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Abstract—Technology Readiness Levels are a mainstay for or-
ganizations that fund, develop, test, acquire, or use technologies.
Technology Readiness Levels provide a standardized assessment
of a technology’s maturity and enable consistent comparison
among technologies. They inform decisions throughout a tech-
nology’s development life cycle, from concept, through develop-
ment, to use. A variety of alternative Readiness Levels have
been developed, including Algorithm Readiness Levels, Man-
ufacturing Readiness Levels, Human Readiness Levels, Com-
mercialization Readiness Levels, Machine Learning Readiness
Levels, and Technology Commitment Levels. However, while
Technology Readiness Levels have been increasingly applied to
emerging disciplines, there are unique challenges to assessing
the rapidly developing capabilities of autonomy. This paper
adopts the moniker of Space Trusted Autonomy Readiness Lev-
els to identify a two-dimensional scale of readiness and trust
appropriate for the special challenges of assessing autonomy
technologies that seek space use. It draws inspiration from
other readiness levels’ definitions, and from the rich field of trust
and trustworthiness. The Space Trusted Autonomy Readiness
Levels were developed by a collaborative Space Trusted Auton-
omy subgroup, which was created from The Space Science and
Technology Partnership Forum between the United States Space
Force, the National Aeronautics and Space Administration, and
the National Reconnaissance Office.
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1. INTRODUCTION
Technology Readiness Levels (TRLs) were initially devel-
oped by NASA in the 1970s to assess the maturity of
technologies with application to space [1]. The final 1-9
scale, with 1 being the least mature and 9 being the most
mature, was formalized by NASA in the 1990s [2]. The
role of TRLs in Aeronautics was discussed in [3] and a
NASA Best Practices Guide provided in 2020 [4]. TRLs
have spread to become a mainstay in United States Air Force
Acquisition processes [5] and the European Space Agency [6]
as well as across several other agencies. Although the TRL
scale has increasingly been applied across disciplines well
outside its initial space origin, researchers have argued that
its meaning diminishes and causes confusion [6]. Perhaps
for this reason, a variety of alternative readiness levels (RLs)
have been developed, including Algorithm RLs (ARLs) [7],
Manufacturing RLs (MRLs) [8], Human RLs (HRLs) [9],
Commercialization RLs (CRLs) [10], Data RLs (DRLs) [11],
Machine Learning RLs (MLRLs) [12], Transition Commit-
ment Levels (TCLs) [13] and others.

Space trusted autonomy lies at the intersection of traditional
aerospace engineering, computer and data science, human-
autonomy interaction, and multi-system interaction, which
makes the application of traditional TRLs problematic for
the following reasons. First, assessment of autonomy readi-
ness hinges on measuring intangible capabilities. For non-
autonomous technologies destined for space applications,
tangible factors such as Size, Weight and Power (SWaP) are
more readily tracked through maturity levels and performance
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metrics. Autonomy technologies have informational needs –
dependencies on data, signals, commands, and the frequency
and quality of such information. Their capabilities are pri-
marily decision and outcome based, rather than measured
in terms of physical parameters. Assessment of autonomy
is made more challenging by the requirement to operate
appropriately in a wide and often poorly circumscribed range
of circumstances. Second, autonomy represents a transfer
of delegated and bounded authority from humans to the
autonomous system, and thus necessitates including trust
as an entire additional dimension of readiness assessment.
Previous TRLs assume human controllers, who have values,
ethics, and context beyond engineered controllers. There is
an implicit trustworthiness in human operators that doesn’t
transfer to autonomy directly. Trust is a fundamental social
process wherein a trustor evaluates the trustworthiness of a
referent and makes a decision (or series of decisions) related
to willingness to be vulnerable to that referent. For space use,
there are multiple trustor communities – the proponents of
the technology, the engineers and testers instrumental to its
development, the operators of the space mission who will de-
cide when and how much to deploy the technology and inter-
act with it, and the consumers who seek the results achieved
through its use. Third, assessing space autonomy readiness is
challenging because it’s impossible to completely replicate
space conditions terrestrially (e.g., radiation, gravity, dust,
etc.) and testing autonomy on orbit comes at high expense
and high consequences of mistakes (e.g., a collision that
cascades into more collisions, creating significant amount of
space debris), which discourages deploying a prototype in
space purely for testing purposes.

The Space Science and Technology Partnership Forum be-
tween the United States Space Force (USSF), the National
Aeronautics and Space Administration (NASA), and the
National Reconnaissance Office (NRO) created the Space
Trusted Autonomy subgroup in 2019 to identify synergistic
opportunities across the U.S. Government. The partnership
defined [14] space as “focused on space systems,” trusted
as behavior in which human operators and stakeholders have
confidence, and autonomy as “some level of decision-making
authority that resides within the system” (for comparison,
Merriam-Webster defines autonomy as “having the right or
power of self-government” or “undertaken or carried on
without outside control” [15]). Trust is not the same thing as
trustworthiness, which is defined as “the real competency of a
system to perform functions given the extent of the authority
it has been granted and the consequences of its potential ac-
tions” [16]. This manuscript reports the partnership’s efforts
to develop “Space Trusted Autonomy Readiness” (STAR)
Levels to serve as readiness levels in this domain.

2. AUTONOMY
Merriam-Webster defines autonomy as “the quality or state
of being self-governing” and autonomous as “a response
undertaken or carried on without outside control; responding,
reacting, or developing independently of the whole” [15].
Autonomy has been essential to space exploration, and is
becoming increasingly vital to all aspects of modern and
future space operations. Opportunities for space autonomy
include critical maneuvers such as Entry, Descent and Land-
ing (EDL), targeting of science instruments during short-
duration fly-bys, and reacting to internal spacecraft faults
to preserve the fundamental health of the spacecraft while
it communicates to Earth for guidance on how to recover
and proceed. Autonomy is necessary in missions where

prohibitive communication delays due to extreme distances
and occultation require on-board capabilities to perceive,
decide upon the course of action, and execute. Autonomy
has also been used to enhance the accomplishment of science.
For example, NASA’s rovers on Mars use autonomy to drive
long distances by themselves, to recognize the occurrence
of transient phenomena so as to gather and return data on
those, and to select science targets for investigation. As
another example, the USSF/SPOC is interested in autonomy
capabilities to enable the rapid proliferation of LEO constel-
lations (P-LEO), such as autonomy in Space Surveillance
Network (SSN) sensor tasking, tracking satellites, Space
Domain Awareness (SDA), and Space Traffic Management
(STM) for mission assurance, safety of flight, and protection
of public space systems. In the closer regions of cislunar
space, the exponential increase in the number of space objects
is making it infeasible to recruit and train human operators
at the traditional ratio of a control room of operators per
spacecraft. Continued proliferation of space systems rapidly
outpaces the existence of ground-station coverage and avail-
ability. This too is driving the development and deployment
of autonomy, to aid in the management, supervisory control,
and operations of spacecraft and thus allow a small number of
operators to manage a large number of spacecraft using finite
ground-station resources.

Autonomy in these settings comprises the independent
decision-making made by space assets given bounded and
delegated authority from human operators. A space asset
could be an individual subsystem, an entire spacecraft, a plan-
etary lander or rover, etc., or a system comprising multiples
of these. Autonomous decisions will influence the asset’s
actions, e.g., directing maneuvering, powering systems on
and off, guiding what observations to perform, or selecting
what data to send to Earth.

