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Abstract—Increasingly, unmanned aircraft systems (UAS) are
being applied to wildfire incidents for tasks such as mapping,
aerial ignition, and delivery. As a result, aviation incident report-
ing systems for wildfires are beginning to accumulate data related
to UAS mishaps in wildfire response. In this research, we apply
state-of-the-art natural language processing (NLP) techniques to
develop a custom Named Entity Recognition (NER) model which
extracts entities relevant to safety analysts. The custom NER
model is built by fine-tuning an existing Bidirectional Encoder
Representations from Transformers (BERT) model, resulting in
a generalizable NER model that can extract engineering relevant
entities including failure modes, causes, effects, control processes,
and recommendations from failure-relevant text. This model
performs passably, with a weighted average f1 score of 0.33 across
entity types, indicating more labeled training data is needed.
Extracted entities are used to form a Failure Modes and Effects
Analysis (FMEA)-style survey of wildfire UAS mishaps reported
using the SAFECOM system. Similar mishaps are manually
clustered and reported as single rows within an FMEA. For
each cluster, we compute frequency, severity, and overall risk
in accordance with FAA standards. This methodology can be
applied as part of a broader safety management system to
track trends in mishaps (e.g., likelihood, severity) and discover
knowledge (e.g., causes, effects) that can be utilized to improve
safety outcomes and system performance.

Index Terms—Machine Learning, Named-entity Recognition,
FMEA, Natural Language Processing, UAS

I. INTRODUCTION

Wildfire response is an inherently dangerous operation,
with hazardous conditions affecting both ground and aerial
operations alike. In the United States, 2021 reported the
second highest amount of firefighter fatalities in ten years,
with twenty-three personnel fatalities [1]. Of those fatalities,
three were due to aerial operations with an additional three
due to vehicle accidents [1]. Fire fighters also suffered from
twenty-six burn incidents, twenty-three “hit by” (i.e., tree,
rock, or vehicle) incidents, and eighteen entrapments. With the
number and size of wildland fires increasing [2] in part due to
climate change [3], first responders are seeking new methods
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to improve efficacy and safety of wildfire response opera-
tions. Unmanned aircraft systems (UAS) show promise for
improving wildfire suppression through increased situational
awareness, while simultaneously improving safety by replac-
ing manned operations with autonomous vehicles. Despite the
promise of UAS enabled operations, the implementation of this
new technology to the complex wildfire response system may
inadvertently introduce new hazardous scenarios and failure
modes.

As UAS are increasingly used in wildfire response, UAS
mishap reports are becoming available through the SAFECOM
aviation reporting system. These reports are conventionally
accessed by operators and manually parsed by analysts to
identify notable mishaps. However, modern advancements
in natural language processing (NLP) methods provide an
opportunity to efficiently extract information from reports
to augment traditional safety analysis. Bidirectional Encoder
Representations from Transformers (BERT) models are pre-
trained on a large corpus of text, including Wikipedia pages,
and achieve superior performance on a variety of NLP tasks,
such as information extraction, language inference, text sum-
marization, question answering, and query systems [4]. BERT
models learn on both the left-to-right and right-to-left text
using masking, resulting in context-dependent word embed-
dings [4]. While BERT models can perform some general
NLP tasks out-of-the-box, they can also be fine-tuned for
highly specialized tasks. Although BERT models have been
successful on a variety of specialized tasks, these models have
not previously been applied to the complex, domain-specific
language used in wildfire UAS mishap reports.

Mishap and safety reports have been identified as a key
information class for an In-time Aviation Safety Management
System (IASMS) [5]. The proposed IASMS uses services,
functions, and capabilities to conduct risk management and
safety assurance at scale [6]. However, safety reports are
conventionally under utilized in aerospace engineering because
they require manual processing and analysis to identify rele-
vant information. In turn, the present-day method of manual
safety report analysis is not scalable when large quantities
of text data is generated. Instead, the ability to automatically
extract failure relevant information from large sets of safety



reports is necessary for an IASMS. Results from this process
can support the IASMS defined functions of hazard identifi-
cation and risk analysis to inform safety assurance.

In this paper, we pre-train and fine-tune a state-of-the-art
BERT model to create a custom named entity recognition
(NER) model that extracts relevant safety information. Mishap
reports are manually annotated for entities and used to train
the model. From unstructured text, our custom NER model
can identify failure modes, causes, effects, control processes,
and recommendations. These components may then be used
to construct a data-driven failure modes and effects analysis
(FMEA). To illustrate this process, the model is applied to
wildfire UAS mishap reports to extract a FMEA-style survey
of documented failures. The resulting survey identifies and
analyzes the failure modes of battery degradation, dislodged
casing, hang fire, loss of ground control station (GCS), loss
of GPS, loss of line of sight (LOS), loss of control, parachute
landing malfunction, propeller arm disconnection, and airspace
intrusions.

