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Executive Summary

Neuromorphic processors are designed to execute Deep Neural Networks (DNNs) at very
high speed using only a fraction of the electrical power needed to run a DNN on a traditional
CPU or GPU. This unique capability makes Neuromorphic processors a prime candidate
for space systems, where advanced computational tasks like image analysis, depth map
reconstruction, or rover control need to be executed in a power-starved environment.

In contrast to the growing number of applications of Neuromorphic processors in smart
phones, the automotive and robotics domain, the space environment is unforgiving because
of extreme temperatures and high levels of radiation. Any space system, operating be-
yond LEO requires computing hardware that is resilient against radiation effects. However,
Neuromorphic processors have not yet been designed or tested for their radiation tolerance.

In this report, we consider traditional methods of detection of radiation events and
mitigation via redundancy and gauge their effectiveness on DNNs. In contrast to traditional
flight software, however, neural networks represent a statistical algorithm, which might
affect its resilience against radiation events. We will focus on the analysis of the tolerance
of DNNs with respect to radiation events and discuss techniques to detect radiation hits
using on-chip triple modular redundancy (TMR) on an Intel Loihi neuromorphic processor
and to mitigate radiation damage.

We describe an architecture for on-chip TMR for the Intel Loihi and present results of
initial experiments.
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Chapter 1

Introduction

Neuromorphic processors are designed to execute Deep Neural Networks (DNNs) at very
high speed using only a fraction of the electrical power needed to run a DNN on a CPU or
GPU. This unique capability makes neuromorphic processors a prime candidate for space
systems, where advanced computational tasks like image analysis, depth map reconstruc-
tion, or rover control need to be executed in a power-starved environment.

In contrast to the growing number of applications of neuromorphic processors in smart
phones, the automotive and robotics domain, the space environment is unforgiving because
of extreme temperatures and high levels of radiation. Any space system, operating be-
yond LEO requires computing hardware that resilient against radiation effects. However,
neuromorphic processors have not yet been designed or tested for their radiation tolerance.

There is a large amount of work on the design and analysis of radiation tolerant or hard-
ened computer systems used for military or space systems. Techniques, typically include
modular redundancy or the use of processor chips that have been specifically designed for
their radiation tolerance (e.g., the RAD7501).

Radiation failures are usually caused when high-energy particles of the solar wind or
background radiation hit the fabric of a chip at high speeds. Depending on particle type
and energy, charges on the chip might change, causing a short temporary wrong outcome of
the calculation. Latch-ups have more persistent effects and usually need a reset or reboot
to overcome. Finally, radiation particles might cause a permanent damage to the chip or
hardware. [1] gives an excellent overview of this topic with a specific focus on neuromorphic
hardware.

In all cases, the analysis of radiation tolerance or hardening needs to happen along the
following dimensions:

Granularity of the analysis to study the radiation effects: studies can be performed on
system level, component level (e.g., the flight software), or on individual software
components. Of importance here are, of course, AI components, which are often
realized as Neural Networks (NNs).

Type of Software: This plays an important role, as some algorithms might be more tol-
erant toward radiation events than others. In particular statistical algorithms like
NNs can play a specific role here.

Processor architecture: complex computer architectures, which can have multiple CPUs,
GPUs, and special purpose ICs (e.g., for neuromorphic processing) need to be studied

"Mttps://en.wikipedia.org/wiki/RAD750



careful, since different tasks like image preprocessing, NN inference, machine learn-
ing, control, or data transfer, are executed on the various components, which might
exhibit substantially different tolerance to radiation events. For DNN architectures
we typically distinguish between ”in-fabric” (i.e., things happening inside the DNN),
"on-chip” (e.g., preprocessing, post-processing, routing, control) usually performed
by on-chip CPUs and discrete logic, and ”off-chip”, which includes preprocessing,
post-processing, or data/weight transfer. These tasks usually heavily involve the host
CPU, external memory, and communication circuits to the neuromorphic chips.

In the course of this analysis, the following questions need to be addressed:

e Where are the “critical paths and components”?
e Can the inherent tolerance/redundancy in the DNN be exploited?
e Which tolerance metrics can be used?

e Which robustification / mitigation techniques can be used?

