

Space Technology Mission Directorate Game Changing Development Program

Trent Martin | Molly Bannon | FY22 Deployable Hopper Annual Review Presentation | 09.14.22 Name/Email POC: molly.bannon@nasa.gov

Project Overview

Technology Product Capability

- Intuitive Machines will develop and demonstrate on the lunar surface a deployable robotic hopper (µNova) which will provide access to extreme environments not reachable by rovers or other technologies. A science payload provided by Arizona State University (ASU) will fly on this first demonstration of µNova.
- Technical Capabilities
 - Operate in Permanently Shadowed Region (60K for 45min)
 - Autonomous flight into and out of the PSR
 - Carry a 1kg payload (2.2lbs)
 - Functional flight range of more than 2.5km (1.5mi)
- Exploration & Science Applicability
 - Enabling for lunar surface science through low-cost secondary payloads on CLPS landers.
 Platform is flexible to accommodate different payloads on different mission profiles.
 - Increases: science return, lunar terrain accessibility
 - Decreases: mission cost, system complexity and mass, risk to future missions
 - Scheduled to fly in June 2023 on a Nova-C through the CLPS Intuitive Machines-2 (IM-2) mission

IM's Nova-C, the lander that will deliver μ Nova to the moon.

Team Members / Project Org Slide

Trent Martin Principal Investigator VP of Space Systems Intuitive Machines

Mark Robinson Co-Investigator Arizona State University

Matt Atwell Project Manager Intuitive Machines

Molly Bannon NASA PM/COR

Collaborations & Partnerships

- Arizona State University (Co-Investigator, imaging payload)
- German Aerospace Center (Radiometer Payload Provider)
- Puli Space (Neutron Detector Payload Provider)
- NASA Johnson Space Center (Thermal/Vacuum Test Facility)

Collaborative multidisciplinary partnerships to leverage fiscal resources, ideas, knowledge & expertise.

Deployable Lunar Hopper Technology Goals & Project Objectives

	Technology Goals
Goal #1	Enable robotic access to extreme lunar environments for scientific exploration
Goal #2	Enable regional exploration of wider areas than small rovers or other mobility platforms can cover

	Project Objectives							
Objective #1	Design, build, integrate, and test a deployable lunar hopper							
Objective #2	Demonstrate the operation of a deployable lunar hopper on the lunar surface, including flight into and out of a permanently shadowed region							
Objective #3	Demonstrate the ability of the deployable lunar hopper to gather data for demonstration science payloads and downlink to earth							

Deployable Lunar Hopper

NASA

- Completion of detailed technical design through CDR-level
- Execution of all long-lead procurements
- > Addition of new German Aerospace Center (DLR) payload (Lunar Radiometer)
- Addition of new Puli Space payload (Puli Lunar Water Snooper), which has been delivered to IM for integration
- > EDU LIDI (science lighting system) fabrication and testing completed (at ASU)
- Successful completion of in-house additive pressurant tank development, qualification testing, and flight units
- Successful testing of EDU deployment system
- Stand-up and integration of flight simulation for GN&C team

NASA

All EDU controllers through fabrication and testing

- uTRB (thermocouple routing box)
- uMECB (multi-purpose controller)
- uRCSC (thruster controller)
- HOPSI (power system interface unit)
- EDU back-up UHF radio FlatSat testing round #1 complete
- Successful completion of OBC radiation testing (round #1), with important lessons learned on internal flash storage leading to hardware change
- Successful software integration of all IO apps with new OBC platform
- Successful testing of 4G LTE radio end-to-end RF communication between Nova-C base unit and Hopper User Element
- Successful completion of software integration for control stability testing
- Successful completion of attitude control stability testing

NASA

- Successful completion of propulsion cold flow test article testing
- Successful completion of main thruster hot-fire acceptance testing and delivery of units
- Successful completion of RCS thruster development testing, qualification, and assembly of flight units (in response to vendor failure to meet our needs)
- Successful development of all weld schedules for flight propulsion system
- > Top deck pathfinder welding completed
- Fabrication of EDU engine deck and top deck completed

Ptws Flight Payload

Project Assessment Summary

Project Name	Performance				Comments					
	C S T P			Ρ						
Mid Year	G	G	G	G	Technical – Cost – Schedule – Programmatic -					
Annual	G	Y	G	G	Technical – Cost – Schedule – Multiple, extensive vendor delays for critical systems (all major power system elements, propellant isolation valve) are forcing serial integration steps to move to the right. Programmatic -					