II. BACKGROUND

To provide context, in this section we discuss the current
state of UAS in wildfire response, including use cases, aircraft
models, and barriers. Next, the failure modes and effects analy-
sis (FMEA) method is defined with an emphasis on data-driven
uses. Finally, we introduce named-entity recognition (NER)
and describe how a custom NER model can be leveraged to
produce data-driven FMEAs.

A. UAS in Wildfire Response

Unmanned aircraft systems (UAS) are used in the public
sector at a growing rate with programs in wildfire response,
law enforcement, and emergency medical services. Table I
provides examples of UAS models currently in use for wildfire
response, along with the mission use-cases. UAS are most
commonly used for reconnaissance and infrared imagery mis-
sions at this time; however, they may also be used for aerial
ignition in controlled burn scenarios. Organizations such as
DRONERESPONDERS help first response agencies initiate
drone programs through research, training, certification, and
sharing information. While there is increased interest in UAS
for public use-cases, most drone programs are fairly new, with
64% of participants reporting UAS programs two years old or
less from a spring 2020 DRONERESPONDERS survey [7].
Simultaneously, NASA’s Scalable Traffic Management for
Emergency Response Operations (STEReO) project aims to
introduce advanced technology, including autonomy and un-
manned traffic management, into UAS-enabled responses [8].
Hence UAS in wildfire operations is still an emerging concept
and may benefit from further safety analysis to better inform
operators of potential risks.

B. Failure Modes and Effects Analysis (FMEA)

Failure modes and effects analysis (FMEA) is a semi-
quantitative risk assessment method used for safety assurance
during system verification [10]. Conventionally, an FMEA is

TABLE I
EXAMPLES OF UAS AIRCRAFT CURRENTLY USED IN WILDFIRE RESPONSE
FROM SAFECOM REPORTS [9]

Model Use Case

Matrice 600 | Infrared Imagery, Reconnaissance, Aerial Ignition
Anafi Reconnaissance
Solo Reconnaissance, Infrared Imagery

Silent Falcon Reconnaissance, Infrared Imagery

performed after an expert analyst constructs a block diagram
consisting of a system’s high-level functions to low level
components [11]. Then, the failure modes of each component
are considered along with the operational phase the failure
occurs during, failure causes, system level effects, methods
for failure detection, and with extensions including criticality
of the effects (FMECA) [11], [12].

Because conventional FMEAs require an expert to man-
ually identify relevant failure information for the system,
the process may be time consuming and is limited to the
expert’s knowledge and experience. As a result, there is
a growing body of research leveraging existing documents
to augment FMEA construction and build knowledge bases.
For example, in 2020, Rehman et al automatically generated
FMEAs through an ontology developed from existing FMEA
worksheets [13]. This work uses manually coded relationship
logic to identify the FMEA components (causes, modes,
etc.) from worksheets [13]. Similarly, Spreafico and Russo
created an assistive tool that semi-automatically produces
FMEAs from patent documents using a custom-build semantic
model [14]. Here sentence structure is coding using logic and
key identifier words, which in turn identifies FMEA compo-
nents from free text documents [14]. While these syntactic
methods are effective, they only detect information specifically
defined by the logical rules and identified indicator terms. In
contrast, the research provided in this paper uses state-of-the-
art transformer models to identify FMEA components through
supervised training.

Named-entity recognition has shown promise as a solution
to extract failure-related information from free text. Wang,
Xhang, and Gao produce a knowledge graph of industrial
safety information from existing hazard operability analysis
reports (HAZOP) by augmenting existing BERT models [15].
The authors manually annotate data and use NER to extract
information from the reports, resulting in a knowledge graph
of all existing information in the sets of reports [15]. Kamath
successfully used deep learning methods for named-entity
recognition and relation detection to construct a knowledge
graph of information from FMEAs [16]. However, Kamath’s
entities are manually labeled, rather than extracted from NER,
and the relation detection model is custom built, rather than
pre-trained on a large corpus of text like BERT models [16].
Previous work by the authors used topic modeling to extract
a failure taxonomy from the NASA Lessons Learned Infor-
mation System (LLIS) [17]; however, this work relied on the
assumption that documents have separate sections that accu-
rately report failure modes, causes, and recommendations [18].



