PRELIMINARY RESULTS FROM PROPELLANT MASS GAUGING IN MICROGRAVITY WITH ELECTRICAL CAPACITANCE TOMOGRAPHY

Jed Storey, NASA LSP Fluids Analyst, PI
Brandon Marsell, NASA LSP Environments and Launch Approval Branch Chief
Mike Elmore, a.i. Solutions Fluids Analyst
Scott Clark, a.i. Solutions Project Manager
The Propellant Mass Gauging Problem

- Most propellant gauges are designed to work in gravity or accelerated environments
- Most propellant tank mass gauging systems currently in-use have at least one major drawback. Examples:
 - Require propellant to be settled in aft end of tank and/or quiescent
 - Propellant must be in contact with walls
 - Require 100’s of pre-computed simulations that are compared to measurements to find a best fit propellant distribution
 - Require the propellant to be constant density
 - Require mechanical actuators
 - Most have low (>3%) mass gauging accuracy
- Need a technology that addresses these issues
Impacts of Mass Gauging Improvements

• Applicable to all launch vehicle and spacecraft providers, as well as their customers
• Improvements to accuracy and precision:
 – More accurate propellant utilization tracking
 – Lower propellant mass dispersions
 – Lower required residuals/margins for filling-topping as well as final residuals
 – More informed decisions on whether or not to perform a deorbit burn = potential to reduce orbital debris
• Enable mass gauging during all phases of flight would:
 – Better tracking of propellant usage, distribution, and dynamics during launch
 – Remove need to perform maneuvers in space to settle propellant: improves efficiency, reduces propellant consumption, and allows for tracking cryogenic boil off
• Impacts: improved mass gauging accuracy, lower risk, slight performance improvement, reduced orbital debris
Electrical Capacitance Tomography

• The Technology
 – ECT works by measuring the capacitance between multiple pairs of thin, conducting plates.
 – Since capacitance is related to permittivity, which in turn is related to density one can measure the distribution of liquid inside of a tank using ECT.
 – Measurements can be done in real-time
 – Finally, integration of the density distribution yields the mass inside the tank.

• ECT is not new. Originally developed for the oil and gas industry to measure multi-phase mass flow rate in pipes.
• ECT has recently been applied to tanks to measure liquid volume and mass.
• ECT has not been tested in microgravity – until now.

Example ECT System
Experiment Purpose and Objective

- Primary Objective: Demonstration of accurate liquid mass gauging in a subscale propellant tank using an ECT system during a zero-g parabolic aircraft flight.
- Secondary Objective: obtain the 3D liquid distribution vs. time and use this in a CFD validation study
- Tertiary goal: encourage US-based funding for ECT development work

- Funded by an LSP Study in 2021
- NASA Flight Opportunities Program funded the flights on Zero-G’s “G-force 1” aircraft
 - Flew in May 2022
- Technology *Demonstrator*: LSP did not design nor develop the ECT hardware. LSP rented it from a company that already had a plug ‘n play setup.
a.i. Solutions’ Role in Project

• ELVIS Contract
 – Support NASA Launch Services Program (LSP)
 – LSP Special Studies (six to eight studies at any given time)
 – Propellant Mass Gauging in Microgravity with Electrical Capacitance Tomography (ECT) Study

• ECT Study
 – a.i. received RFP/SOW from NASA
 – Contracted UK company that developed ECT test setup
 » Lease of ECT hardware
 » Provide training and support ground testing
 » Support as required during test flights
 – Zero G flight procured by NASA LSP through NASA Flight Opportunities Program
Experiment Design Overview

- 2.8L aluminum, spherical test tank partially filled with a non-hazardous propellant simulant liquid (3M FC-72)
- Tank has 8 thin, internal electrodes on the interior
- ECT system installed in test tank, with data acquisition (100 Hz) box outside the test tank
- LSP addition to meet secondary objective: Small single board computer collects data from a 6-DoF IMU
- Everything mounted to a 10mm thick aluminum plate, which is bolted to the aircraft deck.
- Total volume: 1.2m x 0.6m x 0.5m
- Total mass: approximately 50kg
- Total power requirement: 110VAC, 170W (nominal).
Parabolic Flight

