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New ROSES CALIPSO Project
“Assessing and Improving CALIPSO Aerosol Optical Properties”

Ongoing Work as Part of this Project
Investigate CALIOP aerosol classification and lidar ratios
using airborne HSRL measurements

— Airborne HSRL provides direct measurements of AOD
and lidar ratio and aerosol intensive parameters for
inferring aerosol type

— Assessments include aerosol type (e.g. dust, sea—=<
salt) as well as lidar ratio — focus of this
presentation

Assessments of CALIOP AOD and lidar ratios derived from
constrained retrievals

— AOD constraints from passive sensors (e.g. MODIS,
PARASOL) and surface reflectance (e.g. SODA,

ODCOD)

— Lidar ratio recommendations to account for regional and
seasonal variability

Improve Aerosol Classification using Constrained Retrievals

» These activities take advantage of the extensive

airborne HSRL measurements (i.e. about 150 airborne
HSRL underflights of CALIOP between 2006-2022)

Relevance

CALIOP classification specifies the lidar ratio
used by the operational algorithms to compute
aerosol backscatter, extinction, AOD

If CALIOP detects elevated depolarization, the
aerosol is classified as dusty marine, polluted
dust, or desert dust depending on altitude and
location

Dusty marine, polluted dust, and desert dust
have higher lidar ratios than marine (37, 55, 44
vs. 23 at 532 nm) so misclassification of sea salt
as dust will lead to significant high biases in
aerosol backscatter, extinction, and AOD
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HSRL-2 Data Acquired During NASA EVS-3 ACTIVATE Field Missions

"NASA EVS-3 ACTIVATE (Feb-Mar, Aug-Sep 2020; Jan-Jun, Dec 2021; prem
Jan-Jun 2022; data used here from 2020-2021) 0N \‘ ACTIVATE Flight Tracks
= Characterize aerosol-cloud-meteorology interactions using systematic oy s LarC i 7 2> 2920 2021, 2022
and simultaneous in situ and remote sensing airborne measurements ¥ V23 "-=7

with two aircraft

» Focus on marine boundary layer (MBL) clouds off the US Mid-Atlantic
Coast
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HSRL-2 Data Products

« Particulate backscatter and depolarization profiles (355, 532, 1064 nm) N
« Particulate extinction profiles (355 and 532 nm)
« Aerosol Type

« Aerosol Optical Thickness

« Mixed Layer Heights

* Ocean products*
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HSRL2 Observations of Low and High Particulate
Depolarization over the Ocean During ACTIVATE

= Typically HSRL-2 measures low aerosol depolarization over the
ocean. This is associated with spherical sea salt aerosols.

= Note the high (>65%) relative humidity (RH) in the lowest 1 km
derived from dropsondes and airborne in situ (Diode Laser
Hygrometer-DLH) measurements on the Falcon aircraft

HSRL-2/ACTIVATE Time(UT) M arc h 1 2 ’ 2 0 2 0

20.2 204 20.6 20.8 21 21.2

|
-
=)

'guu FA%S)} t_(Js-ww) la)3eas)oeyg |0S0.d

Aerosol Backscatter (532 nm) \ | w

( A

Altitude(km)

El | ME { ) !

S|
AR
Lod Sllbd b

‘n* ‘t. '|.':"»':‘ o
i
(R 4T H

2 ,‘ \ Retlve H'umldlty (%) i Vi 85

L “Aerosol Depolarizgtion (532 nm);;!;. il
ks L i Wi 0.15

Jit 'E-:fDropsonde RH
| vk-.

Altitude(km)
(wu zgg) uonezuejodaq josolay

0.05

-74.34 -75.01 -75.69 -75.74 -75.06 -74.35 -73.76 -74.21



HSRL2 Observations of Low and High Particulate
Depolarization over the Ocean During ACTIVATE

= Typically HSRL-2 measures low aerosol depolarization over the

ocean. This is associated with spherical sea salt aerosols.