Instead, this paper provides a method to extract failure-
related terms from unstructured text and thus generalizes to
non-sectioned documents. Further, the custom NER model
developed in this work learns additional failure entities with
the goal of constructing a data-driven FMEA with more details
(control processes, failure effects, failure likelihood, severity,
risk) than the initial taxonomy.

C. Named-Entity Recognition

Named-entity recognition (NER) is an information extrac-
tion method used to label words (or tokens) and phrases
as specific entities, such as “person”, “location”, or ‘“date”.
Established in the 1990s, initial NER methods relied on
manual rules and lists of entities [19]. During the early
2000s, NER models shifted towards using machine learning
by framing entity recognition as a binary classification prob-
lem [19]. More recently in 2016, deep learning architectures
have been used for NER, with these methods outscoring
all other existing methods [20]. In 2018, the Bidirectional
Encoder Representations from Transformers (BERT) deep
learning language model [4] became the new state-of-the-art
for a range of natural language processing tasks, including
NER. BERT models are pre-trained on large corpora of text,
which allows the model to learn complex semantic structures
relevant to tasks such as question answering, text summarizing,
and information extraction [4]. These base BERT models can
further be fine-tuned for specialized domains. Liu et al fine-
tuned a base BERT model for named-entity recognition across
a wide range of entities [21]. Results indicated the fine-tuned
model outperforms the base model and successfully learns
entities from different domains, despite some entities having
minimal labeled data [21].

BERT models can be fine-tuned for advanced entity recog-
nition, relationship detection, and domain specific use cases.
Given named-entities, relationships between the entities can be
extracted through a process known as relationship extraction
(RE) or relationship detection (RD) [22]. While not explored
in this research, RD is relevant to extracting failure-relevant
information. In the case of FMEAs, a named cause entity
results in a named failure mode entity, which may cause an
effect entity. The primary relationships in this use case are
casual, which may be inferred once entities are appropriately
named and annotated. A specialized form of relation detec-
tion is causality mining (CM), which has been performed
using a variety of methods from syntactic analysis to deep
learning (including BERT models) [23]. NER and RD have
been successfully applied to the highly specialized biomedical
domain to detect complex relationships in research for fields
such as genetics [22]. In 2020, Lee et al. pre-trained a base
BERT model on biomedical texts to produce a biomedical
domain-specific BERT model (BioBERT), which outperforms
the base model on a variety of tasks [24]. Fine-tuned BERT
models have also successfully been used for biomedical NER
to detect entities of dosage forms, disease, drug, route of
administration, and symptoms [25]. Advanced NER methods
have been applied to detecting chemical entities from patents

as well with notable improvements in performance from tra-
ditional methods [26]. Despite NER algorithms showing high
success in custom use cases, state-of-the art natural language
processing and named entity recognition methods have not
yet been applied in a highly specialized aerospace engineering
context.

III. METHOD

To produce data driven FMEAs, we develop a two-part
method and apply it to a data set of wildfire UAS mishap
reports (SAFECOM). First, we pre-train a base BERT model
on NASA Lessons Learned Information System (LLIS) and
SAFECOM documents to tailor the language model for engi-
neering text. Next, we fine-tune the pre-trained BERT model
for custom named-entity recognition using annotated reports
from the LLIS. We then apply the trained NER model to
SAFECOM reports to extract FMEA entities. Using meta data
from the SAFECOM reports alongside the identified entities,
similar reports are grouped together to form an FMEA. The
following sections describe in detail the SAFECOM data set,
pre-training the BERT model, the custom NER model, and the
process of forming the data-driven FMEA.

A. SAFECOM Data Set

This research analyzes reports from the Aviation Safety
Communiqué Database, or SAFECOM, which is a non-
punitive safety reporting system intended for documenting
aviation mishaps, hazards, and incidents during specialized
operations, including wildfire response. Operators or witnesses
may file a report about any safety-related issue that may cause
a mishap during operations such as wildfire response, search
and rescue, aerial mapping, and research missions. The reports
consist of a narrative text, corrective action text, and meta
data about the operation, including mission type, damages,
and injuries. Of the 21,503 reports filed from 1994 to 2021,
only 180 reports are related to UAS in wildfire response.