Deployable Lunar Hopper

	Dovelop and domonstrate a deployable reb	atic happer that can provide access to extreme	
Project description:	environments and locations on the lunar su		
Cost: No cost issues at this time.	G G G C Monthly Trend	 Schedule: Propellant isolation valve material issue (shape-me pushed earliest possible delivery date to early Octo delays possible depending on acceptance test resu must be integrated serially into the propulsion syste structure closeout 	G Y Y Monthly Trend Monthly Trend emory alloy) has ober, with larger ults; this component em before vehicle
		 Flight PCDU, MPPT, and batteries have all experies vendor delays due to supply chain issues; these constructed until early September, which will delay in 	nced substantial omponents are not tegrated testing
<u>Technical</u> :	G G G C	Programmatic:	G G G C
 Current power balance base reduced margin for battery cl currently at ~120%). We are panel configuration that can configuration in case the pow determine the uncertainty are is too high. This is a risk reduction closes with no change. 	d on latest heater requirements shows harging on the surface (power balance is currently working on a possible 4 solar easily swap in for the 3-panel ver margin cannot be increased, and we ound available surface power generation uction step, and right now the mission	No programmatic issues at this time.	

Mission Infusion & Partnerships

Infusion/Transition plan

- Intuitive Machines is actively working with academic partners to develop the science case for various Hopper mission architectures, as well as organize teams to submit proposals to various NASA solicitations (PRISM, Discovery, CLPS) as applicable
- Intuitive Machines participates in the LSIC mobility technology subgroup and is actively seeking new academic and industry partners via multiple sources
- Intuitive Machines participates in multiple industry forums and conferences (LPSC, LEAG Annual Meeting, etc.) in order to seek out business opportunities for this platform
- Intuitive Machines is interested in pursuing additional dialogue with NASA on how Micro-Nova's capabilities would enable an ISRU prospecting mission
- Candidate missions and applications:
 - ISRU Survey Mission
 - Could play an important role in site selection for an ISRU plant as a part of the Artemis program
 - Mare Tranquilitatis Pit Mission
 - Ina Irregular Mare Patch Exploration Mission
 - South Pole-Aitken Basin Exploration Mission
 - Lunar Terrain Vehicle Payload

Education/Public Outreach

EPO Involvement

- Panelist participation at LSIC Fall Meeting on Nov 4, 2021 (Robotic Flight Demonstrations)
- Poster presentation at LPSC on March 8, 2022
- Poster presentation and abstract submittal to Lunar Exploration and Analysis Group Annual Meeting on August 24, 2022
- Multiple social media posts highlighting the Hopper mission on IM-2
- Other involvement through Nova-C outreach at Daytona 500 (see picture) partnering with Columbia Outerwear

EPO Calendar Outlook (High Priorities):

6 Month Look-Ahead	
Annual Meeting of the Lunar Exploration Analysis Group	August 23-25

Project Summary

- The Micro-Nova team has conducted a System Integration Readiness Review (PTR #3) and is now fully into the spacecraft integration phase of the project ahead of a mid-2023 launch date
- A number of important test milestones have been achieved this year leading up to readiness for system integration:
 - Deployment mechanisms testing
 - Attitude control stability testing
 - Propulsion system cold flow article testing
 - Integrated OBC testing, including software app development and integration
 - Pressurant tank qualification testing
- The vehicle will be assembled over the next 3 months, with a number of milestones along the way to formal spacecraft delivery:
 - Payload Integration Interface Verification
 - Functional Testing After Assembly Complete
 - Deployment Mechanism Interface Verification
 - Environmental Testing (Vibration, Thermal/Vacuum)
 - Formal Software Verification

Project Plan - Milestone Status

Milestone Title (Mirror Project Plan)	Baseline Date	Planned Date	Variance Explanation
Status of milestones due since last report			
Documentation of deployment mechanism testing and results	3/2022	4/01/2022	Submitted on 3/25
Documentation of initial flight software build release	3/2022	4/15/2022	Submitted on 3/16
Documentation of FlatSat build completion	12/2021	3/23/2022	Submitted on 3/30
Documentation of flight control stability testing completion and simulation validation	2/2022	4/28/2022	Submitted on 4/27
PTR #3 summary package	3/2022	5/20/2022	Submitted on 5/20
Status of milestones due in the next 60+ days			
Documentation of payload integration completion	9/1/2022	9/28/2022	Delays from our PCDU vendor will impact when we can first integrate the Tipping Point payload onto the vehicle with flight equivalent power system. This is likely going to push this milestone to the end of September (still some uncertainty on vendor estimated ship date)
Documentation of checkout test results	10/1/2022	10/28/2022	Delays from our propellant isolation valve vendor will impact when we can finish closeout welding on the propulsion system, which is required before structures integration can be completed (due to access issues).