In this report, we will talk about fault tolerance: even if hit: validity of the output
doesn’t change; hit is not observable from the outside; no specific detection/mitigation is
necessary.

Fault detection and mitigation: a hit can be detected reliably and its effects are miti-
gated using techniques like fast reboot, HW or SW redundancy, or temporal redundancy;
the system might experience a short interruption of service, but nominal operations are re-
stored very quickly. A system or component with a suitable fault detection and mitigation
technology then exhibits a high radiation fault tolerance.

1.1 Levels of Fault Tolerance and Redundancy

A radiation-hardened system can (or should) consist of several ”"layers” to provide best levels
of fault tolerance (and/or recovery) after a radiation hit. Usually, tolerance is obtained by
exploiting redundancy. For a neuromorphic system (running on special hardware or not),
we might have:

e hardware redundancy: multiple copies of hardware (identical or different) with voting
mechanism

e software redundancy: multiple copies (or variants) of software

e inherent redundancy: use of inherent redundancy and/or robustness of the NN

Table 1.1 summarizes the various techniques for different kinds of components.

In general, detection and mitigation should be transparent to the overall system. An-
other metric for tolerance/mitigation, which is somewhat orthogonal, is described along
these two dimensions:

e spatial redundancy: replication of components are used to avoid interruption of ser-
vice, potentially located at different locations on spacecraft (or even remote).

e temporal redundancy: if fault occurs during one calculation, the subsequent calcula-
tion can be used to detect and potentially mitigate that fault. Here, the hardware/re-
source overhead is traded toward a slower execution.



Table 1.1: Techniques for detection and mitigation of radiation failures for hardware, dif-
ferent kinds of software, and NNs

] Redundancy ‘ Technique ‘ Detection ‘ Mitigation ‘
Hardware replication Byzantine voting selection of good HW,
fast reboot
Software replication voting/sanity check | restart, recalculation
Software tolerant by design | N/A N/A
NN tolerant (inherent) | N/A N/A

1.2 Radiation Tolerance of Software

When comparing traditional software (e.g., control SW) and (D)NN execution with respect
to radiation tolerance, there are some similarities and striking differences. These differences
between “SW” and “NN” should be used to maximize tolerance of the system.

Both SW and NN consist of

e control code (fixed in time)
e constant data
e dynamic data

For SW, the control code is usually much larger, compared to the NN control code, which
is essentially just matrix multiplication, addition, and non-linear activation code (ReLU,
tanh, etc.).

Constant data for SW are lookup tables, gain tables, etc. of usually smaller size. For
NN, constant data are the weights and biases of the NN. These data can be very large.

Dynamic data are variables that change over time. For SW we typically have a state
vector as well as intermediate variables. Within NN, the intermediate results of the calcu-
lations can be seen as dynamic data. If a NN is trained on-line, then the weights and biases
also belong to the dynamic data. Note, that dynamic data do not correspond to ”dynamic
memory”. Here all memory sizes and allocations are fixed.

When executing SW or NN, we can assume that the SW is executed with a certain rate,
i.e., the update function (or inference function of the NN) is executed every N ms.

The most striking differences are: (see Table 1.2)

SW for each execution exactly one path through the software is executed. In general, there
exist an extremely large number of paths through the SW.

SW only a (small) subset of constant data are accessed (think different tables for different
operational or failure modes of the system)

SW in case of a radiation hit on elements of the path, the effects are usually very dramatic:
failure of program execution, taking the wrong branch, etc. If an upset occurs on a
different path or unused data elements, no effect is noticed.

NN for each execution, the entire NN control code is executed (nested for-loops with
arithmetic operations). In principle, there is only one path through the NN control
SW, which is executed at the full rate



NN all constant data (weights and biases) are accessed for each iteration.

NN in case of a radiation hit, selected constant values or dynamic data are upset and
delivering wrong data. The output of the NN is affected in any case; however, due to
the inherent tolerance (see below), the effect can be minimal.

Note that these consideration only consider the effects of an upset with respect to the
data. If, e.g., an upset occurs in the digital control areas of the SW or NN, effects can be
harsh in any case.