Figure 1 shows the frequency of both overall and wildfire-
specific UAS reports from 2014 to 2021. During this time
period, overall UAS reports increase steadily with wildfire-
related reports accounting for a growing proportion of total
UAS reports. UAS mishap reports originate during various fire
suppression operations for different aircraft, including water
drops, air attacks, reconnaissance, retardant drops, aerial igni-
tions, infrared imagery, and passenger transport. SAFECOM
reports indicate mishap categories, and the distribution of those
reported categories are shown in Figure 2. The most common
reported category is “intrusion” followed by general “UAS”
and “fleet operations”. While reported less often, the “loss of
link” and “loss of GPS” reports are interesting as they dictate
specific failures in the UAS aircraft, rather than the aerial
operation as a whole. Despite UAS being used in wildfire
operations across the United States, the Pacific Southwest and
Intermountain regions report the most mishaps in Figure 3,
which may be due to more UAS use in those regions in
general.
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Fig. 1. Histograms of both non-fire and wildfire UAS mishap reports from
SAFECOM.
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Fig. 2. Distribution of reported mishap categories from SAFECOM reports
on UAS in wildfire response.

B. BERT Pre-training

Although BERT models are pre-trained on a large corpus
of text, they can be further pre-trained on domain specific text
to improve the masked language model. We additionally pre-
trained the ’bert-base-uncased’ model on the full LLIS and
SAFECOM data sets. The training set consisted of 2,102 LLIS
documents from 1985 to 2021 and 21,503 SAFECOM reports
from 1995 to 2021. This additional pre-training allows the
BERT model to learn the context of specialized words and the
unique language style present in engineering documents. Pre-
training is technically a supervised process, where the labels
used in training are the token (i.e., word or word piece) ids,
which are also the model input. The model was pre-trained
on the LLIS and SAFECOM data for seven epochs using an
NVIDIA GPU, with training time lasting just over forty-eight
hours.

C. Custom Named-Entity Recognition

We develop a custom named-entity recognition (NER)
model which detects entities for failure analysis through fine-
tuning a BERT model. A custom model is needed for this use
case because failure-relevant entities are not included in pre-
trained models, and thus cannot easily be extracted without
custom model development. This custom model is developed
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Fig. 3. Distribution of UAS wildfire SAFECOM reports across USFS regions.

according to Figure 4, primarily using the Huggingface Trans-
formers and SpaCy APIs. First, we define the entities we want
the model to recognize and manually tag reports to build
training, testing, and validation sets. Here the LLIS is used
for training and validation, while the SAFECOM UAS reports
are used for testing. In accordance with NASA guidelines and
handbooks [10]-[12], [27], the custom entities in this research
are defined as follows:
1) Failure Mode (MOD): The particular manner in which
a component or system fails to perform its intended
function.

2) Failure Cause (CAU): Why the failure mode occurs;
a condition or defect (a physical defect, a defect in
a process or design, an environmental condition, or
human error) that initiates a process leading to a failure
mode.

3) Failure Effect (EFF): The impact/consequence of the
failure mode; an impact can be component level,
subsystem level, system level, or mission level.

4) Control Processes (CON): Existing systems or
processes that are intended to prevent the occurrence
of the failure mode or control the severity of the effect
(i.e., a mitigation).

5) Recommendations (REC): Future actions required to
prevent the occurrence of the failure mode or its effects;
i.e., how should the existing control processes be
augmented.

When annotating, we kept tags as short as possible and
tagged as many terms as possible for consistency. For model
training and validation, we manually tag entities in 160 ran-
domly selected NASA Lesson’s Learned Information System
(LLIS) reports using the Doccano [28] annotation package.
Because the model should generalize to other engineering
documents, the LLIS dataset is chosen for model training and
validation as it provides detailed information on driving events,
lessons learned, and recommendations. The LLIS contains
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Fig. 4. A high-level flowchart showing the process for developing the custom
Named-Entity Recognition (NER) model.

reports on various engineered systems, from space and aircraft
to buildings operations. For example, there are a number of
reports on the Challenger space shuttle accident, as well as
documentation on best practices for specific systems (e.g.,
circuits). We assume here that failures are discussed in similar
manners across different engineering report repositories. Of
the 160 documents, 80% is randomly selected for training
and 20% for validation. To test the model performance and
provide an example output, we annotate the 180 SAFECOM
reports involving UAS in wildfire operations. Raw annotations
are transformed into BILOU (Beginning, Inside, Last, Outside
or non-entity, Unigram) tags. BILOU style tags tend to result
in better model performance [29] and provide detailed infor-
mation for multi-token entities, such as the start token, middle
token, and end token. For example, a failure mode annotation
of the tokens “short circuit” would be tagged: “B-MOD”
“L-MOD”. Next, the pre-trained ’'bert-base-uncased’ model
is fine-tuned by training on the annotated LLIS documents.
BERT models have limits for the number of tokens in a
document, so each document is decomposed to individual
sentences to ensure all text is processed in training. The model
is trained on an NVIDIA GPU for four epochs, resulting in
a total train time of approximately three and a half minutes.
The model uses a custom cross entropy loss function that is
weighted according to the entity class balances in the training
set. The training set is naturally imbalanced with 78,250
non-entity tokens, 6,548 recommendation tokens, 3,679 cause
tokens, 2,587 failure mode tokens, 1,840 effect modes, and
1,377 control process tokens. Following training, the fine-
tuned model is tested by predicting entity labels on the 180
annotated SAFECOM documents. The fine-tuned model is
then saved for reuse on other documents.