= Note the high (>65%) relative humidity (RH) in the lowest 1 km
derived from airborne in situ (Diode Laser Hygrometer-DLH)

March 12, 2020
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In contrast, during several ACTIVATE flights, HSRL-2
measured elevated (>10-15%) aerosol depolarization in
the lowest 1 km. Note the lower (<60%) relative humidity
(RH) derived from dropsondes and the airborne in situ DLH
measurements on the Falcon aircraft
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Airborne HSRL-2 data Reveals Spatial and Vertical Variability in Aerosol
Depolarization

= Small scale (1.5-2 km) “plume-like” variability in the aerosol depolarization

= Abrupt decrease in depolarization as RH increases above about 75%
Increase in aerosol backscatter near RH~75%
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Elevated depolarization appears to be due to sea salt not dust
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Wavelength dependence of aerosol
depolarization (355-532 nm) is
inconsistent with dust

Aerosol extinction/backscatter ratios

(i.e. lidar ratios) were about 20-25 sr
and consistent with marine (sea salt)
aerosol not dust

Backtrajectories do not support dust
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Particle linear depolarization ratio, %

Illingworth, A. J., and Coauthors, 2015: Bull. Amer. Meteor. Soc., 96,
1311-1332, https://doi.org/10.1175/BAMS-D-12-00227.1. ©
American Meteorological Society. Used with permission.

» GEOS-Chem Model Identifies Sea
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Salt as Major Contributor to Aerosol
Extinction During March 8 Flights
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GEOS-Chem model aerosol extinction (550 nm) curtains
along the track of the UC-12 King Air during flights on
March 8, 2020. (SNA = sulfate + nitrate + ammonium, OC
= organic carbon, BC = black carbon)



https://doi.org/10.1175/BAMS-D-12-00227.1

Phase transition between spherical sea salt drops and crystalline sea salt
responsible for variability of particulate depolarization with RH
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Figure 1. Sodium chloride deliquescence at 75 % RH observed at laboratory conditions (at 4.9 °C) in an environmental scanning electron

microscope. The dry cubic particle with sharp edges at RH of 46 % becomes surrounded by a liquid sphere when RH increases to 77 %.
Figure 1. Sodium chloride deliquescence at 75 % RH observed at laboratory
conditions (at 4.9 -C) in an environmental scanning electron microscope. The dry
cubic particle with sharp edges at RH of 46 % becomes surrounded by a liquid
sphere when RH increases to 77 %. (from Haarig, M., and Co-authors: Dry
versus wet marine particle optical properties: RH dependence of depolarization
ratio, backscatter, and extinction from multiwavelength lidar measurements
during SALTRACE, Atmos. Chem. Phys., 17, 14199-14217,
https://doi.org/10.5194/acp-17-14199-2017, 2017. (https://www.atmospheric-
chemistry-and-physics.net/policies/licence_and copyright.html,
https://www.atmospheric-chemistry-and-
physics.net/policies/licence _and copyright.html,
http://creativecommons.org/licenses/by/4.0/)
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Figure 2 | Hygroscopicity measurements of inorganic sea salt and NaCl particles. (a)
Mass growth factor versus RH for artificial sea salt and NaCl. (b) Hygroscopic growth
factor versus RH at D(dry)=100 nm. (from Zieger, P., Vaisanen, O., Corbin, J. et al.
Revising the hygroscopicity of inorganic sea salt particles. Nat Commun 8, 15883
(2017). See https://doi.org/10.1038/ncomms15883,
https://www.nature.com/articles/ncomms15883+#rightslink,
https://creativecommons.org/licenses/by/4.0/)

- Efflorescence (crystallization) for sea salt is at RH~51%

 Inorganic sea salt has multiple crystallization points due to complex
composition

» Deliquescence occurs around RH~75%

« Hygroscopic growth during hydration for sea salt continually changes
with RH (not a step function)

» Both shape modes can be present for 50=RH=70% due to hysteresis
effect
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HSRL-2 Measurements During ACTIVATE Show Elevated Aerosol

Depolarization when RH is below about 60%

Highest aerosol depolarization is
associated with RH below about 60%

During 2020 and 2021, there were 63
days that had coincident HSRL2 and
dropsonde data

= 20 of these 63 days had observations of
high depolarization (>10% at 532 nm)
associated with low (<60%) RH

= 12 (8) days occurred in winter
(spring/summer)

Depolarization decreases with

iIncreasing wavelength

HSRL-2 measurements similar to
previous lidar observations of
nonspherical sea salt (Haarig et al.,
2017)
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Airborne In situ Aerosol Size Distribution and Salt Mass Fraction

Measurements Coincident with HSRL-2 Depolarization Measurements

= During March 8 flights (high
depolarization) airborne in
situ aerosol size distribution
measurements show fewer
fine mode particles and
more coarse mode
particles.