Autonomy Levels

Conversations about the technical maturity of autonomous
space systems inevitably lead to a discussion about levels
of autonomy themselves. A number of autonomy levels
have been defined by the research community, and these
differ from readiness levels. Autonomy levels usually define
specific roles for humans versus automation/autonomy, while
readiness levels define the technical maturity of those sys-
tems. Additionally, there are several definitions of automation
and autonomy, such as that by NASA where automation
“is the automatically controlled operation of an apparatus,
process, or system using a pre-planned set of instructions
(e.g., a command sequence),” and autonomy is defined as
“is the capacity of a system to achieve goals while operating
independently from external control” [17]. A brief summary
of autonomy levels follows so that the reader will appreciate
how they are relevant to understanding the scope of a system’s
autonomy, but do not themselves address the focus of this
paper, namely issues of trust and readiness.

The Society of Automation Engineers (SAE) defined a 0 to 5
scale for levels of driving automation based on the roles of the
human versus the automation. Levels 0-2 feature the human
in primary control using driver support features like warnings
(automatic emergency braking, blind spot, lane departure),
brake/acceleration support, and features like lane centering
and/or adaptive cruise control. In Levels 3-4 the automation
is in primary control in limited operational conditions. At
level 3, the automation may still request that the human take
over, but by level 4 the car may no longer have a steering
wheel or pedals. By level 5, the car can safely drive under all
conditions.
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Aviation Autonomy Levels [18] have been defined on a simi-
lar 0 to 5 scale, as follows: 0 (no automation), 1 (assistance),
2 (partial automation), 3 (highly automated) 4 (fully auto-
mated), and 5 (autonomous). These levels were further de-
fined relative to specific pilot tasks: aviate (maintain control
and avoid collisions), navigate (identify current location and
flight plan), communicate (coordinate with other systems and
traffic controllers), manage systems (configure for different
flight phases as well as detect, identify, and mitigate faults),
and make command-level (tactical and strategic operational)
decisions.

Qualification, Certification, and Flight Proven

The concept of TRLs is also closely related to that of
evidence-supported qualification, certification, and flight
proven. Evidence is data created through the development
process that supports the use of the system, may include
a formal certification, and is also integral to engendering
trust in the system. The following definitions of Qualifica-
tion and Certification are from NASA’s Systems Engineering
Handbook [19]. Qualification activities are performed to
ensure that the flight unit design will meet functional and
performance requirements in anticipated environmental con-
ditions. A subset of the verification program is performed at
the extremes of the environmental envelope and will ensure
the design will operate properly with the expected margins.
Qualification is performed once regardless of how many
flight units may be generated (as long as the design does
not change). Certification is the audit process by which the
body of evidence that results from the verification activities
and other activities are provided to the appropriate certifying
authority to indicate the design is certified for flight/use. The
Certification activity is performed once regardless of how
many flight units may be generated. Actual system flight
proven through successful mission operations (from Table
2.3.2-1 TRL Definition and Decomposition by Factor [4]):

• Completion criteria: Documented mission operational re-
sults verifying requirements.
• Performance/Function: Required functionality/ perfor-
mance demonstrated.
• Fidelity of Build: Final product: Flight unit.
• Environment Verification: Operated in actual operational
environment.

3. TRUST
A seminal review on trust in automation published by See
and Lee in 2004 [20], and later updated in a survey paper
by Hoff and Bashir in 2015 [21], define trust as “the attitude
that an agent will help achieve an individual’s goals in a
situation characterized by uncertainty and vulnerability” [20].
Trust relies on a gain for individual’s goals or mission that
justify taking a risk. Trust is a fundamental social process
wherein a trustor evaluates the trustworthiness of a referent
and makes a decision (or series of decisions) related to how
willing she or he is to be vulnerable to that referent [22]. Trust
referents can be other humans (or organizations of humans
[22]) or technological systems. Understanding human trust
in autonomy is critical because trust influences reliance be-
havior [20], yet there are many challenges associated with
the trust process. One of the biggest challenges is ensuring
that operator trust of space autonomy is appropriately cal-
ibrated. The risk of overtrust is automation misuse when
“people inadvertently violate critical assumptions and rely on
automation” in situations where it is ill suited. This overtrust
has been shown to be associated with severe performance

degradation when the human is using a faulty automation aid
[23]. Since all automation should be considered imperfect,
just like humans, the issue of establishing and maintaining
effective trust calibration is paramount to the success of
automated systems. The risk of undertrust is automation
disuse which occurs “when people reject the capabilities
of automation.” Not using an otherwise reliable system can
result in inefficiencies and higher costs, thus neither overtrust
nor undertrust are desired for the fielding of novel automa-
tion. These challenges are amplified in the space domain
and the next section highlights key insights from the trust in
automation research community applicable to Space Trusted
Autonomy RLs.

Trust Attributes and Progression

Trust is dynamic [24, 25] rather than static and influenced
by many different factors. Interpersonal trust between two
or more humans involves an evaluation of the referents’
trustworthiness, operationalized by Mayer and colleagues as
ability, benevolence, and integrity. Ability corresponds to
one’s task competence. Benevolence refers to the belief that
the referent will act in support of the trustor’s goals. Integrity
represents the belief that the referent possesses a stable set
of values that are acceptable to the trustor. Meta-analytical
research has found that ability, benevolence, and integrity
each account for unique variance in predicting trust [26].
When the trust referent is a machine (such as automation)
versus a human, there are both similarities and differences in
terms of what factors shape trust.

In the human-automation trust research, humans tend to start
by assuming automation is perfect, resulting in overtrust that
erodes quickly with any error. This is referred to as a perfect
automation schema. When considering automation, humans
view the automation as more invariant and performance-
oriented. They are more sensitive to errors compared to a
human referent [27]. Thus, performance will certainly be a
major factor in shaping trust readiness levels. Performance
of automation (also termed reliability) has consistently been
shown to relate to trust of the automation [21]. These effects
have been found in laboratory contexts as well as studies of
automation in the field. For instance, in studies of pilot trust
in automation, nuisance avoidance (a performance element)
was a prominent factor for developing trust [28]. One pilot
in the study indicated that one mistake by the automation
would likely cause pilots to turn the system off and lose
the advantage it provided, which tracks with other similar
research that found frequent false-alarm rates lead pilots to
deactivate critical alarm systems [29]. Yet, despite the impor-
tance of performance, one’s trust of automation is driven by
a number of factors. In fact, contemporary thoughts on trust
in automation have begun to emphasize relational attributes,
transparency of the automation, and responsiveness/resilience
of automation across contexts [30–32].

Equally important to trust is the operator’s understanding
of the automated system’s methods (process-based trust),
and the design intent of the autonomous system (purpose-
based trust). The operator needs a mental model of the
automated system and the automated system may need a
model of the operator. For example, in aircraft automation
cases, it has been found that simplifying algorithms so that
they are understandable to the end user is an important factor
in calibrating user trust [20], and that familiarity with the
automated behavior and its consistency with the operator’s
training and manual approaches resulted in strong positive
perceptions of the system [33]. A key element of this liter-
ature is the construct of transparency. Transparency methods
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could highlight the decision rationale used by an automated
tool [33]; facilitate perception, understanding, and projection
of an agent’s behavior; or highlight the intent-/team-based
knowledge of an interaction [32, 34]. Thus, understanding,
like performance, will be a key feature of the trust readiness
level.