D. FMEA Extraction

A Failure Modes and Effects Analysis (FMEA) is extracted
from the SAFECOM reports according to Figure 5. The two
free text sections of the reports, “Narrative Text” and “Correc-
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Fig. 5. Displays how each component of the FMEA is extracted from a
SAFECOM report.

tive Action”, are combined prior to applying the custom NER
model from Section III-C. From these sections, the NER model
extracts the failure cause, mode, effect, control processes, and
recommended actions for the FMEA. Raw entities extracted
using the NER model are post processed to combine sub-word
tokens into complete words, remove non-word entities, remove
repeat words, and truncate the number of words displayed to
a predetermined number for readability. Next, the “Mission
Type” field of the reports is used directly for the “Phase”
component of the FMEA. Reports with similar failure modes,
such as reports on airspace intrusions, are manually clustered
together to form a single row of the FMEA. Raw frequency
is then calculated for each row, then converted to a likelihood
score, L, from 1-5 in accordance to FAA Order 8040.4B [30]
in Table II. Here a high likelihood score indicates greater
risk. Severity, S, is calculated in Equation 1 and dependent
on injuries, damages, and presence of hazardous materials.
Similarly, a greater severity score indicates a greater risk.
After examining the SAFECOM reports with UAS mishaps,
we find none of the reports contain injuries, which is likely
due to the unmanned nature of these missions. However,
we still include injuries in the definition of severity as it is
important to consider when quantifying failure consequences.
Thus S = 0 indicates a negligible impact, S = 1 indicates
either minor damage or hazardous materials threat, and S = 2
indicates damage with hazardous materials involved. Note that
two higher values of S are conventionally considered in cases
with: 1) multiple serious injuries, a fatality, and/or major
damage; and 2) multiple fatalities and/or complete loss of the
aircraft [30]. Risk, R is calculated as the product of likelihood
and severity in Equations 2, with greater risk scores indicating
higher risk levels.



TABLE II

LIKELIHOOD CATEGORIES FROM FAA ORDER 8040.4B.

Level Description Rate
5 Frequent > 100 per year
4 Probable > 10 per year
3 Remote > 1 per year
2 Extremely Remote > 1 per 10 years
1 Extremely Improbable < 1 per 10 years

TABLE IIT
INTER-ANNOTATOR AGREEMENT FOR LLIS AND SAFECOM
ANNOTATIONS USING F1-SCORE.

Entity LLIS Fl-score SAFECOM Fl-score
CAU 0.507 0.669
CON 0.465 0.538
EFF 0.649 0.691
MOD 0.526 0.540
REC 0.679 0.475
Average 0.589 0.590
S=I1+D+H
7 1 if injuries = true
0 if injuries = false
D 1 if damage = true (D
0 if damage = false
I% 1 if hazardous materials = true
0 if hazardous materials = false
R=SxL 2)
training loss
2.25 validation loss
2.00
21.75
2
5
2 1.50
]
S
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m
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Fig. 6. Learning curves of training and validation loss during custom named-
entity recognition model training.
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Fig. 7. Performance metrics on the LLIS validation set for the custom named-
entity recognition model during training.

IV. RESULTS

To examine the consistency of annotations between the
authors, Inter-annotator agreement (IAA) is calculated. Both
annotators tag the same twenty-five LLIS documents and
eighteen SAFECOM documents. First, we calculate Cohen’s
Kappa (x) [31], which is found to be x = 0.586, indicating
moderate agreement. Additionally, TAA is calculated using
f1 [32] shown in Table III. Overall, the authors have similar
average IAA score between the LLIS and SAFECOM data sets
seen in Table III. Failure effects have the greatest agreement
across both data sets, while recommendations and control
processes are less consistent. Thus, differentiating between
similar entities, such as control processes and recommenda-
tions, is difficult even for human annotators, and likely will
also be difficult for the NER model as well. The training
and validation set for the custom NER model are formed
from annotated LLIS reports, and the test set is the 180
SAFECOM UAS reports. Learning curves for the custom
NER model are shown in Figure 6, with training loss and
evaluation loss graphed over the four epochs. The difference
between the training loss and validation loss curves after epoch
two increases in Figure 6, which indicates more training data
may be needed. Performance on the validation set throughout
training is shown in Figure 7. Accuracy is much higher than
f1, precision, and recall, due to class imbalances. The scores
due increase over time, which implies the model is learning
the named entities.