= In contrast, flights on March
12 (low depolarization),
show more fine mode
particles and fewer coarse
mode particles.

= During March 8 flights,
airborne in situ aerosol size
distributions were very
similar throughout the mixed
layer - this suggests particle
shape, not dry size, varied
with RH
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Lower Lidar Ratios, Aerosol Extinction, and AOD associated
with the high depolarization, nonspherical sea salt cases

All HSRL-2 data divided into high (solid
lines) and low (dotted lines) near-surface
depolarization cases

For high near-surface depolarization
cases:

— Median lidar ratios at 355 and 532 nm
were around 20-25 sr, consistent with
marine (sea salt) aerosol

— Median extinction (532 nm) was about
20 Mm-* which is about half that for
the low depolarization cases

— MERRA-2 profiles show low (<60%)
near-surface RH

Higher lidar ratios observed when other
aerosol types (e.g. smoke) were present
within BL

AOT (532 nm) contributed by the
nonspherical sea salt particles was small

(0.03-0.04)
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Example of Probable CALIOP Misclassification of Sea Salt as

Dusty Marine

March 9, 2020
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As an example, we examine
CALIOP nighttime data on
March 9, 2020, a day after
HSRL-2 observed high aerosol
depolarization associated with
nonspherical sea salt in the
same region

Elevated aerosol depolarization
led to classification of dusty
marine (lidar ratio = 37)

Lower aerosol depolarization
led to classification as marine
(lidar ratio = 23)

The aerosol depolarization
transition seems to correspond
to transition from low to high
RH (from MERRA-2 model)
GEOS-Chem model indicates
sea salt as the dominant
aerosol type within the BL
throughout this region



Frequency of CALIOP Dusty Marine type —
Examination of Cold Air outbreaks (CAO) during Jan-Mar 2019

« Elevated depolarization associated with sea salt during ACTIVATE flights tended
to occur during Cold Air Outbreaks (CAO)

« To investigate the frequency of CALIOP observations of elevated depolarization
associated with these aerosols, CALIOP observations during 15 CAO events in
January-March, 2019 were examined

« Of the 15 CAOs visually identified, each included some aerosol that was
classified as ‘dusty marine’.

* Were these misclassified as ‘dusty marine’ instead of ‘'marine’?

* In 3 cases, air above 2km includes dust (one in Gulf of Mexico)

* In 12 cases, no aerosol identified above cloud, suggesting little higher level
dust transport off of the continent

* In most of these cases, ERA-5 model indicated drier (RH<70%) air near the
surface

» Results suggest that the CALIOP operational algorithm sometimes misclassifies
depolarizing sea salt as “dusty marine” aerosol



How can such misclassification and associated aerosol retrieval bias be avoided?

Aerosol depolarization spatial and vertical variability highly correlated with RH variability may
provide an indication of nonspherical sea salt

Spectral depolarization ratio (532-1064 nm) and backscatter color ratio (532-1064 nm)
probably won’t work reliably since nonspherical sea salt and dust can have similar variabilities

If the AOD from overlying aerosols is negligible, then column AOD constraints from passive
sensors (e.g. MODIS, Polarimeter, GOES) or ocean surface reflection (e.g. ODCOD, SODA)
may provide better estimates of lidar ratio

Models and backtrajectories can provide guidance as to the presence of sea salt vs. dust

Direct HSRL measurements of the lidar ratio (e.g. ATLID on EarthCARE, Clio on AOS) could
distinguish nonspherical sea salt and dust (with sufficient spatial and vertical averaging)



...Coming Attraction...

» HSRL-2 data clearly show aerosol depolarization varies with relative humidity
= How do aerosol backscatter and extinction vary with relative humidity?

» See our Fall AGU presentation “Aerosol Humidification Observed by the
Airborne High Spectral Resolution Lidar-2” in Session A073-Models, In situ,
and Remote Sensing on Aerosols)