Human-Automation Trust Variability

Human trust in automation is not universal and variability
has been categorized by an individual’s propensity to trust
automation (dispositional trust), the specific context of the au-
tomation interaction (situational trust) and a human’s past ex-
periences with the specific automated system (learned trust)
[35]. In terms of dispositional trust, very limited research
indicates that culture (e.g., Mexicans trust automated decision
aids more than Americans [36]), age (e.g., older adults are
more likely to trust [37], and have better calibrated trust to
decision aids [38], and were less likely to be swayed by
the picture of a human expert in the interface than younger
adults [39]), gender (e.g., women respond more positively to
flattery by automation than men [40], and respond differently
to automated system communication styles and appearances
[41,42]), and personality (e.g., neurotic people are less likely
to trust automation [43], extroverts are more likely to trust
automation [44], intuitive personalities are more trusting
than sensing personalities [45] (not to suggest that intuitive
personalities are more gullible, but rather how they ingest and
process information about the automated system makes them
trust it more), and some people just trust automation more
than others [46]). However, much more research is needed
to identify consistent patterns. Situational trust depends on
context, environment, and the operator’s mental state [35].
For example, when an operator has a very high workload,
they are likely to rely on the automated assistant even if they
don’t trust it [47]. Learned trust is earned through operator’s
experience with the automated system over time [35]. While
users may have an initial level of trust in an automated
system, the trust level changes dynamically throughout the
user’s experience [21]. Users may also initially trust a system
more if the automated system has a good reputation, but may
trust it less if the user is a subject matter expert in the process
that has been automated [21].

Different Levels of Risk Tolerance

Trust, when defined as a willingness to be vulnerable, is
analogous to a willingness to accept risk. Risk is defined
by the military in terms of probability (or likelihood) and
severity (or consequence). Military and NASA Definitions
of probability are presented in Table 1. On the NASA side,
consequence is specified in 5 levels for each of performance,
human safety, asset, schedule, and cost consequences [48].
Military severity categories are defined in terms of human
safety and cost, and are summarized in Table 2 [49]. The
combination of probability and severity is then organized in
a matrix and assigned a risk level. The military risk matrix
is shown in Figure 1 and the NASA risk matrix is shown
in Figure 2. It is worth noting that the Military standard
also defines software safety criticality based on severity and
level of software control (including levels of no safety impact,
influential, redundant fault tolerant, semi-autonomous, and
autonomous control). One challenge in development
of operational automation and autonomy is that different
factors such as risk tolerance and resource margins (e.g., of
propellant) may differ between missions or operators. For
example, two different space missions may have different risk
tolerances for mission failure. One way to deal with this is to
offer multiple modes that the operator can switch between

Figure 1. Military Risk Assessment Matrix [49]

Figure 2. NASA Risk Assessment Matrix [48]

that offer varying safety buffers [50, 51]. Another option is
to apply more rigorous verification and validation to a system
for an application with less tolerance for risk.

Accountability, Vulnerability, and Expectations

Studies in the design of aerospace automation have found
that mutual understanding and respect between operators,
engineers, and program managers that feature different ac-
countability, vulnerability, and expectations is important to
success [28]. Operators, as the end users accountable for
successful missions, are vulnerable to failure, and expect the
automation to perform acceptably. Engineers, accountable
for designing the system to perform well, are vulnerable
to backlash from managers and operators if the system is
poorly designed, and expect the system to be used as the
designer intended. Managers, accountable for accomplishing
larger mission goals for the system, are vulnerable to loss
of resources to complete system design and evaluation, and
expect the system to meet mission needs. Mutual under-
standing of these different accountabilities, vulnerabilities,
and expectations resulted in human-to-human trust that led
to greater trust in an automated system [28].

A MITRE study extended this list of stakeholders to a
researcher (reputation at risk), a regulator (reputation, job
security and public trust at risk), a creator implementing
the design (reputation, job security, investor’s finances at
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Table 1. Probability Categories from MIL-STD-882E [49] and NASA S3001 [48]

882E
Level

882E Criteria S3001
Level

S3001 Criteria S3001 Probabil-
ity

A Likely to occur often in the life of an item. 5 Near certainty p > 80%
B Will occur several times in the life of an item. 4 Highly Likely 80%> p > 60%
C Likely to occur sometime in the life of an item. 3 Likely 60%> p > 40%
D Unlikely, but possible to occur in the life of an item. 2 Low likelihood 40%> p > 20%
E So unlikely, it can be assumed occurrence may not be

experienced in the life of an item.
1 Not likely 20%> p > 0%

F Incapable of occurrence. This level is used when poten-
tial hazards are identified and later eliminated.

Table 2. Severity categories used to assign risk under
MIL-STD-882E [49]

Description Severity Mishap Result Criteria
Catastrophic 1 Death, permanent total disabil-

ity, irreversible significant envi-
ronmental impact, or monetary
loss ≥ $10M.

Critical 2 Permanent partial disability, in-
juries or occupational illness that
may result in hospitalization of at
least three personnel, reversible
significant environmental impact,
or monetary ≥$1M and < $10M.

Marginal 3 Injury or occupational illness re-
sulting in one or more lost work
day(s), reversible moderate en-
vironmental impact, or monetary
loss ≥ $100K and < $1M.

Negligible 4 Injury or occupational illness not
resulting in a lost work day, min-
imal environmental impact, or
monetary < $100K.

risk), insurers (job security, company finances at risk), the
acquirer (mission effectiveness, organization finances, and
job security at risk), the commander or supervisor (job secu-
rity, mission effectiveness, personal safety, personal finances
at risk), the operator (job security, mission effectiveness,
personal safety and finances at risk), the patron (personal
finances and property at risk), and the community (personal
safety, property and finances at risk) [52].

In the arena of space missions whose purpose is science-
driven, the Framework for Trusted AI developed by The
Aerospace Corporation, when applied to an example of AI-
based autonomy, identified two additional stakeholder com-
munities [53]. These were the Science Team – those seeking
to address the mission’s science goals and objectives, and the
broader Science Community – the ultimate end-users of the
mission’s data. Regardless of the trust built up in the mission
team, any scientific conclusions drawn from the returned data
must withstand skeptical scrutiny. If autonomy is present in
the data flow itself, it is crucial that it be trusted to not produce
erroneous results or induce biases that could call into question
analysis results.

Ethics and Trust

Programming and implementing automation, autonomy, and
AI to align with ethical principles is an important facet of
trust. Ethics may be defined as “a set of reflected norms,

rules, precepts, and principles that govern and guide the
behavior of individuals or groups” [54]. As an example
of how ethics might be applied to automation, autonomy,
and AI, the U.S. Department of Defense has adopted eth-
ical principles that AI be responsible, equitable, traceable,
reliable, and governable [55]. The Intelligence Community
also published principles of artificial intelligence ethics which
include: respecting the law and acting with integrity, pro-
viding transparency and being accountable for AI use and
its outcomes, using objective and equitable AI that mitigates
bias, developing and using AI centered around humans, en-
suring secure and resilient AI lifecycle, and applying rigorous
science and technology practices in the development and use
of AI [56].

Incremental Trust Gains During Operations

Some deployments of autonomy offer opportunities to in-
crementally gain trust during operations through experiential
data/information. One approach is to let the autonomy decide
what it would do, but have it stop short of actually carrying
out its action. This allows operators to confirm the correct-
ness of its operation while avoiding the risk of the autonomy
incorrectly performing a dangerous action. Autonomy in
this sense can support the human in information acquisition
and analysis while leaving the action implementation and
decision making up to the human. When the task temporal
demands allow for this flexibility it can be a robust way to
incorporate autonomy into a task context. This does leave the
risk of the autonomy software misbehaving in some way, e.g.,
interfering with other critical processes or corrupting critical
data, however such risks can generally be assuaged by good
software engineering practices. This incremental approach
was followed by activation of the AEGIS system discussed
earlier [57], in which it was allowed to exercise an increasing
number of steps to plan a science gathering activity, and
develop confidence before finally allowing AEGIS to actually
perform that activity.