Table 1.2: Relevant categories for radiation tolerance for “traditional” software (SW) and
neural networks (NN)

y [SW [NN |
control code size | large | small

constant data size | small | large-huge
dynamic data size | small | large(?)

code executed little | all
data accessed little | all
effect big none-big

1.3 Radiation Tolerance of DNNs

As discussed above, neural network algorithms and models can exhibit a substantial inherent
radiation tolerance. This allows the designer, in principle to use multiple techniques and
strategies to improve radiation tolerance and resilience throughout the entire design and
deployment process. Figure 1.1 shows a typical work flow to design a DNN and bring it to
execution on a neuromorphic processor.

In an initial step, the DNN architecture is designed for the given task. Here, spe-
cific architectures with high redundancy might be used to increase radiation resilience.
The training of a DNN is particular important step in the lifecycle. Selection of training
paradigms, selection of training and test data sets can play a substantial role in tolerance
toward radiation failures.

Once trained, the DNN now can undergo transformation that have the goal to improve
stability and resilience. Finally, when the network model is compiled for a specific neuro-
morphic processor (an Intel Loihi in this figure), hardware-level techniques for detection of
radiation failures and their mitigation can be used.

Although techniques can and should be used throughout the entire development and
deployment process, in this report we solely focus on the hardware-level redundancy and
mitigation techniques for the inter Loihi neuromorphic processor.
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Figure 1.1: Workflow for introducing redundancy and radiation resilience during network
development, training, and deployment



Chapter 2

Redundancy and Mitigation for
Loihi

For the analysis and design of a redundancy/mitigation architecture for Intel Loihi, a de-
tailed knowledge about the hardware and software architecture is necessary (see Section 2.1
below).

In general, the following redundancy and mitigation techniques are suitable for Loihi.
Note that this list is not exhaustive and potentially multiple techniques can be combined
to obtain higher levels of resilience.

NN-inherent tolerance: As discussed above, NN architectures and their learning algo-
rithms can be designed in such a way that an improved tolerance against radiation
failures can be obtained. In this report, we do not discuss this approach in detail.

On-chip swap: once the fault(s) in the NN have been detected, mechanisms to ”repair”
the damaged NN need to be used to recover from the problem. In the architecture
described in this report, a copy of a known good NN is copied onto the badly behaving
one. If both of the NNs are already located on the Loihi, the weights biases, and
neuron parameters can be easily copied using the on-chip Lakemont processor. We
will describe details below.

The on-chip swap of NNs has several substantial advantages: no lengthy and energy-
hungry copying of network data and parameters from and to the host processor is
necessary. Therefore, the on-chip swap is fast and highly energy efficient.

Of course, this requires that at least two copies of the NN are present on the Loihi
chip(s).

Soft reset: In this mode, a fresh copy of the damaged neural network is copied from the
host computer into the Loihi. This operation might take a while as data need to be
transferred from the host computer to Loihi.

Loihi reboot: The Loihi and the associated USB circuitry can be reset by the host com-
puter. This means that, after such a reset, the Loihi needs to reboot, which involves
setup of the software on the host side, download of the Lakemont boot code, and
download of the NN. Although this method is the slowest one, it results in a “fresh”
Loihi configuration that should run as expected, unless permanent damage to the
Loihi chip has been sustained.
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For a redundancy-tolerant architecture with mitigation, several degrees of freedom along
the following dimensions exist. Here we briefly discuss those in general.

Redundancy Model: There is a number of basic mechanisms to define redundancy for
a NN. The most simple one is pairwise redundancy, where two identical copies of
the NN are executed in parallel and their results are compared. This allows us to
detect single errors in a NN. Other models include: triple redundancy (enabling vot-
ing) or multiple redundancy to enable automatic error correction. Obviously, with an
increased level of redundancy, the resources (memory, neuron cores, power) increase
substantially. Therefore, a more localized redundancy may be defined: only single
(“critical“) neurons or ensembles are kept redundant to increase the radiation toler-
ance. The definition of such ensembles can be established with specific analysis and
training methods, which can use, e.g., Bayesian techniques, to select ideal candidates
for such ensembles.

Checking Metric: The checks to determine, if the redundant (parts of the) NNs are be-
having consistently, need to be done often. Therefore, care should be taken to select
a suitable metric that meets all needs.