In comparison to the training and validations sets, per-
formance is lower on the unseen test set consisting of 180
SAFECOM reports on UAS mishaps in wildfire response.
Metrics on the test set are in Table IV, with metrics on non-
entity tokens excluded because they inflate the scores due to
class imbalances. In general, the scores in Table IV are not



TABLE IV
CUSTOM NAMED-ENTITY RECOGNITION MODEL PERFORMANCE ON THE
TEST SET OF SAFECOM REPORTS ON UAS MISHAPS.

Entity Precision Recall F-1 Support
CAU 0.31 0.19 0.23 1634
CON 0.49 0.34 0.40 3859
EFF 0.45 0.20 0.28 1959
MOD 0.19 0.52 0.28 594
REC 0.30 0.59 0.40 954
Average 0.41 0.32 0.33 9000

very high. The model performs best on identifying control
processes and recommendations, with F1=0.40 for both. Pre-
cision is higher than recall for all entities except failure modes,
thus the model tends to correctly identify entities more often
than incorrectly identifying non-entities as entities. This is
further seen in the confusion matrix in Figure 8, where the
proportion of the true labels identified as a predicted label
is shown. Correctly predicted labels are on the diagonal of
the matrix, with recommendations and failure modes having
over 50% of entities accurately predicted. For all entities
the majority of false predictions are non-entity labels (“O”);
however, failure causes also have a large proportion (27%) of
entities incorrectly classified as failure modes. Overall, Figure
8 shows the custom NER model does successful generalize to
the SAFECOM reports by correctly identifying entities, but the
large amount of tokens mistakenly classified as non-entities is
again an indication that more labeled training data is needed.
While these quantitative measures of model performance could
be improved, the qualitative output from the constructed
FMEA exemplifies the usefulness of the custom NER model
for failure entity extraction.

Manual clustering of the 180 SAFECOM reports on wildfire
response UAS mishaps led to twenty-four distinct failure
modes. Due to space limitations, a set of ten clusters is selected
and the resulting FMEA generated using the custom NER
model and method described in Section III-D is displayed in
Table V. The cause, mode, effect, control process, and rec-
ommendations columns contain a truncated set of the named
entities extracted from each cluster’s reports with minimal
post-processing. Most clusters have extracted entities that are
relevant to the column, such as dislodged casings having
cause “winds funneled under” and loss of line of sight (LOS)
having an effect of “collided” with “tree”. In contrast, the
causes extracted for UAS intrusions seem to be less relevant,
where as the effect, control process, and recommendations are
more intuitive. Each row of the FMEA also has the failure’s
likelihood (L), severity (5), and risk (R). Results indicate
propeller arm disconnections are of the highest risk (R = 3.0),
followed by loss of control (R = 2.0), and loss of GPS
(R=1.2).

V. DISCUSSION

A custom named-entity recognition model trained to detect
failure-relevant entities shows promise for extracting FMEA-
style results from repositories of mishap reports. We success-
fully trained a custom model on limited data and applied it
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Fig. 8. Confusion matrix for named-entity recognition on the SAFECOM test
set. Proportions shown are the amount of the true label that is identified.

to an unseen data set to produce a study of UAS failures in
wildfire response operations. The current model has difficulty
differentiating failure causes from failure modes, which is
also a known problem for human experts who manually
construct FMEAs [33]. Regardless, the resulting FMEA pro-
vides valuable insight on possible failures of UAS in wildfire
response operations with the majority of extracted entities
corresponding with expectations.

