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Materials innovation needed for sustainable exploration

2Image credit: NASA

Ø Long-duration human exploration necessitates a reduced dependency on Earth supply

Ø Reusable and in-situ materials are critical for sustainability

Transit time:
~6 months

Mission duration:
~2-3 years



Additive manufacturing capabilities enhanced by recycling
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• In-space manufacturing (ISM) allows for on-demand 
fabrication of articles to reduce mission mass and risk

• Enabling Sustained Presence Using Recyclables (ESPUR) 
project focuses on development of reusable feedstocks

Image credits: NASA Owens and Weck, AIAA SPACE 2016
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Reusable material concept via reversible click chemistry
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ESPUR materials 
incorporate thermoreversible

Diels-Alder reactions
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Microparticle building blocks feature 
complementary polymer coatings
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Tunability possible within the large design space
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Uncoated Coated

Epoxy Microparticles
• Epoxy chemistry
• Microparticle size

• Coating thickness

Today at 2:25 pm…
M. Beaudry et al. Recent advances of the 

ESPUR reversibly assembling materials project.

Polymer Coatings
• Polymer chemistry
• Molecular weight

• Reversible chemistry



Materials characterization undertaken across scales
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Mechanical testing for 
material property calculation

NASA Langley, William & Mary

AFM

Atomic force microscopy for 
microparticle interactions

William & Mary

Discrete element models 
for microparticle packing

NASA Ames
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Molecular models for 
molecular interactions

NASA Ames



Influence of microparticle size dispersity on packing
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monodisperse

polydisperse
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Can we tune particle sizes to:

Maximize 
A-B contacts

Minimize 
void volume+ ➜

Increase 
mechanical 

strength



Discrete element method (DEM) simulations
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• Box contains at least 1000 each of type A and B 
particles, up to 10 million total

• Contact mechanics described with Hertzian model, 
experimentally relevant parameters

• Compress dilute to dense final packing

• Periodic boundary conditions
• LAMMPS

Property Model parameter

Young’s modulus kn 4.808 GPa
Poisson’s ratio ks 4.345 GPa
Coeff. of restitution γn 0.009404 μm-1 ns-1

Density meff 1.1 pg μm-3

Diameter Reff 10 μm

Plimpton et al, Com. Phys. Comm. 271, 10817, 2022; Santos et al, Phys. Rev. E 102, 032903, 2020



Monodisperse microparticles: the baseline case
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Volume fraction of A particles
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DA = DB = 10 μm

Ø Maximum A-B contacts with 50:50 
mix of A and B

Ø Packing density of ~64%



Polydisperse microparticles: experimentally informed
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Volume fraction of A particles
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DA, DB ~ N(10 μm, 1.5 μm)

Ø Slight decrease in contacts, still 
maximum at 50:50 mix

Ø Slight increase in packing density



Bidisperse microparticles: guiding future design
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Volume fraction of A particles
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DA = 10 μm, DB = αDA

Ø Shift of maximum to lower volume 
fractions of A particles

Ø Smaller size ratios ➔ more contacts



Bidisperse microparticles: guiding future design
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DA = 10 μm, DB = αDA

Ø Maximum contacts consistent with 
maximum packing fraction

Ø Larger size ratios ➔ fewer voids

Volume fraction of A particles
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Furnas, Ind Eng Chem, 1931, 23, 1052; Srivastava et al, Phys Rev Research, 2021, 3, L032042



Key takeaways from the microparticle simulations
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• The optimal A:B mixture depends on the particle size distribution

• The peak volume fraction corresponds with a peak in A-B contacts for bidisperse packings

• Increasing the A:B size ratio causes the volume fraction to increase and A-B contacts to 
decrease ➔ an expected trade-off for mechanical properties

Next steps:

• Improve discrete element model with addition of 
cohesion and friction

• Leverage atomic force microscopy data to refine 
model parameters for microparticle interactions 

• Calculate mechanical properties to elucidate 
expected trade-off behavior for bidisperse packings

cohesion sliding 
friction

rolling 
friction

twisting 
friction



Influence of polymer chemistry on properties
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How does copolymer composition affect:

• Molecular interactions

• Polymer properties

Copoly(carbonate urethane) 
(CPCU)



Molecular dynamics (MD) simulations
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• Varying the carbonate block (n = 1 or n = 4), 
similar polymer backbone length

• Varying the end-group functionalization
• Simulations contain ~17-20K atoms

• Polymer interactions described with polymer 
consistent force field (PCFF)

• Periodic boundary conditions

• LAMMPS

CPCU

CPCU-F CPCU-M

CPCU-C

carbonate block



Hydrogen bonds play a key role in polymer interactions
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• Hydrogen bonding C=O groups in both carbonate and 
urethane linkages

• Hydrogen bonding NH groups in urethane linkage only

• Increasing the carbonate block length decreases the 
frequency of NH groups along the backbone

carbonate urethane

H bond



Copolymer composition affects H-bond interactions
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n = 1

n = 4

CPCU-M
CPCU-C
CPCU-F
CPCU

Ø The first peak in the N-O radial distribution function arises from O⋯HN hydrogen bonds
Ø Increasing the carbonate molecular weight reduces the extent of hydrogen bonding
Ø End functionalization increases the extent of hydrogen bonding



Increased H-bond interactions yield higher densities
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n = 1

n = 4

exp

n = 1

n = 4
exp

Ø CPCUs with a greater extent of hydrogen bonding tend to have higher densities
Ø The experimentally measured density of a CPCU (n ≈ 3-4) is consistent with the simulations 



Increased H-bond interactions yield higher glass transitions
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n = 1

n = 4

n = 1

Ø CPCUs with a greater extent of hydrogen bonding tend to have higher glass transition temperatures
Ø The glass transition is observed at high temperatures in the simulations due to the fast heating rate



Key takeaways from the polymer simulations
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• The CPCU chemistry can be tailored to adjust the hydrogen bonding interactions

• Increasing the extent of hydrogen bonding results in increased densities and higher glass 
transition temperatures

Next steps:

• Use coarse-grained models to run larger 
and longer simulations

• Investigate influence of copolymer 
composition on mechanical properties

• Incorporate click chemistry reactions



Summary
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• Computational materials modeling provides important insights to guide materials design, 
limiting unnecessary experimental efforts

• Discrete element simulations pinpoint the optimal mixtures of functionalized microparticles to 
increase the mechanical properties

• Molecular dynamics simulations elucidate the extent of hydrogen bonds and their affect on 
the properties of the CPCU polymer coatings