Deciders: once a deviation has been detected, the architecture must produce a suitable
result. This can just be an error message, or the result of a voting.

Mitigation: If errors become too severe or occur too often, a mitigation action must be
triggered (see above).

The architectures discussed so far are intended for inference-only application, where a
pre-trained neural network is being loaded and executed on Loihi. Here, the weights of the
NN are not changed during deployment.

On-line training aims to adapt the NN toward proper handling of new incoming data
and situations. While such systems exhibit more flexibility and are more powerful in novel
environmental situation, their development and deployment requires specific architectural
and algorithmic considerations, which will not be discussed here.

Finally, the practical implementation aspects for a redundancy/mitigation architecture
needs to be considered. Typical aspects include integration into a development platform
(e.g., Nengo, Tensorflow,...), the use of automatic code generation, and use of customized
low-level code.

2.1 The Loihi Architecture and Data Flow

For the design of any redundancy architecture, the basic Loihi architecture needs to be
taken into account. Figure 2.1 shows a high-level architecture and data flow. The actual
neural fabric, consisting of the neuro-cores and the mesh contains the NN (i.e., the synaptic
weights, connection structure, and neuron parameters). The highly parallel architecture
“executes” the neural network; spikes are sent as messages over the mesh network!

Each of the neuron cores contain several memory areas for storage of parameters, synap-
tic weights, and activation values. For our purpose, we assume that the operations are

'For details see https://www.intel.com/content/www/us/en/research/neuromorphic-computing.
html
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executed independently of each other, but SEUs can affect all parts of the neurocores (pre-
sumably mainly memory).

The neuro-cores are controlled by 3 on-chip Lakemont processors. They contain a highly
simplistic operating system, which

e communicates via serial channels with the host computer,
e sets and monitors the neuro-cores,

e loads and boots the NN definitions, and

e can execute user code

Neurocores (here for reference)

Send Channel | | |
Nx SDK based
Python Script

Figure 2.1: Loihi Hardware architecture. From [2]

The overall execution cycle of the Lakemont is split up into three distinct operational
phases: spiking, learning, and management. The controlling state-machine is shown in
Figure 2.2. A process through these phases comprise the basic ”time-step” of the Loihi
processor. At each of the steps, custom code can be executed by the Lakemont processors.
For our redundancy architecture we exclusively use the "management” phases of the chip
to (a) perform checking for consistency, (b) do voting, result and error reporting, and (c)
perform mitigation (fast swap) if necessary.

waitforHosti)

rﬁg»@

I

’7'

Figure 2.2: Statemachine representation of the basic Loihi execution cycle. From [2]

The registers of the neuro-cores and they local memory are memory-mapped to the
Lakemont processors. This enables us to obtain dynamic details of the execution, like
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membrane voltage or spike events. This information is usually pulled out using so-called
probes.

As an example, consider two identical neurons, which are fed with the same constant
input current. Figure 2.3 shows the behavior of the two neurons over time. The orange
line, corresponding to the “nominal” neurons shows increases in the membrane voltage,
causing the neuron to spike at each 11 time stamps. In a second run (blue lines), an event
occurs at t = 30 that changes an internal neuron parameter. In the consequence, the
spiking frequency of both neurons are now slightly different. However, only after ¢ = 60,
the difference is large enough to result in different spike times. The bottom panel shows
the difference signal.
= LA e e L
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Time:
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Figure 2.3: Membrane voltages of two identical neurons with constant input current. At
t = 30, one neuron parameter is changed, leading to a different spike behavior.

2.2 A Simple Redundancy Method

In this section, we describe the detailed architecture of a pairwise redundant NN on Loihi.
Figure 2.4 shows the architecture as instantiated for the MNIST example. The interface
from/to the host (left-hand side of the figure) is almost exactly the same as for a standard
network. The test image is preprocessed, converted into an image of size 28x28. The pixel
of each value is sent to the Loihi chip. At the end of each inference cycle, Loihi, however
reports back two values instead of one: the probability, with which a specific digit 0,...,9
has been detected, and an error signal.

For this demonstration example, the output of each of the 10 output neurons, as well
as 10 error signals are produced at each time step. In a practical implementation, the
mazarg operation would be carried out on-chip, and only one Boolean error signal would
be generated.