While the results of this research show promise in leverag-
ing BERT models for engineering information extraction tasks,
like custom named-entity recognition, our custom model’s per-
formance is sub-par compared to conventional NER models.
The failure-relevant entities our model extracts tend to be
“long tailed”, consisting of multiple words and characters more
so than conventional entities. In turn, our model would benefit
from more extensive training with more labeled text, yet anno-
tation is a costly and inconsistent process. Additionally, there
are varying levels of granularity of FMEAS in practice, which
may impact the model’s performance. Some analyses are
focused on the failure mode of an individual component in a
mechanical system, where as other failure modes may be from
a complex system as a whole. In other cases, there is a chain
reaction of one condition causing another condition, which
may cause another, eventually resulting in a failure mode with
certain effects. Discerning failure cause from failure mode
may be difficult for our custom NER model in these cases,
as one failure mode may be the cause of another failure mode
[33]. Despite the custom NER model successfully extracting
the qualitative components of an FMEA discussed in this
paper, there are other components of an FMEA that cannot
be determined from this process. For example, FMEAs often
include a column to discuss the probability of detection for a
failure mode, with difficult to detect failures indicating higher
risk. This can only be performed by an expert, and trying
to approximate probability of detection with the automated



TABLE V

A PORTION OF THE FMEA EXTRACTED FROM SAFECOM REPORTS USING THE CUSTOM NAMED-ENTITY RECOGNITION MODEL, INCLUDING EXAMPLE
SAFECOM ID NUMBERS FOR EACH CLUSTER. EXTRACTED ENTITIES ARE SEPARATED BY COMMAS AND COME FROM THE REPORTS FOR THAT CLUSTER.

Reconnaissance

Cluster Phase Cause Mode Effect Control Process | Recommendations | L S R ID
Battery Reconnaissance; | button, not, | hard, landing, | dropping, 10, | assumed batteries will be, | 2 | 0.33 | 0.67 | 17-0977
Infrared Imagery | could, issue, | depleted, battery, | percent, lost, fell | manual, control, | tracked on an indi-
battery level | 40 percent, | at close to free, | bringing it | vidual, level, be, re-
status, showing battery level, | fall down, manually, | moved
sufficient power the, uas
Casing Reconnaissance; | fuselage, battery hit, motors, shut | propeller and | None 2 | 0.00 | 0.00 | 21-0015
dislodged Infrared Imagery | cowling on | hatch cover | down, the, small, | battery hatch
the aircraft was, | disengaged nick, trap the, | cover were,
missing, winds | from the, | dirt replaced,
funneled under motor failsafe, redesigning
activated, dirt the battery
Hang Fire Aerial Ignition form of, visible, | a, hang, fire, on, | in, flight, fires vo assisted the | follow, 1 | 0.00 | 0.00 | 20-0872
hang fire, | aircraft gave a, pilot, resetting | immediately
functioned, hatch motion, er- the ignis per, | using the, camera,
melted, sphere, | ror took control identify any, ensure
was still that you
Loss of GCS | Aerial Ignition; | error, in flight, | immediately, reset the home, | management, 31033 | 1.00 | 21-0172
Reconnaissance; | combination, failure, gsc, | ignis, warning, | point, noted the | pulling flight logs
Infrared Imagery | thermal, signal, | disconnection, crash from, | gps, location, up, | and, video, ensure
controller and, | error, video, | separated, plan that, are, done
feedback, gcs | loss, motor, | motor, home,
did not wine not, turned
Loss of GPS | Other; erratic, nose of | of, solo made | experienced loss, | autonomous, should have been, | 3 | 0.40 | 1.20 | 21-0138
on UAS Reconnaissance; | the aircraft was | contact with, | gps, tree, loss | regain manual | suspended, or, can-
Infrared Imagery | pointed at, lack | solo lost, gps, | of, control, and, | flight, control, | celled, having eyes
of winds, battery crash, shifted initiate ” return | on the
to home
Loss of Line | Aerial Ignition had, lost, of | with a, broken, | aircraft, collided, | a hand held led, | having the, visual | 1 | 1.00 | 1.00 | 20-0949
of Sight the aircraft, | broken arm lock- | tree, tilted and, | light, spot the, | observer 90, de-
(LOS) position, and | ing, ignis hous- | fell about 15’to | pad, exactly, | grees, off of the
the, pad, could ing was, cracked | the, ground analysis landing
Loss of con- | Reconnaissance; | left wing aileron | rapid and | steep, aircraft, | no, monitored | be, inspected and, | 3 | 0.67 | 2.00 | 20-1042
trol Infrared Imagery | servo was, stick- | uncommanded, dropped and hit | instruments, tested, at, facility,
ing, aircraft, hit, | descent, roll | the, feed and | programmed compass and, micro
wall, refused and, aircraft, to | connection was flight,
quickly lose terminate, land,
troubleshoot,
reviewing the
Parachute Infrared Imagery | chu, fully, | deploy, partial, | hard, fuselage | checked all | site, packing, use a, | 1 | 1.00 | 1.00 | 18-0821
Landing parachute opening, the, | was, damaged, | parachute, buddy, check
Failure was packed, | canopy been on, confirmed
incorrectly, proper
drogue chute
was packed
Propeller Aerial Ignition; | heads on a pro- | missing, snap, descended | photo, was, pro- | check propeller, | 3 | 1.00 | 3.00 | 19-0298
arm Aerial Ignition | peller bolt had, | separate bolt | and, impacted | peller assembly | bolts, and,
disconnect (Prescribed); normal, aircraft, | head had, | the, ground, 4, | was, rebuilt, test | document all
(sheared bolt | Infrared Imagery | having difficulty | sheared, propeller, where, | flight, full, in- | bolt, failures, and
heads, etc.,) loud, piece | flight spections potential
of, unknown
UAS Water Drop; | system, heavy, | firefighters, a, | immediately, tfr was put in | wide circulation of, | 4 | 0.07 | 0.27 | 16-0657
Intrusion Aerial Ignition; | smoke, erratic | recreational cease, leave the, | place, was, uas, | events, go, taken,
Passenger fire, conditions, | type unmanned | catastrophic, confronted, and, | maintain visual on,
Transport; recreational, ua, | aircraft system flew out of, | removed documented
Helitack; Initial | dropping, water sight, ceased
Attack;  Other;
Retardant;
Air-Attack;
External Load;
Leadplane;