If the space system can recognize when an activity is heading
toward danger in time to safely terminate that action, then
operators will have confidence to let the autonomy operate.
This is the approach taken by NASA’s rovers on Mars, where
on-board software safeguards the rover during all activities.
For the Curiosity rover, [58] describes how during driving,
“mobility fault protection” evaluates the rover state at 8Hz,
stopping the drive if any state relevant to driving is outside of
set limits (e.g., rover tilt limit exceeded).

When it is safe to do so, operators can gain confidence in
autonomy by engaging it in an increasingly ambitious man-
ner. This was done by ESA (European Space Agency) in field
testing an autonomous rover in the Atacama Desert in Chile
in preparation for a robotic mission to Mars. [59] describes
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how, over several days of trials during which the autonomy
performed as expected, the operations team learned to trust
the autonomy components and switched to using high-level
autonomy tasks to perform increasingly complex operations.

Incremental Trust Gains from Live-Virtual-Constructive Sim-
ulation and Test—A relatively new concept in the space com-
munity to build incremental trust in cooperative spacecraft
autonomy is borrowed from the Unmanned Aerial Systems
(UAS) Community: Live-Virtual-Constructive (LVC) testing.
In this testing approach a constructive spacecraft is one that
exists only in a computer simulation, a virtual spacecraft
is one that might be implemented in physical simulator on
the ground (e.g., an air-bearing attitude determination and
control test bed, a surrogate test bed like an omnicopter),
and a live simulator is an actual spacecraft operating in space
that is performing autonomous maneuvering. In this build
up approach, two cooperative satellites might first be entirely
simulated to validate the initial concept. Then, a virtual
test bed might be used to demonstrate interactions. Then
combinations of a live spacecraft and constructive or virtual
can be used to validate how a real spacecraft in a space
environment would behave relative to a constructive or virtual
asset simulated on the ground (but the live agent believes also
exists in orbit). Next, a live with live-offset can be used
where two spacecraft are tested with a safe separation, but
believing they are closer together (e.g. simulating proximity
operators at 1 km apart when the spacecraft are actually 50
km apart). Then finally, when enough confidence is gained,
the spacecraft can operate in close proximity to one another.

4. SPACE TRUSTED AUTONOMY READINESS
LEVELS

In this section, STAR Levels are presented as orthogonal axes
of readiness: autonomous capability and trust. The need
to balance readiness levels, while important to any program
[60], becomes acute in this two-dimensional representation of
readiness. As depicted in Figure 3, high trust and low readi-
ness is associated with over-confidence of the autonomous
operations, while low trust and high readiness is associated
with under-confidence. These STAR Levels are not intended
to replace TRLs, but rather to highlight specific definitions
for autonomy which differ from other systems.

Autonomy Readiness Levels

To define autonomy readiness levels, the team examined
several other readiness levels including ARLs [7], MRLs
[8], HRLs [9], CRLs [10], DRLs [11], and MLRLs [12],
and TCLs [13]. Then the team started producing their
own suggestions, and each was evaluated for commonality.
Comparison of these other readiness levels may be found in
appendix 2.

The definition of each STAR Level is characterized in terms
of the following aspects of maturity:

A – Assurance: The extent to which the autonomy has been
shown to perform correctly.
C - Context: The maturity of the role the autonomy is to play
and its embodiment in its intended environmental context.
I - Implementation: The maturity of the autonomy’s imple-
mentation (typically in software, but could involve firmware).
O - Operations: The maturity of establishing the interplay
between the autonomy and its operators.

STAR Level 1

Figure 3. Trust vs Readiness, Annotated

A: Some risks or limitations are considered.
C: An opportunity has been identified for autonomy to en-
hance or enable a space asset’s control or information pro-
cessing.
I: A capability in a general or mathematical form is pro-
posed, but no code has been developed.
O: An idea of the potential for an end user to delegate
bounded authority has been identified.

STAR Level 2

A: Performance measures and safety concerns are identified.
C: Initial proof of concept simulations are conducted on
simplified models (e.g., point masses, decoupled translational
and attitude dynamics) or idealized data (e.g., free of noise or
dropouts).
I: Any code or interface is research grade an intended to be
used solely by researchers.
O: User concerns are identified.

STAR Level 3

A: Basic operation of the algorithms demonstrated.
C: Evaluations of core functionality have been performed in
low fidelity simulations.
I: Algorithms are maturing and early prototypes of their
software implementation have been coded.
O: Human-autonomy and autonomous agent-agent inter-
faces have been exercised in at least a walk-through manner
sufficient to lead to interface requirements and to validate a
block-diagram level architecture.

STAR Level 4

A: The number of scenarios evaluated is relatively small but
sufficient to characterize the algorithms’ reliability, safety,
and ethical use.
C: Algorithms integrated in a simulation environment for
non-real-time test and experimentation.
I: All algorithms are coded in prototype form.
O: Human-autonomy and autonomous agent-agent inter-
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faces are included in prototype

STAR Level 5

A: The autonomy algorithms are tested to demonstrate proof
of concept operations in real time with highly realistic inputs.
For example, they could be integrated on spacecraft surro-
gates, such as spacecraft attitude testbeds, quadcopters, omni-
directional drones, air bearing or granite tables, to simulate
spacecraft dynamics; alternately, they could be fed playbacks
of data recorded on actual missions.
C: Needed capacities are firmly established on computa-
tional performance, memory footprint, and input data rates,
sufficient for the autonomy to achieve its responsiveness
requirements.
I: Prototypes of all algorithms completed.
O: A human-autonomy interface provides operators with
insight into the autonomy’s perceptions and decision making
processes, based on which they can confirm the autonomy’s
behavior, safety and ethics.

STAR Level 6

A: The autonomy code and interfaces have fully met qualifi-
cation criteria. Testing has been conducted with both nominal
and off-nominal inputs representative of expected conditions
of use.
C: Algorithms and interfaces have been integrated into a
relevant computing hardware package, such as a flat sat, that
runs within operationally realistic (real-time) constraints.
I: The autonomy code and interfaces have been developed in
compliance with all flight-code processes, standards, regula-
tions, and practices.
O: Human-autonomy interface enables operators to under-
stand test results in real time and provide feedback on safety,
ethics, and performance.

STAR Level 7

A: The autonomy is tested for specific use case scenarios
and may be wrapped with a run time assurance system that
provides safety guarantees and backup control strategies.
C: Autonomy is integrated onto a prototype system and
demonstrated in the final use environment, or one that closely
mimics relevant environmental characteristics, so that the
autonomy is exposed to realistic inputs and called upon to
perform in a realistic manner. For example, a live spacecraft
on orbit may be flown in parallel to a simulated spacecraft
on the ground to evaluate potential scenarios with no risk of
collision.
I: Algorithms are maturing and early prototypes of their
software implementation have been coded.
O: Autonomy is integrated with a prototype human-
autonomy interface, with participation of a multidisciplinary
team of aerospace (or similar), quality assurance, safety, and
human factors engineers as well as computer scientists. Risks
are quantified, and a strategy is defined for how data is
obtained, managed, used, secured, and ethically used

STAR Level 8

A: All necessary formal tests have been successfully passed,
sufficient to qualify the autonomy for space use by the
identified system in the anticipated operational conditions.
Tests included stress testing to cover plausible off-nominal
situations.
C: The algorithms have been integrated into the system that
will use them.

