National Aeronautics and Space Administration

NASA Hypersonic Capability Summary 2022

Stephen Helland, Associate Director

Aerosciences Evaluation & Test Capability Portfolio

www.nasa.gov

Contents

- NASA Facilities & known upgrades
- Current known designs, studies, and awareness
- NPAT NASA/DoD listing of wind tunnels

Ames Research Center

High Enthalpy Arc Jet Complex

Providing ground-based hyperthermal environments in support of the nation's research and development activities in thermal protection materials, vehicle structures, aerothermodynamics and hypersonics.

https://www.nasa.gov/centers/ames/thermophysics-facilities/arcjet-complex

Modernization project at ~\$120M over 8-10 years.

Range Complex

Providing critical testing support to the nation's research and development activities in hypervelocity impact physics, aerodynamics, aerothermodynamics, flow-field structure and chemistry.

https://www.nasa.gov/centers/ames/thermophysics-facilities/ballistic-ranges

No known upgrades

Glenn Research Center/Armstrong Test Facility

Hypersonic Test Facility

The Hypersonic Tunnel Facility (HTF) at NASA's Neil A. Armstrong Test Facility (ATF) Neil A. Armstrong Test Facility (ATF) located in Sandusky, OH, originally designed to test nuclear thermal rocket nozzles, is a hypersonic (Mach 5, 6, and 7) blowdown, nonvitiated freejet facility that tests large-scale hypersonic air-breathing propulsion systems.

https://www1.grc.nasa.gov/facilities/htf/#facility-overview

Returning to service requiring relocation of the "NASA Electric Aircraft Testbed" (NEAT) first.

Langley Research Center

Aerothermodynamic Lab

The Aerothermodynamics Laboratory is a collection of three hypersonic wind tunnels utilized for basic flow physics research, aerodynamic performance aeroheating assessment, optimization, and benchmarking of advanced space transportation vehicles.

https://www.nasa.gov/aetc/hypersonic/al

- 31" Mach 10
- 20" Mach 6 replace steam ejector PLC and air heater bundle

8' High Temperature Tunnel

The 8-Foot High Temperature Tunnel (HTT) provides combustion-heated hypersonic blowdown-to-atmosphere simulation for Mach numbers of 3, 4, 5, and 6.5 through a range of altitude from 50,000 to 120,000 feet.

https://www.nasa.gov/aetc/hypersonic/htt

New Mach 6 nozzle

Langley Research Center (cont'd)

4' Supersonic Unitary Plan Wind Tunnel

The UPWT is equipped with asymmetric sliding-block-type nozzles for varying the ratio of nozzle throat to test section, thus providing continuous variation in Mach number.

https://www.nasa.gov/aetc/supersonic/4-foot

Numerous maintenance tasks.

Scramjet Test Complex

The Supersonic Combustion Ramjet (Scramjet) Test Complex is a leading-edge ground test capability comprised of several distinct facilities. The complex includes a direct-connect combustor test facility, two small-scale complete engine test facilities, the Mach 4 Blow-Down Facility, and the 8-Foot High Temperature Tunnel, a large-scale complete engine test facility.

https://researchdirectorate.larc.nasa.gov/supersonic-combustion-ramjet-scramjet-test-complex/

Hypersonic Materials Environmental Test System (HyMETS)

A small arc-jet facility that tests small (around 0.5" diameter) TPS coupons.

<u>Designs</u>

- Hypersonic High Reynolds Number Tunnel (HHRNT), October 2020 by Jacobs
 - Study done in case the Langley 4' UPWT was to be demolished and has since been removed from the demolition list.
- Langley 15" Mach 6 Low Disturbance Tunnel, June 2017 White Paper
 - 35% design completed in 2014 with a current 60% design in place resulting in a 100% design to follow

<u>Studies</u>

- NASA Hypersonic Experimental Aerothermodynamics Capabilities (HEAC) Study Charter is to re-evaluate NASA testing capabilities and capacity as the demand for hypersonic aerothermodynamic ground testing increases...
- NASA High Speed Capabilities Assessment Team (HiSCAT)
 - Identify current high-speed (~Mach 2-Mach 5) technical capabilities within NASA, other federal entities, academia, industry and others. Scope is to assess the current state of high-speed capabilities (workforce, tools, facilities) and technical disciplines.
- Institute for Defense Analyses (IDA) hypersonic study for the Test Resource Management Center (TRMC)