processes in this work may lead to incorrect estimations with
potentially costly consequences.

Despite these limitations, the work presented in this paper
is a step towards automatic information extraction from safety
reports and can be a component of a scalable IASMS [5].
This method provides a means to track risk-relevant trends
in mishaps, such as likelihood and severity. The custom
NER model discovers knowledge and extracts specific safety
relevant information, which can in turn be used to improve
safety outcomes. By identifying the set of failure causes and
effects, safety analysts can target specific known causes of
failures and implement mitigation strategies with the range
of effects in mind. Recommendations documented in safety
reports by operators are also aggregated and can be leveraged
by engineers. As the custom named-entity model improves
with more training data from different datasets, it can be
applied to a greater range of safety reports with higher quality
information extraction.

VI. CONCLUSION AND FUTURE WORK

In this research, we built a custom named-entity recognition
model to extract failure-relevant entities, including failure
cause, mode, effect, control process, and recommendations,
from mishap reports. Entities identified from the custom
model can be used to automatically construct a data-driven
failure modes and effects analysis. This was achieved by fine-
tuning a BERT model on annotated NASA Lessons Learned
Information System documents. Our custom model performed
satisfactorily, given the limited training data, with an aver-
age fl-score of 0.56 on training data. To test the model’s
generalizability, we applied it to a set of 180 SAFECOM
mishap reports on UAS in wildfire response operation. The
model performed acceptably on the test set, with a weighted
average f1-score of 0.33. Finally, the entities extracted from the
SAFECOM reports were synthesized into an FMEA detailing
UAS mishaps in wildfire response operations. These results
indicate airspace intrusions are the most common failure
incident. However, other failure modes, such as loss of GPS,
loss of control, and sudden battery drainage have an effect on
mission outcomes.

Through the processes described in this paper, repositories
of mishap reports are successfully leveraged to construct a
data-driven FMEA. This process is part of a larger need to
optimize the management of historical engineering knowledge.
Currently, there is a vast amount of knowledge captured
in mishap, near miss, and failure reporting systems, such
as SAFECOM and the LLIS. Unfortunately, however, this
information exists primarily in text-data and reports must
be individually parsed and accessed using simple query
methods. Instead, moving towards an intelligent knowledge-
management system that can synthesize trends in reports in
a digestible way will provide more valuable use to designers
and safety analysts.

In the future, we hope to improve our custom named-entity
recognition model for FMEA extraction through additional
training. There is a large body of research using ontologies to

extract failure information, and utilizing the information from
these ontologies in training could improve model performance
with little additional human annotation required. The model
was only applied to a small subset of SAFECOM reports,
and we would like to apply it to more SAFECOM reports,
as well as other data sets. Previously, topic modeling methods
have been used to extract FMEA-style results, and it would be
insightful to compare the topic modeling results to the custom
NER model results. Eventually, relation detection (RD) [22]
should be implemented into the custom model in this research,
specifically for detecting causal relationships. In turn, the NER
with RD would allow for the construction of a knowledge
graph, which may bridge together various failure modes,
causes, and effects to understand complex system dynamics.
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