I: The development of all algorithms and interfaces has been
completed, as has their integration into the system that will
use them.
O: Tests confirm operations teams’ ability to sufficiently un-
derstand the autonomy’s behavior (informed by the feedback
it provides) to interact and direct the autonomy as might be
needed

STAR Level 9

A: The autonomous system has been proven through suc-
cessful mission operations for multiple programs.
C: The autonomy is continuously monitored and evaluated
for anomalies in behavior, especially if the autonomous sys-
tem continues to adapt after deployment.
I: A run time assurance system may be used to monitor
specific safety or performance properties and intervene when
necessary.
O: Human-autonomy interface meets needs of operators in
nominal and off-nominal conditions.

Trust Readiness Levels

While trust can be expressed between two or more au-
tonomous agents, only trust between a human and the au-
tonomous system is considered in these definitions. Several
tenets went into these Trust Readiness Levels (TrRLs). No-
tably, performance and understandability (used as a proxy
for the technically-terse term transparency) are key features
derived from the literature. An additional three elements
were incorporated into the TrRLs. First, the TrRLs should
consider perspectives starting with the designer, moving to
the tester, and closing with the operator. While operator
perspectives should be incorporated from the start of the
design and throughout the testing process, direct evaluation
with operators is needed to move beyond a TrRL of 5. The
second tenet of the TrRLs is the idea that trust should be
considered (i.e., shared) across the community of operators.
A key aspect of this tenet is that for the highest level of
TrRL, the technology must be evaluated across the opera-
tional community. Finally, the TrRL must also evaluate the
technology across a range of contextual scenarios involving
not only nominal situations, but also known contexts wherein
errors are possible/probable. Operators must observe the au-
tomation in a wide range of contexts in order to appropriately
achieve a TrRL of 9. The current TrRL definitions are shown
below, and it it is anticipated that additional R&D is needed
to explore and refine the criteria.

[TrRL1] The system’s conceptual performance is acceptable
to the designer.
[TrRL2] The system’s task performance is understandable
(traceable and logical) to the designer.
[TrRL3] The system’s task performance is acceptable and
understandable (traceable and logical) to a tester.
[TrRL4] The system’s task performance is acceptable and
understandable to a tester across multiple task conditions
(inclusive of conditions that could invoke errors).
[TrRL5] The system’s performance is acceptable and under-
standable (traceable and logical) to an operator in a simulated
environment.
[TrRL6] The system’s performance is acceptable and under-
standable (traceable and logical) to an operator in a relevant
environment.
[TrRL7] The system’s performance is acceptable and un-
derstandable (traceable and logical) to an operator in an
operational environment.
[TrRL8] The system’s performance is acceptable and un-
derstandable (traceable and logical) to an operator across
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Figure 4. Autonomous Satellite Rendezvous and Docking

multiple task conditions (inclusive of conditions known to
invoke errors).
[TrRL9] The system’s performance is universally accepted
and understood by the community of operators across multi-
ple task conditions (inclusive of conditions known to invoke
errors).

5. DESIGN REFERENCE MISSION
In this section, we consider the use case of an autonomous
docking problem to exemplify the trusted autonomy lev-
els. The first space docking maneuver was successfully
performed in 1966 by Gemini 8 piloted by Neil Armstrong.
In that mission, Neil manually piloted the Gemini spacecraft
to rendezvous and dock with an uncrewed Agena Target Vehi-
cle. In 1967, the first automated uncrewed docking, between
Cosmos 186 and Cosmos 188, occurred by the USSR. Since
the late 1960’s, there has been a significant advancement
to refine these maneuvers which makes it a prime test case
for discussing the trusted autonomy readiness levels. These
maneuvers have been done by hand, tele-operated, automated
and autonomously. In 2020, researchers proposed a satellite
docking challenge problem in [61], with an under actuated
satellite system. Numerous methods have been used to solve
this problem in an algorithmic way considering different
constraints and control methods [62–64].

This example explores the hypothetical design of a neural
network control system, trained using reinforcement learning
for autonomous rendezvous, proximity operations, and dock-
ing (ARPOD). The docking scenario is depicted in Figure 4,
where a chaser spacecraft is approaching and docking with
a target spacecraft. The chaser starts at an initial distance
x0, progresses in time to closer distances x(t) and eventually
reaches the target location x∗ = 0. Hypothetical STAR
Levels for the ARPOD scenario are as follows.

[Ex. STAR Level 1] A company has decided to design AR-
POD for satellite servicing, has identified that reinforcement
learning might be the basis of this, and anticipates the solution
will provide courses of action to operators to select from. The
company builds a concept and considers design alternatives
and risks.
[Ex. STAR Level 2] It has been identified that an anticipated
user is an operator who works in a ground control location
for a spacecraft. Solutions will be measured based on fuel use
and time to perform the mission. A number of potential safety
concerns are identified (there are several risks associated with
autonomous proximity operations [65, 66]). A prototype
reinforcement learning solution is used to train a point mass

model of a spacecraft to dock using linearized Clohessy-
Wiltshire dynamics in Hill’s reference frame [67]. Rudimen-
tary plots of performance are analyzed by researchers.
[Ex. STAR Level 3] A prototype black/gray box2 advanced
learning-based solution is developed for linearized three-
dimensional Clohessy-Wiltshire dynamics and relative atti-
tude dynamics. A need to bound the black/gray box solution
with run time assurance algorithms is identified and potential
prototypes are developed and compared [69]. Feedback is
received from operators on what parameters they might want
to tweak in the docking control and run time assurance safety
system.
[Ex. STAR Level 4] The solution graduates to higher fidelity
digital twin spacecraft systems with modeled contact dynam-
ics. Platform operators are identified and brought in to ob-
serve demonstrations. They provide constructive feedback of
the scenarios on their concerns what kind of telemetry would
like to see to assure safety approaches and acceptability of the
solutions. Initial investigation on human-autonomy interface
iterations between the platform solution and the operational
community begins.
[Ex. STAR Level 5] The solution is demonstrated on a ter-
restrial spacecraft surrogate environment using space-like
real time emulation platforms with operators interacting with
the autonomy system prototype. Flight-like Processor in the
loop computations are performed of the full ARPOD mission.
Computational performance, memory footprint, and input
quality and data rate requirements are identified. A human-
autonomy interface enables operators to understand the au-
tonomy’s behavior, decision rationale, and safety thresholds.
[Ex. STAR Level 6] The spacecraft bus has been identified
and the autonomous software and hardware ARPOD inte-
grated solution is installed on the actual hardware to verify
performance within operationally realistic (real-time) con-
straints. The full system undergoes test computations with
both nominal and off-nominal inputs representative of ex-
pected conditions of use. A human-autonomy interface
enables operators to understand test results in real time and
provides them with feedback on safety, transparency, and
performance.
[Ex. STAR Level 7] The autonomous solution is launched
onboard a spacecraft and monitored via the human-autonomy
interface through a series of live flight tests. The live satellite
on orbit practices its ARPOD strategy with a computer simu-
lated spacecraft on the ground to evaluate potential scenarios
with no risk of collision. Risks are quantified, and a strategy
is defined for how data is obtained, managed, used, and
secured.
[Ex. STAR Level 8] The behavior of the ARPOD system is
tested in a variety of different scenarios on orbit while adjust-
ments are made to the human-autonomy interface to satisfy
spacecraft operators. The number of scenarios evaluated
on the physical system is increasing. Two live spacecraft
perform a stepwise progression through the phases of ap-
proach, proximity operations, and docking. For each phase
the chaser spacecraft first computes what it would do, seeking
permission from spacecraft operators before then performing
that activity. Following successful docking, spacecraft op-
erators undock and maneuver the chaser away, to repeat the
scenario in different conditions (e.g., from different angles of
approach, with illumination from different directions).
[Ex. STAR Level 9] The novel neural network ARPOD sys-
tem has been proven through successful mission operations
for multiple programs and is continuously monitored and
evaluated for anomalies in behavior. The accompanying run

2A gray box system has some properties internal to the system known, while
there is no requirement for a black box system to be known, [68].

