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= Solid mechanics simulations of TPS
materials allow us to understand their
mechanical performance during entry. '

= TPS mechanical properties are needed for
the full-scale models, these can be
obtained through micro-mechanics
modeling of the material’s microstructure.

* This modeling process
leverages two frameworks
developed at NASA:

= The Porous Microstructure
Analysis (PUMA) Software [1].

» The Porous material Analysis
Toolbox based on OpenFOAM
(PATO) [2].
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Introduction to PuMA

The PuMA software is able to either generate domains artificially or import them from micro-CT scans and compute
material properties such as: porosity, specific surface area, effective thermal conductivity, pore diameter, tortuosity,
permeability. It also enables the computation of mechanical properties though its anisotropic elasticity solver.
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ANALYSIS WORKSHOP

» Lead developers: J.C. Ferguson and F. Semeraro

» |nstallation: conda install -c conda-forge puma

= Open-source repository: https://github.com/nasa/puma
= Documentation: https://puma-nasa.readthedocs.io

= Community chat: https://gitter.im/puma-nasa/community
» Tutorials: YouTube channel and Colab notebook

Introduction to PuMA

Numpy Arrays
Matrix (X,Y,Z)

import pumapy

rGraphicaI User] >

#include "puma.h"

Data Structures
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Orientation (X,Y,Z,3)
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PuMA architecture diagram
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Micro-mechanics Model

» This presentation focuses on multi-scale

modeling to obtain the mechanical
properties TPS materials.

» Modeling steps: Matrix - Tows — Unit Cell

= TPS optimization: constituents’
selection, resin infusion process,
curing process, yarns’ structure,
fiber volume fraction...

= PuMA’s voxel-based stress
analysis solver for anisotropic
linear elastic materials:

= Finite volume
= Cell-centered discretization

= Cell-face stress values obtained
with the MPSA-W method [3,4]

V.0 =0 where

o =Ce =
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Micro-mechanics Model

= Effective mechanical properties obtained with PUMA
following the Representative Volume Element (RVE)
homogenization method [5,6): >

» Run a simulation for each principal direction (3 total) .
Imposing a known displacement on each face while keeping /’:

1

J

the opposite face fixed.

= Symmetry or periodic boundary conditions for the other 4 )
faces.
» Solve the stress field generated in the material and obtain
the anisotropic elasticity tensor C.
,,,,, >
=  Assuming isotropic or orthotropic behavior, it is possible to ,"
obtain from C the effective Young’s modulus E, and the R
Poisson’s ratio v.
1w A,

= Similar approach can be used for the pure shear
cases.

PuMA RVE implementation
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S. Fraile Izquierdo, F. Semeraro, M. Acin, 2022. Multi-Scale Analysis of Effective Mechanical Properties of Porous 3D Woven Composite Materials. AIAA Scitech Forum

Matrix: porous phenollc resin

Validated with Bert’s [7] and Roberts’ [8] semi-
empirical equations that follow the structure:

Eo= b (1- 52|

max

Intra-tow fiber packing

ROM [9] EL=EnVi+EnVin VLT = ViV + ViV
Halpin-Tsai Er=E, 1+ &nVy where n='—L1 _Em
Nielsen [10,11] L —ymV ’ r+é Em
Chamis [12)  E En
amis T=
E"’l
- \/V_f (1 B Efr)
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Young's modulus [GPa]
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Validation Case: 3D Woven TPS

ANALYSIS WORKSHOP

TPS unit cell
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Introduction to PATO

= PATO is an open-source software for Computational
Material Response of reactive porous materials submitted
to high-enthalpy environments [13].

= Enables modeling most of the atmospheric entry material
response physics to refine estimates of mission risks:

Equilibrium / Finite-rate chemistry / Multi-material

= Ablation / Pyrolysis / Heat conduction

» Recent advancements [14]:

Coupling with CFD
PICA-NuSil Modeling

Unified Solver

Mechanical Erosion Modeling

= The Mechanical Erosion Model relies on the
mechanical properties computed with PUMA.
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Introduction to PATO

= Point of contact:
= Jeremie B.E Meurisse

= PATO website:
= https://pato.ac/

= PATO module on PFE

= module use —a
/u/jmeuriss/modulefiles

= module load PATO/dev
= module load dakota/6.7
= module load cmake/3.9

= 1D, 2D, 3D tutorials on PFE

» /u/jmeuriss/sharing/PATO/PATO-
dev/tutorials

» Development repository:

=  https://qgitlab.com/PATO/PATO-
dev

= Open-source repository:

= https://github.com/nasa/pato
14
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Mechanical Erosion Model

= The goal of this work is to model the mechanical response

mechanical erosion due loads and thermal effects during
atmospheric entry:

of TPS materials during atmospheric entry. . E%_
- N - : T B
= Determine if there is additional surface recession in AR
Thermal Protection Systems (TPS) materials as a result of 2 | | s
< E NORMAL 3

z

1
0
%l
-
=
i
&N
A
lm:tluu I.
Jy bl
1,0
Jp':‘.”

e | GCrE=c™MIg-=
I gq=—_
= External forces on the heatshield’s surface: shear stress and o }':_';,______ o
pressure from the flow field b
= Thermal stress induced by the material’s temperature field POROSITY j HORAL A5 FRESHE
: DENSITY
= Normal stress induced by pyrolysis gas build-up !
. . . |
» Shrinkage due to pyrolysis of the material |'
;
» These same physics also apply to intumescent gap-filler | TEMPERATURE
materials such as RTV, which are important to understand P
to model the differential recession between the TPS Thermal mechanics of charring ablators [15]

material and the gap-filler.
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Mechanical Erosion Model

tensor [ Ty, | Is extracted from | | This PATO solver computes the | , This solver computes the stress |

_the_lio_sﬂlgvlgti_litz._ ______ J | pressure (Darcy’s flow) and the | tensor and the displacement for |

I temperature inside the material as | : orthotropic materials using the :

A well as the surface recession. : | CFD wall shear stress tensor. |

—— DPLR —— PATO
Aerothermal o, h C,%| | Material | | Update | | Stress | | Failure | | Mass | T s
environment » | | response i— mechanical | analysis — criteria | removal | . .
Hypersonic . solver | ! properties : | solver ! ! model | ! model
CFD Lo @--mmmmmmmmm - ' [ T _________ ' Lo @ mmmmmmmmee ' [ Y ' L@ - mmmmmmmmmme '
r—-———7— I ____________ I "___________L________i l______ll - - T ¢ ————-
| Hypersonic CFD computed | : The mechanical properties (E, | | These models define the | | The mechanical removal |
: using DPL. The aero-thermal : | G, nu and CTE) are updated | | regions where the stress is : : model coupled with the :
: environment: wall pressure | : as a function of the material : | higher than the ultimate | | material response solvers |
| [Pu], recovery enthalpy [h] : | temperature and orientation. ! : strength and then move the : : is able to predict the total :
: and heat transfer coefficient | Tt T T T T T T T T T T T T T | mesh accordingly. I | recession $ in the material :
: [C,]) are extracted from : : due to surfgce chemlstry,
Blayer. The wall shear stress | | and mechanical erosion |
: F————————————————— — — el Bt e ]
|
|
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Assuming small strains and small rotations, the conservation of linear momentum solved in PATO follows [16,17]:

Implicit Term Explicit Terms

-} W !:r} L]
(.:_ P i dQ(} = jg np - (K . Vu) dF{) + 55 np - o dr(} - % np - (K . VH) dr(} + ] P b dﬂ(}
ot Qp ot L'p Lo 'y Qp

Where K-Vu is an approximation of the stress field in terms of the displacement field. This segregated solution
approach allows to solve the governing equation independently for each direction. Outer iterations are performed
until the explicit terms change less than some predefined tolerance; in that case, the first and third terms on the
right-hand side "cancel out" and the calculated displacement field satisfies the governing equation.

) ) ) —(J‘“- -C“ Cip Cy 0 0 0 ] 'E” - ('r’”ﬁT-
Orthotropic constitutive law for onl (Chh Cn Cx 0 0 0 ||en—anAT
mgterlal: the 81 terms of the elastic Cijki = [(E1, E2, E3.G1,Go, on| € G Cmo 0 0 0 ||en—anAT
stiffness tensor, C, can be reduced to G1. V12, 23, v31) ool 10 0 0 cu 0 0 €12
nine independent material parameters: @ e O 0 0 0 Cs 0 .

h(]-_}]_ | 0 0 0 0 0 Cﬁf,_ | €3]
The discretized equation for each P
control volume P can be written in the apip — Z an; un; = bp Assembled for all CVs [A][U] = [B]
form of an algebraic equation: F=1 .
17
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Solver Validation Cases

= The analytical solution of the stress ¢ around the circumference of the hole derived by RCRCICS ez
Lekhnitskii [18] has been used by different authors to validate their models [19,20]. To Ex 10, 30, 50 GPa
validate the orthotropic stress analysis implemented in PATO, the test case shown Ey 10, 30, 50 GPa
below was used which consists of a plate of 8 x 8 with a hole radius of 0.5 and 70,405 Gy 8 GPa
hexahedron elements. Vay 0.25
o>
o>
o>
P =100 kPa
o> >
oD
o>
h L_
A A AN AN AN A