Awareness

• Hypersonic Ground Test Center to be located at Purdue

NPAT DoD/NASA Wind Tunnels

Major DoD-NASA Wind Tunnels

P				Current Status	keynolds i	1
Facility	Site	Cross	Length	(Data current as	(per ft x	Dynamic Pressure
(Number and Name)		Section	- angai	of January 2017)	105	-,
Subsonic	-			1 of our party to try		
			L	Active, operated by		1
1 7' x 10' Subsonic Wind Tunnel #1	NASA Ames	7 x 10'	157	Army	0 to 2.1	0 to 150 per
2 12' Pressure Wind Tunnel	NASA Ames	11.25' x 11.25'	28'	Mothballed in FY 2004	0.1 to 12	0 to 600 per
3 National Full-Scale Aerodynamics Complex (NFAC) 40' x 80' *	AEDC Mothet Field	39° x 79°	807	Active	0 to 3.0	0 to 262 per
4 National Full-Scale Aerodynamics Complex (NFAC) 80' x 120"	AEDC Moffet Field	79' x 118.3'	1907	Active	0 to 1.1	D to 34 per
5 14' x 22' Subsonic Wind Tunnel	NASA Langley	14.5° × 21.75°	507	Allive	0 to 2.2	Atmospheric
6 20' Vertical Spin Tunnel*	NASA Langley	20' diameter	257	Active	0 to 0.55	D to 8.5 per
7 12-foot Low Speed Wind Tunnel	NASA Langley	12 x 12	15'	Active	0 to 45	0 to 7 pet
8 Low Speed Aeroacoustic Wind Tunnel (LSAWT)	NASA Langley	17 x 17	34'	Allive	0 to 2.2	Atmospheric
9 9'x 15' Low Speed Wind Tunnel	NASA Glenn	9° x 15°	33	Active	0 to 1.4	0 to 72 per
10 Icing Research Tunnel"	NASA Glenn	8×9	207	Active	0 to 3.6	0 to 230 per
11 8'x 10' Subsonic	NSWC Carderock	8' x 10'	14'	Active	1.4 to 1.7	0 to 90 per
12 Anechoic Flow Facility (AFF)	NSWC Carderock	6'x 6'	13.75	Active	0 to 1.1	Atmospheric
13 Subsonic Aerodynamic Research Lab	AFRL	7 x 10'	15	Active	0 to 3.5	up to 450 per
14 12' Vertical Wind Tunnel	AFRI.	12 diameter	15'	Active	0 to 1.0	Atmospheric
Transonic						
15 16T Propulsion Wind Tunnel (PWT)	AFDC	16° x 16°	40'	Allive	0.03 to 7.2	2 to 1100 pet
16 Aerodynamic Wind Tunnel 4T	AFDC	4.24	12.57	Active	0.2 tp 7.1	20 to 2000 per
17 11'x 11' Unitary Plan Transonic Wind Tunnel'	NASA Ames	11"x 11"	227	Active	0.3 to 9.6	100 to 2000 pel
18 National Transonic Facility (NTF)*	NASA Langley	82×82	25'	Active	4 to 145	60 to 6000 pet
19 Transonic Dynamics Tunnel (TDT)*	NASA Langley	16 x 16	307	Active	0.3 to 10	58 to 830 per
20 0.3m Transonic Cryogenic Tunnel (TCT)	NASA Langley	13° x 13°	24"	Active	1 to 100	60 to 4000 per
21 If'x 6' Supersonic Wind Tunnel	NASA Glenn	#x#	23.5	Active	1.5 to 5.5	100 to 1340 per
Supersonic	10000	100 100 100 CO.	1.12			
22 1955 Propulsion Wind Tunnel (DWT)	TAFIDC.	10 x 10	45	Standby	0.1 to 2.4	135 to 1161 par
23 Supersonic Tunnel A	AFDC	37+37	97	Artive	031085	17 to 1465 per
24 P x 7 Lintary Plan Supersonic Wind Tunnel	NASA Ames	817	18	Active	0.5 to 5.7	200 to 1250 per
25 8' x 7 Unitary Plan Supersonic Wind Tunnel	NASA Amen	8xT	16	Abandoned	0.6 to 5.2	100 to 1000 per
26 Unitary Plan Wind Turnel Test Section #1	NASA Landey	6.16	P	Standby	0.5 to 11.4	110 to 1860 pet
	NASA Langley	4.24	7	Standby	0.5 tp 8.4	95 to 1,260 per
27 10' x 10' Abe Silverstein Wind Tunnel	NASA Glenn	10 x 10	407	Active	0.12 to 3.4	20 to 720 pel
Hypersonic						
38. Turnel B	LASIDO	507 dia		Arthur	046577	65 to 630 and
29 Turnel C	AFOC	25° or 50° dia	11'	Alline	0.3 10 7.9	48 to 2018 out
30 Annubranic and Donulaine Test Lind (APTU):	AFDC	37 h 47 da	58° kg 207	Active	11036	1000 in 3700 rad
14 Tunnel & Serulation	AFDC White Oak	20185160	94.17	Active	0.05.00.45	6 in 11232 nal
12 Turnel & Thermal/Structural	AFOC White Cak	11.3* dia	6	Attive	4.0 10 7.6	3500 to 6850 and
33 8"High Temperature Tunnel"*	NASA Lanoley	0.00	12	Active	0.4 to 6.8	300 to 3100 per
14 31" March 10 Turnel	NASA Langley	31" x 31"	54	Artive	0.5 to 2.2	100 to 350 part
35 207 March 6 Turneri	NASA Landey	207 + 20.52		Arthur	0.5 to 8.0	75,1100 pal
36 15° Mach 6 High Temperature Tunnel	NASA Landey	14.5" (6)	17	Aillue	0.5 to 6.0	115 to 980 eat
17 Are Hasted Scramiet Test Facility	NASA Landey	10.89 x 10.89	111	Artist	0.035 to 2.2	150 to 1500 part
38 Direct-Connect Supersonic Combustion Test Facility	NASA Langley	1.52" x 3.46" & 2.88" x 5.2"	7	Active	2 to 8	1300 to 2200 per
28 Hypersonic Tunnel Facility (HTF)	NASA Plum Brook	47 da	107	Mothballed: FY2012 decision	0.97 to 2.3	300 to 2200 per
40 Mach 6 High Reynolds Facility	AFRI,	12° dia	207	Active	10 to 30	100800 to 302400 per
All Trans Hiller of Transmission					-	

• Payore: This hilling is intensist as a reference discrimination of an exploration of any factorial particular partity particular particular particular partity particular p

Produced by the Doll Text Resource Management Center, OUSD(KTML)/TRMC 1229 South Clark Street, Arlegter, VA 22292

APTU and the 8-foot HTT are physically configured as blow-down wind tunnels and are thereby listed here. They are multiuse facilities, frequently being used for hypersonic propulsion testing.)

National Aeronautics and Space Administration