8



time assurance system has been demonstrated to consistently
assure safety properties. The human-autonomy interface
enables operators to successfully control the spacecraft, even
in off-nominal conditions.

Hypothetical TrRLs for the ARPOD scenario are as follows.

[TrRL1] The estimation and control approach for the AR-
POD system’s design seems reasonable to the designer.
[TrRL2] The ARPOD system’s simulated performance is as
expected to the designer.
[TrRL3] The ARPOD’s performance is acceptable in simu-
lated tests.
[TrRL4] The ARPOD system’s task performance is accept-
able a tester across multiple task conditions.
[TrRL5] The ARPOD system’s performance as demon-
strated on a terrestrial spacecraft surrogate environment is
acceptable to an operator.
[TrRL6] The ARPOD system’s performance on the flight
hardware is acceptable to operators.
[TrRL7] The ARPOD system’s performance is acceptable
for use in a set of pre-planned tasks on orbit.
[TrRL8] The ARPOD system’s performance is acceptable to
an operator in rendezvous from a variety of initial conditions
as well as in a wide variety of tasks, such as formation flying,
inspection, and docking.
[TrRL9] The ARPOD system’s performance is universally
accepted, and requested by operators for use across multiple
ARPOD task conditions.

6. DISCUSSION
After introducing autonomy and trust concepts, this research
developed and illustrated a definition of space trusted au-
tonomy readiness levels along axes of autonomy readiness
levels and trust readiness levels. This effort is by no means
the end of the definitions, rather it is a starting point for
the purpose of wider community discussion on these topics.
Readiness levels which accurately reflect the specific chal-
lenges in space trusted autonomy can lead to better program
assessments and decisions, and accelerate technology adop-
tion across the space community. We welcome feedback on
these definitions, and are particularly interested in reports of
their application (whether successful or problematic) to space
autonomy, as a means to refine them further. Our lead author
is the primary contact for such feedback.
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APPENDIX 1: ACRONYMS

AEGIS Autonomous Exploration for Gathering In-
creased Science

AI Artificial Intelligence
ANGELS Automated Navigation and Guidance Ex-

periment for Local Space
API Application Programming Interface
ARL Algorithm Readiness Level
ARPOD Autonomous Rendezvous, Proximity Op-

erations, and Docking
ASTERIA Arcsecond Space Telescope Enabling Re-

search in Astrophysics
C2BCM Command Control Battle Management

Communications
CI/CD Continuous Integration and Continuous

Development
CMMI Capability Maturity Model Integration
COTS Commercial off-the-shelf
CRL Commercialization Readiness Level
DAF Department of the Air Force
DARPA Defense Advanced Research Projects

Agency
DART Demonstration of Autonomous

Rendezvous Technologies
DRL Data Readiness Level
EAGLE ESPA Augmented Geostationary Labora-

tory Experiment
EDL Entry, Descent and Landing
EELV Evolved Expendable Launch Vehicle
ESA European Space Agency
ESPA EELV Secondary Payload Adaptor
FRP Full Rate Production
GPS Global Positioning System
HRL Human Readiness Level
LVC Live-Virtual-Constructive
LRIP Low Rate Initial Production
ML Machine Learning
MLRL Machine Learning Readiness Level
MRL Manufacturing Readiness Level
MER Mars Exploration Rover
NASA National Aeronautics and Space Adminis-

tration
NRO National Reconnaissance Office
P-LEO Proliferated Low Earth Orbit
R&D Research & Development
RAX Remote Agent Experiment
RL Readiness Level
RSGS Robotic Servicing of Geosynchronous

Satellites
SAE Society of Automation Engineers
SDA Space Domain Awareness
SSN Space Surveillance Network
STAR Space Trusted Autonomy Readiness
STM Space Traffic Management
SWaP Size, Weight and Power
TCL Transition Commitment Level
TRL Technology Readiness Level
TRN Terrain Relative Navigation
TrRL Trust Readiness Level
UAS Unmanned Aircraft System
USAF United States Air Force
USSF United States Space Force
V&V Verification and Validation
XSS-10 Experimental Satellite System-10
XSS-11 Experimental Satellite System-11
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APPENDIX 2: ALTERNATIVE READINESS
LEVELS

The purpose of this manuscript is not to redefine TRLs, but
rather to tailor them to the unique qualities of autonomous
systems. For convenience, the standard TRLs are listed in
Table 3.

This section includes paraphrased examples of different
readiness levels from the literature including Algorithm RLs
(ARLs) [7], Manufacturing RLs (MRLs) [8], Commercial-
ization RLs (CRLs) [10], Machine Learning RLs (MLRLs)
[12], Human RLs (HRLs) [9], and Transition Commitment
Levels (TCLs) [13]. Data RLs (DRLs) [11] are considered
separately because a 1-9 scale was not used. Note that
many of these definitions are much more extensive than the
summaries presented below. In particular MLRLs have long
descriptions of each level, which are summarized to a few
sentences each here that may lose nuance.

Level 0

Only MLRLs included a level zero.

[MLRL0] First Principles: consists of literature review,
building mathematical foundations, white-boarding concepts
and algorithms, and building an understanding of the data
requirements; no data available; reviewed by research lead,
such as a PhD supervisor, for mathematical validity and
potential novelty or utility

Level 1

[TRL1] Basic principles observed and reported.
[ARL1] Need identified, analysis in any suitable format,
input data sufficient to demonstrate basic operation.
[MRL1] Basic manufacturing implications identified.
[CRL1] Research and Development: problem definition,
potential business/stakeholder interest, preliminary business
case (market, margin/savings) and baseline, investment from
external partner, intellectual property disclosure.
[MLRL1] Goal-Oriented Research: analyze specific model
or algorithm properties; collect and process sample (possibly
synthetic) data for model evaluation and training; research-
caliber code; start versioning of code, models, datasets;
review by research team members with many iterations of
feedback and experiments.
[HRL1] Basic principles for human characteristics, perfor-
mance, and behavior observed and reported.
[TCL1] Internal program/R&D commitment.

Level 2

[TRL2] Technology concept and/or application formulated.
[ARL2] Concepts identified, analysis in any suitable format,
input data sufficient to demonstrate basic operation.
[MRL2] Manufacturing concepts identified.
[CRL2] Core business interest: business/stakeholder en-
gagement strategy, initial transition plan, accountable core
business champion, refined business case and baseline - re-
alistic early stage intellectual property evaluation.
[MLRL2] Active R&D is initiated with simulation environ-
ments or simulated data. An initial requirements document
states model-specific technical goals, and verification and
validation steps. Data sets may be publicly available, semi-
simulated, or fully simulated.
[HRL2] Human-centered concepts, applications, and guide-
lines defined.
[TCL2] Internal portfolio commitment.

Level 3

[TRL3] Analytical and experimental critical function and/or
characteristic proof of concept.
[ARL3] Proof of Concept, analysis in any suitable format,
input data sufficient to demonstrate basic operation.
[MRL3] Manufacturing proof of concept
[CRL3] Interaction/Awareness - periodic, planned busi-
ness/stakeholder engagement.
[MLRL3] Transition from research code to robust and clean
prototype-caliber code that emphasizes interoperability, re-
liability, maintainability, extensibility, and scalability that
is well-designed, well-architected for dataflow and inter-
faces, generally covered by unit and integration tests, meet
team style standards, and sufficiently-documented. A cross-
disciplinary team from applied AI and engineering review
software practices, interfaces and documentation, version
control for models and datasets, and domain- or organization-
specific data management considerations.
[HRL3] Human-centered requirements to support human
performance and human technology interactions established.
[TCL3] Sponsor/customer interaction and awareness.