Risk Summary

	5						Risk ID	Approach	Trend	L x C*	Risk Title				
L I K	4						R-01	R-01 M 🗘 1 x 3 Mass							
E	3						R-02	R-02 M I x 5 Deployment Crash							
I H							R-03 M 🛃			1 x 2	Nova-C Integration				
0 0	2		R-07	R-06			R-04 М П		, T	1 x 4	Control Stability				
כ	1			R-01					V						
	1		R-03	R-05	R-04	R-02	R-05	М	₽	1 x 2	Thermal Management				
	_	1	2	3	4	5	R-06	W		2 x 3	Schedule				
			CON	SEQUEN			R-07	R	ц С	2 x 2	A Dust Mitigation				

*Showing L x C score after planned mitigation is completed

BACKUP

Deployable Hopper Key Performance Parameter (KPP) Status

			Кеу	Perform	mance Para	ameters		
Parameter	Units	State of the Art (SOA)	Threshold Value	Project Goal	Current Value To Date	TBoE for the provided Current Value	Expected Exit Value	TBoE for the provided Expected Exit Value
Excursion Data Downlinked ⁽¹⁾	GB	N/A	1	3.5	5	Analysis	5	Estimate based on link analysis and Nokia LTE path propagation assessment; also includes available downlink time (shared with other payloads)
Longest Flight Capability	m	N/A	10	100	280	Analysis	280	Flight simulation with processor in the loop
PSR Survival Limits	K, min	N/A	60, 15	60, 45	60, 60	Analysis	60 <i>,</i> 60	Global thermal model (to be validated with tvac test)
Landing Capability ⁽²⁾	deg, m/s	N/A	5, 1	10, 2	7 ⁽⁴⁾ , 2	Analysis	7, 2	Dynamic tip over model
Power Margin ⁽³⁾	%	N/A	15%	30%	21%	Analysis	21%	Power balance model including detailed solar panel degradation model

Notes:

⁽¹⁾ Downlinked to earth

⁽²⁾ Slope angle, vertical landing velocity

⁽³⁾ Excess power capacity as a percentage of standby power draw when solar vector is normal to solar panel

⁽⁴⁾ Includes lateral and rotational velocity

Deployable Lunar Hopper Deployment Crash

<u>Risk ID #</u> R-02	Risk Statement : <u>Approach</u> : Mitigate										
	Given th ene lun	nat the vehicle cannot undergo free-flight deployment testing on earth (gra counter unforeseen control issues that cannot be uncovered with the plar ar surface.	avity), there is nned stability t	a possibility testing, resulti	that the de ing in the v	ployment flig ehicle crashi	ht will ng on the				
Trend											
Decreasing	Contex										
<u>Criticality</u>	Attitude control stability testing will be conducted to tune the control system and verify margin over all expected flight regimes. Deployment testing will verify proper separation of the vehicle from Nova-C. But vehicle free-flight testing under the appropriate forces/torques is the only method to truly verify end-to-end deployment, and this must be accomplished on the lunar surface.										
Current L/C 1x5											
Affinity Group											
Technical	Date	Status (Please provide the last 3 status)			LxC (at	t time change/u	ıpdate)				
	9/17/2021	Initial GN&C simulations indicate the design approach will close with margin			2 x 5						
	2/23/2022	Attitude control stability testing underway. Initial results indicate that the test set-up will enable the necessa deployment system assembly underway, with no issues after initial fit-up. Testing scheduled for later in Mar	ry control system tur	ning. Initial EDU	2 x 5						
Planned Closure	8/23/2022	Attitude control stability testing was completed. Stability was achieved after some tuning of gains and ironin validated against the test results.	ng out bugs. The flig	nt simulation was	1 x 5						
stability testing (May											
2022)		Mitigation Steps	Dollars to implement	Trigger/Start date	Schedule UID	Completion Date	Resulting LxC				
	Deployment m	echanism EDU ground testing (including environmental testing, CG offset, etc)									
Open Date	Deployment m	echanism flight unit acceptance testing (including environmental testing with flight vehicle)									
	Dynamic tip-ov	ver analysis to provide acceptable "box" of landing conditions for Flight Dynamics team									
3/1/2021	Drop testing of	EDU structural article for validate tip-over analysis									

Deployable Lunar Hopper Schedule

<u>Risk ID #</u> R-06	Risk Statement : Approach: Mitigate										
	lf any maj IM-2	jor project element takes longer than estimated in the baseline sch delivery date.	edule, there may r	not be enough	schedule	reserve to m	eet the				
<u>Trend</u> Increasing	<u>Context</u>										
Criticality	Micro-Nov mee	Micro-Nova is only one element of the IM-2 mission, and any delays caused by Hopper could have a major impact on the program's ability to meet obligations to other customers.									
Current L/C 2x3											
<u>Affinity Group</u> Schedule	Date	Status (Please provide the last 3 status)			LxC (a	t time change/	update)				
	3/1/2021 Ir 8/23/2022 S	nitial risk writing. pacecraft integration has been delayed due to a number of vendor delays. Significant schedule ma ompletion date and IM-2 launch date.	rgin still exists between pro	ojected spacecraft	2x3 2x3						
Planned Closure TBD											
Open Date	Early long lead p	Mitigation Steps	Dollars to implement	Trigger/Start date	Schedule UID	Completion Date	Resulting LxC				
5/ 1/2021	Design re-use will Final integration	here possible/practical at the PPF to minimize Nova-C impacts									