0 0 0 o] o] o] /

Detail of the model (left) and mesh structure (right) for the Orthotropic Plate with a Hole validation case
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Solver Validation Cases
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Solver Validation Cases

Oy (Errory,, = 0.005%)

» To validate the orthotropic thermal stress implementation, a cube
(0.5 x 0.5 x 0.5 m) shaped mesh made of 125,000 hexahedron
elements was used with the following mechanical properties and
boundary conditions:

! e
= ConstantT =300K, Tp = 100 K Y; - s

p o -33.569
= Acceleration = [9800 0 0] m/s* — ot
" Qoreno =[2-107° 4-107° 6-107°] K1 o } S \nsys
" Vyy =015, v, =0.20, vy, =0.25 - X
= E.=6GPa, E,=3GPa, E,=1GPa
= Gy, =09GPa, G,, =0.6GPa, Gy, =0.4GPa I.-E?f%

= -32.000
-32.500
-33.000

Results were compared against FEA solutions [21].
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Solver Validation Cases

o-yy (Error .« = 0.006%) G, (Errory,, =0.025%) Gyz (Error,.« = 0.057%)

ANALYSIS WORKSHOP

sigma_zz (MPa)

-16.162 sigma_yz
0.030890
sigma_yy (MPa) [ 0.025000
-29.200 0.020000
-29.250 ~ 0.015000
-29.300 -~ 0.010000
- -29.350 - 0.005000
- -29.400 - 0.000000
- -29.450 -0.005000
| o oo
-29.550 -0.020000
—gg -0.025000
-29.700 oosem
-29.761
PATO
e
S
MNASA ARC
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Failure Criteria and Mass Removal Model

Failure criteria model Mass removal model

* |n the maximum stress failure theory [6], the maximum
stresses of each mode are compared to the material
strength using the following equation in 2D:

) =1

O-IEJJ

— (Ftu,xm ’

= Where tu, cu and su are the maximum tension,
compression and shear material strengths in x and y
directions. g;; is the stress tensor computed in the
stress analysis solver. The validity of this theory is
further enhanced by the fact that spallation failure is
expected to be brittle. An example is given here:

» The surface recession rate § and the mass loss M,
due to mechanical erosion are computed as follows:

L

= — MOSS: ASAt
A7 1 P

S
Oyy Ozy

) Y

Y
Fcu,zc:v Ftu,yy Fcu,yy Fsu,a:y

= Where L is the failing distance computed with a mesh
search algorithm, At is the time step, p is the solid
density, A is the surface area. The failing region is
removed only if its topology is connected to the
surface. The veloctityLaplacian motion solver
implemented in OpenFOAM was used to move the
dynamic mesh. An example is given here:

Ultimate strengths

Failing distance using Mass removal using

Oxx = 100 kPa Oxx = 2 MPa Oxx = 100 kPa F, — 1 MPa mesh search algorithm dynamic mesh motion
oyy = 100 kPa oyy = 100 kPa oyy = 100 kPa X

Oy = 100 kPa Oyy = 100 kPa Oy = 100 kPa Feuxx = 1 MPa HOC M.

0y, = 100 kPa 0, = 100 kPa 0y, = 100 kPa Fryyy = 1MPa i vt

ayy = 100 kPa gy, = 100 kPa gy, = 100 kPa Feyyy = 1 MPa v 13

0y = 100 kPa 0y = 100 kPa 0xy = 100 kPa Fsu,xy = 1 MPa
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Conclusions and Future Work

» Described a methodology to carry out multi-scale analyses of TPS composites with PUMA to
obtain the homogenized orthotropic mechanical properties.

= Firstly, modeling the constituents at the micro-scale, and then using those results to accurately model the unit cell.

» Results were validated for the porous matrix and the yarns of a 3D woven TPS by comparing them to semi-
empirical expressions listed in the literature.

» Described the mechanical erosion model implemented in PATO to predict the mechanical
response of TPS materials during atmospheric entry.
» This model relies on having accurate TPS mechanical properties, which can be computed with PUMA.
» The implemented stress analysis solver was validated against analytical expressions and FEA results.

» Implemented a failure criteria and mass removal model that accounts for the potential mechanical erosion.

Future work:

» Validate the full-scale mechanical erosion model coupled with the rest of the entry physics against
results obtained from arc-jet experiments.
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