

The radius (r) is in meters and the slope (m) is given in percent (%) and degrees (◦) from the

vertical axis.

plot color red yellow black blue purple
Cylinder
m 0 0 0 0 0
r 5 7.5 10 12.5 15
Cone H/2
m% -2 -1 0 1 2
m◦ -1.15 -0.57 0 0.57 1.15
rmiddle 10 10 10 10 10
rheq 5 7.5 10 12.5 15
rbase 20 15 10 5 0
rtop 0 5 10 15 20
Cone heq

m% -6 -3 0 3 6
m◦ -3.43 -1.72 0 1.72 3.43
rheq 10 10 10 10 10
rbase 25 17.5 10 2.5 -5
rtop 5 7.5 10 12.5 15
Diamond-Hourglass heq

m% -6 -3 0 3 6
m◦ -3.43 -1.72 0 1.72 3.43
rheq 10 10 10 10 10
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Table S4. Fitting parameters for simulations in Figure 2 (main text). The damping timescale

(τdamp), the period of oscillation (τosc), the amplitude (a) in meters, and the phase shift (φ) in

days. A visual comparison between simulations and fits is provided in Figure S2.

Cylinder radius τdamp τosc a φ
red 5.0 0.94 1.64 0.14 2.65

yellow 7.5 2.23 2.53 0.11 2.49
black 10.0 4.08 3.42 0.09 2.37
blue 12.5 6.61 4.30 0.09 2.28

purple 15.0 10.00 5.18 0.08 2.20

Cone H/2 slope τdamp τosc a φ
red -0.02 1.18 1.75 0.12 2.73

yellow -0.01 2.34 2.56 0.10 2.52
black 0.00 4.08 3.42 0.09 2.37
blue 0.01 6.53 4.28 0.09 2.26

purple 0.02 9.87 5.14 0.09 2.18

Cone heq slope τdamp τosc a φ
red -0.06 4.22 3.44 0.08 2.49

yellow -0.03 4.18 3.43 0.09 2.43
black 0.00 4.08 3.42 0.09 2.37
blue 0.03 3.86 3.37 0.10 2.31

purple 0.06 3.29 3.25 0.11 2.24

Diamond-Hourglass heq slope τdamp τosc a φ
red -0.06 2.71 3.03 0.09 2.59

yellow -0.03 3.40 3.23 0.09 2.48
black 0.00 4.08 3.42 0.09 2.37
blue 0.03 4.75 3.61 0.10 2.25

purple 0.06 5.39 3.81 0.10 2.14

Table S5. Model parameters from graphs for oscillating Qin, Figure 4 and 5 (main text).

Parameter Value Unit Description
Qmean 3 m3s−1 Mean meltwater input
Qa 0.4 m3s−1 Amplitude of oscillation of the meltwater input
Qperiod 1 d Period of oscillation of meltwater input
t0 0 d Initial time
tf 50 d Final time
H 1000 m Ice thickness
L 30000 m Subglacial channel length
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Table S6. Moulin shape parameters from graphs for oscillating Qin, Figure 4 and 5 (main

text). The radius (r) is in meters.

cylinder red yellow black blue purple
r (m) 1 3.5 5 8 15

Hourglass-Diamond 1 red yellow black blue purple
r 1 2 5 10 19
rheq 5 5 5 5 5

Hourglass-Diamond 2 red yellow black blue purple
r 5 5 5 5 5
rheq 1 3.5 5 8 15

Diamond red yellow black blue purple
r 1 1.5 2 4 10
rheq 5 5.5 6 8 14

Hourglass red yellow black blue purple
r 5 6.5 8 10 18
rheq 1 2.5 4 6 14

Bottle-Goblet 1 red yellow black blue purple
rtop 3 4 5 6 10
rbase 5 5 5 5 5

Bottle-Goblet 2 red yellow black blue purple
rtop 5 5 5 5 5
rbase 1 2 4 6 12
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