The pairwise redundant MNIST architecture in Figure 2.4 is executing the following
components on-chip:

e two identical copies of the trained MNIST network. The copies have identical topology,
weights, biases, and identical settings of the neurons. (see details below)

e Lakemont 1 is running a customized interface code:

— it converts the incoming data/spike packets and sends them to the corresponding
input neurons of both networks.

— using the probes mechanism, the spiking status of each of the 10 output neurons
for each of the networks are obtained, and a check is performed if the correspond-

13
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Figure 2.4: Twofold on-chip redundancy architecture for MNIST

ing pairs of neurons behave identical. If not, an error signal for the corresponding
pair of output neurons is generated and sent back to the host

The interface code is executed during the management phase of the Loihi cycle (see

Figure 2.2.

e (optional) for testing purposes, a failure injection program is being executed on a
separate Lakemont processor. It is used to randomly modify weights, change neuron
parameters, or induce additional spikes. With that module, radiation effects may be

modeled.

Figure 2.5 shows in detail how this architecture works for a group of 4 neurons. The
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left panel shows the nominal case: the firing behavior of both networks are identical and
no error signal is produced.
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Figure 2.5: Comparison of the spiking behavior of two identical groups of 4 spiking neurons
each. At each time-point, the outputs of each of the neurons are compared. Comparison
is shown in the bottom panel. A: Both groups behave identical in the nominal case. B:
After ”error” injection (modification of one parameter in neuron group 2), the groups are
behaving differently and a mismatch signal (bottom) is generated.

Since most of the implementation details for pairwise redundancy are similar or identical

to those for the triple-redundancy case, they will be described in Section 2.3.

Figure 2.6 shows a typical result of the pairwise checking architecture on MNIST. The
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the 10 digits are presented 50 consecutive times. The two top panels show th spiking activity
(raster plots) for both copies of the MNIST networks. Initially, they are exactly the same,
so their spiking behavior is identical and no error signal is produced (3rd panel). At t=0.3
(i.e. at time step 150), a failure is injected; a synaptic weight is changed permanently. The
two networks now behave differently and a non-zero error signal is produced. The bottom
panel shows the details of the error signal: a direct spike comparison indicates that actually
all of the output neurons are affected by that failure.

Although the deviations in spiking of both networks are substantial, in most cases, the
actual classification output (i.e., which digit has been recognized) is not affected. This
indicates that the checking metric (identical spike timing) might be too restrictive for this
classification example (see also Section 2.3.3 for details).

Figure 2.6: Result of experiment with 2-fold redundancy. Error injection happens at t=0.3s.
Shortly after that, the error signal (Panel C) shows a non-zero value. A display of the
detailed per-output-neuron deviation (panel D) shows that a single injection has affected
all outputs neurons in this case.

2.3 On-Chip Triple Redundancy

2.3.1 Architecture

This triple-redundant Loihi architecture with mitigation is based upon the basic mechanisms
of the pairwise checking as discussed above. Figure 2.7 shows this architecture, again,
instantiated for a trained MNIST network. The major differences which be discussed in
detail below, are:

e obviously there are 3 identical copies of the MNIST network

e custom code on one of the Lakemont processors obtain the spiking activities of the
output nodes of the three networks and perform a voting. The majority vote is
accepted as “the” output, which is sent to the host processor

e the error signal now can have three different values:

— 0 = all three networks produce the same result (nominal),

— 1 = two of the 3 NNs produce an identical result; one result is deviating. The
voting mechanism returns the majority vote and the error is considered to be
corrected

15



— 2 = each NN is producing a different result. No majority vote can be determined
and the error is considered to be uncorrectable

e a hot swapping mitigation procedure: if one of the three NNs is consistently producing
bad results, i.e., frequently voted out, this NN is considered to be broken. If a certain
threshold is reached, then a copy of one of the “good” NNs replace the broken one
in place. Unless the underlying hardware fabric is damaged, this copy now should
depend identical to its source and thus should enable valid majority votes.

In the following, we will discuss each of the individual components and their implemen-
tation on Loihi.