Level 4

[TRL4] Component and/or breadboard validation in a labo-
ratory environment.
[ARL4] Prototype developed, standalone component, Matlab
analysis, input data sufficient to demonstrate basic operation.
[MRL4] Manufacturing processes in lab environment.
[CRL4] Commitment/support - access to business/stakeholder
information, users, customers, environment; realistic early
stage intellectual property valuation; market/pricing distribu-
tion plan; business/stakeholder investment.
[MLRL4] A quick proof-of concept example is developed
using representative data to explore candidate applications
and provide results for qualitative and quantitative analysis
such as model and algorithm performance (e.g., precision and
recall and various data splits), computational costs (e.g., CPU
vs GPU runtimes), and also metrics that are more relevant to
the eventual end-user (e.g., number of false positives).
[HRL4] Modeling, part-task testing, and trade studies of
human systems design concepts and applications completed.
[TCL4] Sponsor/customer commitment and active support.

Level 5

[TRL5] Component and/or breadboard validation in a rele-
vant environment.
[ARL5] Reference implementation in closed loop envi-
ronment, component/capability integrate in reference im-
plementation but other components may not be updated,
Command Control Battle Management Communications
(C2BCM) benchmark, and some stressing vignettes recorded
flight test/ground test data for components not requiring
sensor/element interaction.
[MRL5] Components in production relevant environment.
[CRL5] Pilot Plan - business/stakeholder commitment to
direct funded operational pilot using operational data and
environment; environment set up; business model articulated;
success measures and criteria defined.
[MLRL5] A specific machine learning capability is demon-
strated and evaluated by an audience beyond ML researchers,
possibly with example scripts and/or an API. This stage
also represents transition from an R&D prototype team to a
product development team, and the beginning of the “value
of death.” Considerations are made for data scaling and
governance.
[HRL5] Human-centered evaluation of prototypes in mission-
relevant part-task simulations completed to inform design.
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Table 3. Technology Readiness Levels [5]

Level Definition TRL Description
1 Basic principles observed and re-

ported. Lowest level of technology
readiness.

Scientific research begins to be translated into applied research and
development. Examples might include paper studies of a technology’s
basic properties.

2 Technology concept and/or applica-
tion formulated.

Invention begins. Once basic principles are observed, practical appli-
cations can be invented. Applications are speculative and there may be
no proof or detailed analysis to support the assumptions. Examples are
limited to analytic studies.

3 Analytical and experimental critical
function and/or characteristic proof
of concept.

Active research and development is initiated. This includes analytical
studies and laboratory studies to physically validate analytical pre-
dictions of separate elements of the technology. Examples include
components that are not yet integrated or representative.

4 Component and/or breadboard vali-
dation in laboratory environment.

Basic technological components are integrated to establish that they will
work together. This is relatively “low fidelity” compared to the eventual
system. Examples include the integration of “ad hoc” hardware in the
laboratory.

5 Component and/or breadboard vali-
dation in relevant environment.

The Fidelity of breadboard technology increases significantly. The
basic technological components are integrated with reasonably realistic
supporting elements so it can be tested in a simulated environment.

6 System/subsystem model or proto-
type demonstration in a relevant en-
vironment.

A representative model or prototype system, which is well beyond that
of TRL 5, is tested in a relevant environment. Represents a major step
up in a technology’s demonstrated readiness.

7 System prototype demonstration in
an operational environment.

Prototype near, or at, planned operational system. Represents a major
step up from TRL 6, requiring the demonstration of an actual system
prototype in an operational environment such as an aircraft, vehicle, or
space.

8 Actual system completed and quali-
fied through test and demonstration.

Technology has been proven to work in its final form and under
expected conditions. In almost all cases, this TRL represents the end
of true system development. Examples include developmental test and
evaluations of the system in its intended system to determine if it meets
design specifications.

9 Actual system has proven through
successful mission operations.

The actual application of the technology in its final form and under
mission conditions, such as those encountered in operational test and
evaluation. Examples include using the system under operational
mission conditions.

[TCL5] Sponsor/customer commitment to pilot.

Level 6

[TRL6] System/subsystem model or prototype demo in a
relevant environment.
[ARL6] Reference implementation system validation, Mas-
ter reference implementation - all components updated for
the spiral, Command Control Battle Management Commu-
nications (C2BCM)benchmark, and stressing vignettes.
[MRL6] System or subsystem in production relevant envi-
ronment.
[CRL6] Operational Pilot: business-funded operational pi-
lot; results analysis.
[MLRL6] Transition from prototype code to product-caliber
machine learning code with precise specifications, test cov-
erage, and well-defined APIs. Considerations are made to
design model explanations for stakeholders rather than ML
engineers. Focus is on the code quality, an AI ethics revisit,
regulatory compliance, data privacy and security laws.
[HRL6] Human systems design fully matured as influenced
by human performance analyses, metrics, prototyping, and
high fidelity simulations.
[TCL6] Sponsor/customer execution of operational pilot.

Level 7

[TRL7] System prototype demo in an operational environ-
ment.
[ARL7] Developed in system, all components for spiral

updated and integrated into intended operational software,
Command Control Battle Management Communications
(C2BCM) analysis, Verification Scenarios and parametric
analysis.
[MRL7] System or subsystem demonstrated in production
representative environment.
[CRL7] Purchased: business/stakeholder capability acquisi-
tion plan; benefit measures established.
[MLRL7] The ML technology is integrated into a system by
a multidisciplinary team with expertise beyond AI/ML and
tested for specific use case scenarios. Risks are quantified,
and a strategy for how data is obtained, managed, used,
secured, and ethically used is developed by quality assurance
engineers.
[HRL7] Human systems design fully tested and verified for a
range of scenarios and tasks in operational environment with
system hardware, software, and representative users.
[TCL7] Sponsor/customer commitment to acquisition.

Level 8

[TRL8] Actual system completed and qualified through test
and demo.
[ARL8] Fielded in System, Command Control Battle Man-
agement Communications Algorithm and Analysis Environ-
ment, and flight test/ground test scenarios.
[MRL8] Pilot Line demonstrated ready for low rate initial
production (LRIP).
[CRL8] Profit/Savings: Measured capability benefit achieved
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by a single business/stakeholder.
[MLRL8] Flight-ready technology is demonstrated to work
in its final form in anticipated conditions. The system has
been stress tested during continuous integration and continu-
ous development (CI/CD) processes, and additional tests such
as A/B tests, blue/green deployment tests, shadow testing,
and canary testing are conducted. When using real data,
the ML may be tested in a shadow mode first to evaluate
performance degradation. A panel representing a full set of
stakeholders makes a go or no-go decision for deployment.
[HRL8] Total human-system performance fully tested, vali-
dated, and approved in mission operations, using completed
system hardware, software. and representative users.
[TCL8] Mission impact realized.

Level 9

[TRL9] Actual system proven through successful mission
operations.
[ARL9] Mature, Command Control Battle Management
Communications Algorithm and Analysis Environment, and
Live Scenarios.
[MRL9] LRIP demonstrated, ready for full rate production
(FRP).
[CRL9] At Scale: additional business/stakeholders or do-
mains identified; measured benefit (profit/savings/capability)
achieved across domains.
[MLRL9] AI and ML technologies are deployed, there is
continuous monitoring and evaluation for performance and
reliability degradation, and identification of explicit con-
siderations for improving the next version. Data logs are
used to capture inputs, model predictions, and anomalies
or deviations in model behavior. There is a path for user
communication and feedback to the R&D team. Any changes
to the system or components based on continuous monitoring
or user feedback revert the system to TRL 7.
[HRL9] System successfully used by the intended users in
operations across the operational envelope with systematic
monitoring of human system performance issues, errors, and
accidents to identify enhancements.
[TCL9] Impact scaled out.