- Aircraft flies in parabolas, at the top of which the passengers experience freefall

- Zero-G (~0G)
- Hyper-G (1.8)
- Zero-G (~0G)

This is where most people get sick

Image taken approximately level with aircraft window (aircraft is highly pitched up)
Flight Experience and Lessons Learned

- Flights were nominal with no equipment failures
 - 4 flights at 4 fill levels: 5%, 20%, 50%, 80%
 - Collected 25GB of ECT and IMU data
 - Observed swings of +/- 1-4% fill during 0g.
- Have procedures for contingencies and practice them
- Cover everything with foam, zip tie and tape everything down
- Zero-G time and entry/exit is not consistent between flights and parabolas
- Bring backup humans, at one time half of our crew was sick
- Automated experiments let you enjoy microgravity
- Put a GPS tracker on your experiment if you ship it
The Fun of Microgravity
The Fun of Microgravity
• Once we measure capacitance, need to turn the result to a permittivity field
• A number of simulations are used to determine the sensitivity (s) of the electrodes to different permittivity fields (ε) yielding different capacitances (C)
• Once this is complete, a simple method of determining the permittivity distribution is via Linear Back Projection (LBP)
• Using the matrix S and the normalized experimental capacitance λ, an approximation of the permittivity g (and thus the density) is obtained.
Example Results – 0g

- Capacitance data was filtered with a 10Hz cut-off high order cheby2 low pass filter prior to reconstruction and volume calculation.
 - No additional filtering applied.
- Measured volume fraction swings from 47%-59%.
 - Slightly more than observed in-flight with the experiment’s software
- Peaks occur during 0g, flat portions are during hyper-g (about 1.8g's).
- Slosh decay visible during initial portions of hyper-g.
- Settled capacitance corrections may be able to correct the offset present while under acceleration.

LW reconstruction of a time point during a 0g parabola from the 50% (notional) volume fraction flight. Aircraft deck is in direction of image down.
Error Sources and Improvements

- The electric field is not uniform, particularly near the electrode edges: high gradients.
- Linear assumption is poor in regions of non-uniform electric field.
 - Liquid moving between regions of high and low sensitivity causes the oscillations seen in the 0g portions of the plots.
- Electrodes have gaps between them
 - High, non-uniform E-fields in gaps
 - Gaps result in deadbands in settled liquid volume measurement
 - Electrode placement was not precise, resulting in variable gap sizes.
 - Some extraneous tank features in the split-plane gap
- Temperature
 - Permittivity and density are temperature dependent
 - Low vapor pressure liquid -> mass transfer from temperature changes
 - Sensor and electronics temperature dependence (small, on the order of 0.2% for the temperature range seen)
 - All of these temperature effects have been corrected.
- Mechanical improvements will likely reduce error. Examples:
 - More exact electrode placement
 - Smaller gaps between electrodes
 - Thinner electrode plates and/or preventing liquid from wicking/flowing between the electrodes.
 - More electrodes, though there is a limit because SNR decreases with decreasing electrode size.
- Some processing improvements could reduce error. Examples:
 - Moving average or other low-pass filtering techniques for volume and/or mass calculation will smooth spikes.
 - Nonlinear calibration or capacitance corrections based on ground tests at many fill levels. Useful for settled liquid only.
• **Primary objective achieved:** ECT sensor systems are useful as a propellant mass gauging technology in both an accelerated and microgravity environment

• Expect significantly better performance if previously mentioned improvements are implemented.

• Future work, all in progress:
 - Post-process all of the data
 - Uncertainty analysis and error correction
 - Implement more accurate reconstruction algorithms
 - Write journal papers

• Not currently planning another flight of this hardware.
 - Hoping to inspire other NASA researchers and industry to further develop and use this technology.
Acknowledgements

• LSP
 • Studies Board
 • Management
 • a.i. Solutions
 • IT
• KSC UB Directorate
• NASA Flight Opportunities Program
• KSC SI, Flight Operations
• KSC SMA