Input T””’i ””””””””””””””””””” !
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—@ T NN :
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Figure 2.7: Triple on-chip redundancy architecture for Loihi

2.3.2 Implementation for Loihi

The implementation of a TMR for Loihi requires a number of specific preparation steps
and customized code is necessary to be executed on the host machine as well as on the
Loihi. In principle, our process follows the workflow shown in Figure 1.1. In a first step
(not described here), a detailed model for the DNN under consideration is constructed using
a toolkit like Keras?. Figure 2.9 shows a typical model definition of the MNIST DNN as
used as our driving example (Section 2.4). This trained network is then saved to conserve
weights and biases.

In order for the DNN to be executed on an intel Loihi processor, it needs to be converted
into a Spiking Neural Network (SNN). For this purpose, we use the Nengo® framework and
Nengo-loihi*. For our purposes, Nengo-loihi is of central importance. Nengo-loihi takes
an SNN and compiles it into the machine code for the Loihi chip. In addition, it uses
automatic code generation to generate customized C code that is executed on the Loihi
Lakemont processors. These “SNIPS” are in charge of downloading input from the host
machine, injecting spikes into the neural fabric, and obtaining status and output information
of selected neurons. This information is then sent back to the host machine.

In order to realize out Loihi TMR architecture, the following additional steps have to
be inserted into the workflow:

1. Generation of identical copies of the DNNs. The generation of these copies require
that all connections, all weights, and parameters of each neurons are copied. Care

*https://keras.io
Shttps://nengo.io
‘https://nengo.io/nengo-loihi
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must be taken that random numbers, which are usually used to preset some of these
parameters use exactly the same seed numbers or that any random modification of
the DNN is disabled.

2. Generation of “probes” that allow the SNIP on the Lakemont processor to access the
activation values and spike counters for each neuron of interest. These probes also
generate the code necessary to transmit results back to the host machine. In standard
nengo-loihi, probes are used to assemble membrane voltages and spiking behavior
only. We “abuse” these probe channels to also carry error signals, status information,
and voting results.

3. Extend the nengo-loihi code generation mechanism. The SNIPS, which are generated
for execution on the on-chip Lakemont processors must now include code to

e check the results of the redundant DNNs at each time step and carry out a
comparison according to the selected metric,

e carry out voting to determine a majority vote, which will comprise the result
produced by the TMR network,

e keep statistics on failures and voting results to determine the current quality of
each of the redundant networks,

e code for TMR mitigation, in our case, code to copy the currently best DNN upon
the “bad” one, and

e code for sending results, error signals, and voting information back to the host
computer. Our SNIP will also read the relevant ECC information from Loihi’s
error-correcting memory and report errors.

In our prototype implementation, Python code is used to generate and compile all the
artifacts that are then downloaded to Loihi prior to executing the DNN. Storage of the
generated SNNs and SNIPS as binaries could eliminate the substantial start-up time.

2.3.3 Metrics for Error Detection

The selection of a suitable metric for failure detection is important, since different tasks
might require or suggest different metrics. For example, for a classification task, it is
mandatory that all redundant copies of the NN detect the same class. Small deviations
in the detection probability can usually be tolerated. On the other hand, a NN-based
controller, for which the NN output comprises direct numerical values to the actuators,
only a small numerical deviation between the redundant networks should be tolerated.

In principle, the following metrics might be useful:

Spike Count: the redundant NNs are executed in a lock-step style. At each time step,
the spike count for each or selected neurons are compared.

Moving average: the use of a moving average (or other filter) can weed out short transient-
style deviations if those are acceptable in the system

Argmax: in most classification tasks, the relevant output is calculated as the argmax over
the activity of the output neurons. The class label of the neuron with the highest
activity is selected.
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Spike timing: differences in spike timing might or might not indication a flag-able devia-
tion.

As the checks can be performed on all neurons in the NN, on the output neurons only,
or on selected groups, the effort to be spent as well as the granularity can vary substantially.
In general, a careful case-by-case consideration will help to decide on the most suitable error
metric for the given NN and task.

2.3.4 Error Mitigation

In this architecture, error mitigation is realized by a “hot swap”. If one of the three copies of
the NN has been tagged by the voting system as “bad/broken”, this NN will be overwritten
by a copy of the currently best NN. This copy is taking place entirely on-chip and thus is
extremely fast. Specifically, the mitigation procedure copies over (a) the synaptic memory,
and (b) selected registers of the affected neurocores.