Level 10

[MRL10] Full rate production (FRP) demonstrated, lean pro-
duction practices in place.

APPENDIX 3: SPACE AUTONOMY MISSIONS

There is a long history in autonomous and artificial intelli-
gent operations throughout the space domain. Incremental
approaches to mature technology along TRLs have been
documented, including the buildup of missions in preparation
for the moon, or rapid advancement of space technologies
under NASA’s New Millennium Program [70]. This section
provides context with examples of major satellite and space-
craft experimental programs to test autonomy technologies in
space.

Deep Space One

The first use of AI in space took place in 1998, when NASA
launched the Deep Space One spacecraft on a mission to val-
idate in space several high-risk, new technologies important
for future space programs [71]. Three autonomy technolo-
gies were tested: beacon monitoring determined the overall
spacecraft health from on-board data and transmitted that
status back to Earth, AutoNav used its determined position

and velocity to compute and execute maneuvers to deliver the
spacecraft to its target, and the Remote Agent Experiment
(RAX) that represented the first AI agent to control a NASA
spacecraft without human supervision. The RAX demon-
strated autonomous operations of the craft in two scenarios of
18 hours and 6 hours respectively, achieving all its validation
objectives. In a hierarchical fashion, RAX was given high
level objectives (or commander’s intent) and was allowed to
derive its own primitive maneuvers to achieve the objective. It
was successful in demonstrating the ability to plan, diagnose
and respond to simulated faults in the spacecraft.

Mars Rovers: Testing Autonomy During Extended Mission
Phase

As an alternative to launching an entire mission devoted to
flight validation, autonomy testing is sometimes done during
an extended mission phase, after the primary mission has
been accomplished and the ground team is more willing
to accept the risk of employing a novel technology. This
was the case for the Autonomous Exploration for Gathering
Increased Science (AEGIS) system, which enables automated
data collection by planetary rovers. It was first uploaded
to the Mars Exploration Rover (MER) mission’s Opportu-
nity rover in December 2009, by which time the rover had
been operating on Mars for almost six years. AEGIS suc-
cessfully demonstrated autonomously selecting targets based
on scientist-specified objectives in images from the rover’s
navigation camera and acquiring follow-up images with the
narrow field of view science camera [57]. In a similar manner,
AEGIS was later deployed to NASA’s Curiosity Mars rover,
where it has been in routine use since May 2016, selecting
targets for the ChemCam remote geochemical spectrometer
instrument [72]. These two successful applications led to
AEGIS being included in the primary mission operations of
NASA’s latest Mars rover, Perseverance.

ASTERIA CubeSat: Testing Autonomy During Extended Mis-
sion Phase

Another example of use of mission extension for testing
was the Earth-orbiting Arcsecond Space Telescope Enabling
Research in Astrophysics (ASTERIA) CubeSat, which used
its extended mission to demonstrate autonomy technologies,
including a shift of the spacecraft commanding paradigm
from time-based sequence to Task Networks, and separately,
demonstration of on-board orbit determination in Low Earth
Orbit without the Global Positioning System (GPS). Further
demonstrations were planned but instead were run on the
testbed following the CubeSat’s demise [73].

Autonomous Rendezvous, Proximity Operations, and Dock-
ing

A number of programs at DARPA, NASA, and AFRL have or
plan to investigate and test Autonomous Rendezvous, Prox-
imity Operations, and Docking (ARPOD) technologies in a
space environment with passive targets. ARPOD examples
include: Orbital Express, Demonstration of Autonomous
Rendezvous Technologies (DART) in 2005, DARPA Robotic
Servicing of Geosynchronous Satellites (RSGS) planned for
2023, and NASA’s Orbit Servicing, Assembly, and Manufac-
turing missions plan for 2025 and beyond.

Autonomous Optical Navigation for Interplanetary Missions

Turning spacecraft navigation into an on-board completely
autonomous capability has the benefit of reducing the Earth-
based operational cost and effort, and enables missions that
depend on critical maneuvers in situations where the round-
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trip light-time precludes ground-in-the-loop interaction. His-
torically, navigation of deep space missions has been con-
trolled from Earth. Doppler and range tracking via radio
contact with the spacecraft, combined with optical imagery
taken by the spacecraft and relayed to Earth, have provided
the information to compute the spacecraft’s trajectory and
trajectory correction maneuvers as needed. Optical data is
well suited to being acquired and processed autonomously
to form the basis for a completely autonomous navigation
system. This was demonstrated on NASA’s Deep Space One
mission [74], and subsequently used successfully on camera-
equipped NASA’s comet fly-bys (comets Borrelly, Wild 2,
Tempel 1, and Hartley 2), an asteroid flyby (Annefrank) [75],
and for the trajectory control of the Deep Impact mission’s
impactor to ensure it would hit the nucleus of its target, comet
Tempel 1 [76].

Autonomous Optical Navigation for Orion Artemis Missions

As part of NASA’s Orion Artemis Missions, OpNav (optical
navigation) has been developed to be the first autonomous
safety-critical on-board navigation system, able to complete
the mission if Earth communication is lost. Its on-board
computed navigation data would substitute for nominally
provided ground trajectory course maneuver updates. Its
development followed a traditional waterfall software devel-
opment lifecycle with periodic major reviews, progressing
from TRL 3 to TRL 8 while adhering to the NASA Software
Engineering Requirements standard, NASA NPR 7150.2B,
and the practices of the Capability Maturity Model Integra-
tion (CMMI) Level 3 [77]. Formal validation and certification
of OpNav is planned during the outbound leg of the Artemis
I mission, to bring it to TRL 9.

Autonomous Entry, Descent and Landing

The landing of robotic spacecraft on Mars exemplifies a
situation where on-board control is essential. Colloquially
referred to as the “seven minutes of terror,” the entire EDL
sequence is over in less than the one-way light time to
communicate with the craft. From the first successful soft
landing on Mars, achieved by the Soviet Mars 2 probe, this
has been done automatically. Autonomy was introduced on
the landings of the two Mars Exploration Rovers (MERs)
via the Descent Image Motion Estimation System (DIMES),
the first ever terrain-relative sensing and guidance system
used by a real space mission [78]. More recently, Terrain
Relative Navigation (TRN), was used in 2021 to guide the
pin-point landing of NASA’s 2020 Mars rover mission. This
enabled the mission to aim for Jezero Crater yet avoid many
hazards therein (cliffs, dune fields, rocks), resulting in a
landing within 5m of the targeted location [79]. In [4], the
development of TRN serves as an illustration of progression
through the nine NASA Technology Readiness Levels, from
which the following summary is distilled.

1. TRL 1: Pinpoint landing concepts explored
2. TRL 2: Benefits and desired performance characteristics
identified
3. TRL 3: Performance analyses and experimental proof-of-
concept using descent imagery from previous Mars landings
4. TRL 4: Algorithms tested off-line, including data from a
sounding rocket flight emulating a Mars landing
5. TRL 5: Performance shown on prototype computing
hardware connected with Commercial off-the-shelf (COTS)
hardware
6. TRL 6: Real-time tests of implementation over a wide
variety of scenes, gathered on helicopter flights
7. TRL 7: Demonstrated on a vertical take-off and vertical

landing rocket
8. TRL 8: Implementation completed, environmentally
tested, and delivered for spacecraft integration
9. TRL 9: Successful use on Mars 2020 rover mission’s
landing
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