This mitigation process is triggered on user-definable conditions that are evaluated by
the voting mechanism. The condition can include the number of discrepancies for each neu-
ral network (how many times, a NN has been “voted out”), and frequency and persistence
of error condition.

Although this copying procedure can be repeated, care should be taken to a avoid a
continuous degradation of NN performance, as source NNs for the mitigation procedure can
have failures themselves.

2.3.5 Failure Injection

This architecture also includes a software component (SNIP) for failure injection. This code,
which is executed on-chip on one of the Lakemont processors can perform instantaneous or
persistent random modifications of the synaptic weight memory and/or synaptic parameters.

Using different probabilistic parameters, this component is helpful to mimic different
kinds of radiation events, and to test the redundancy and mitigation architecture.

2.4 Example

Figure 2.8 shows how the failure detection, voting, and mitigation works. For this example,
we are using the well-known MNIST network, which, shown a 28x28 image can detect the
most likely digit from zero to 9. Consequently the MNIST network has 28x28 inputs and
10 outputs. Figure 2.9 shows a typical architecture.

Figure 2.8A shows the nominal case, when no radiation events happen, B shows the
failure case. In both cases, the top Panel 1 shows the output of the architecture (as a
raster-plot) over time. The x-axis shows the time in seconds. This output is comprised
of the voting result at each time step. The error signals in the other panels are binned
into intervals of length 10 time steps. Panel 2 shows the number of recoverable errors
(i.e., two of the 3 NNs agree). Since the injected radiation events cause short-term upsets,
the total number of errors can go up and down. In the nominal case (A), no errors occur.
Panel 3 shows the number of unrecoverable errors, i.e., all the NNs disagree. In the injection
case, the first unrecoverable error only occurs around 0.18, despite the fact that numerous
radiation events occur, as indicated by the large number of recoverable errors (Panel 2).
A bit later (t=0.2s) two unrecoverable errors occur shortly one after the other, causing a
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Figure 2.8: Triple on-chip redundancy for MNIST on Loihi

mitigation step. This immediately brings down the number of unrecoverable errors again
for a long time. Only later, after about t=0.35s the number of errors increase substantially.
Since in this example, only one mitigation step is allowed, no more mitigation corrections
can be done and the system behavior deteriorates.

In such a case, a second mitigation step might be tried, or a soft reboot and restart of
Loihi with fresh copies if the NNs can be attempted to consolidate this situation.

Panel 3 shows the number of errors over time for each of the three NNs. The differences in
behavior depend on the random failure injection. It can be seen clearly that the “green” NN
starts performing badly at around t=0.1s. When the mitigation is triggered by the second
set of non-recoverable errors, the “green” NN, as the worst-performing on is overwritten.
It can clearly be seen that the error rate drops sharply directly after the mitigation.

Panel 4 shows, as internal information, which of the NN provide their output. In the
nominal case, always NN 3 (“green”) is selected, due to the implementation of the voter.
When errors start to show up in NN 3 (t=0.05s), NN 1 wins the votes. The spike at t=0.18s
is technical only and shows that a mitigation step has happened. Afterwards, the newly
resurrected NN 3 wins the votes, before NN 2 (“orange”) takes over. The bottom plot
shows the number of ECC errors in the Loihi synaptic memory. In both cases, this number
remains at zero, because ECC errors cannot be injected.
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Chapter 3

Discussion and Conclusions

In this report we have described an architecture to realize an energy efficient redundancy
and mitigation mechanism for intel Loihi. Two or three identical copies of the DNN under
consideration are executed in parallel on the Loihi chip. Customized, auto-generated C
code (SNIP) is executed on the on-chip Lakemont processors to handle the communication
with the host processor, to compare the results of the individual DNNs, to vote on the
result, and, in case of repeated failures of on DNN, perform a hot-swapping by replacing
the broken DNN with a copy of the currently best one. We demonstrated this architecture
using the well-known MNIST digit classification example.

The architecture described in this report should only be seen as an initial step toward
redundant architectures to detect and mitigate the effect of radiation events. There is a
number of important points for future work ranging from fundamental issues to improvement
of the actual implementation/generation.
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