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Abstract— As robots become increasingly capable of taking
on challenging tasks, we want robots to be commanded in
intuitive ways. Non-expert users in particular should be able
to communicate with robots about task goals. As a result,
modes of interaction such as language have gained interest for
commanding robots. We present composable semantic frames,
which ground commands in robot control primitives by com-
posing high-level commands from lower-level commands. We
demonstrate that composable semantic frames allow robots to
understand and execute a variety of challenging commands,
such as those involving multiple verb meanings, command
variations, and compound nouns. The robot quickly processes
composable semantic frames and accurately grounds and ex-
ecutes the commanded tasks, demonstrating the power of
composable semantic frames for allowing users to intuitively
interact with robots.

I. INTRODUCTION

Robots are becoming increasingly capable of performing
complex tasks, and people are looking to apply robot ca-
pabilities to a wider variety of domains. However, these
additional complexities make it difficult for non-experts to
intuitively interact with robots. Many researchers investigate
intuitive ways to interact with and program robots, such
as gestures, facial expressions [5], [44], eye-tracking [3],
[30], and learning from demonstration [2], [21], [28], [29].
Language in particular has gained much interest as an
intuitive interface that can provide a wide variety of rich
input signals for commanding robots [42]. RoboFrameNet
[43] demonstrates the power of using semantic frames [45]
to bridge the gap between language and goal-directed robot
actions. Language-based interactions will allow more non-
expert users to intuitively interact with robots.

Scaling robot systems to understand all possible mappings
of natural language commands to actions is an open question.
Systems such as Amazon’s Alexa and Apple’s Siri [36],
[9], [22] indicate that restricted language could be a more
scalable solution to providing an intuitive interface for com-
manding robots. However, limitations in existing semantic
frame implementations limit recognizable commands. For
example, RoboFrameNet [43] suffers from not being able to
differentiate verbs with multiple meanings (“set the table” or
“set down the object”), ground command variations (such as
“go to Alice’s desk” or “go to Charlie’s desk”), or recognize
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(a) Operator: “Plan and execute to waypoint.”

(b) Robot: “Footstep plan received. Proceed with task?”

(c) Operator: “Yes.” Robot: “Proceeding with task.”

Fig. 1: Human and robot communicating about a navigation
task through a virtual reality (VR) headset. The robot (left)
is being commanded by an operator in VR (right).

compound nouns (such as “Alice’s desk” or “left hand”).
We must overcome the limitations of existing semantic
frame implementations to address the challenge of creating
a scalable restricted language for commanding robots.

We take insight from hierarchical robot control schemes
and address the challenges of creating a scalable restricted
language for robot commands. In robot control, notions of
hierarchy and composition allow simple primitives to be
combined to create more complex behaviors. Similarly, by
composing high-level commands from lower-level semantic
frames that are grounded in action, robots can recognize and
execute complex commands in a scalable way.

In this paper, we propose composable semantic frames
(CSFs) as a method for creating a scalable restricted language
for commanding robots to perform tasks. CSFs provide more
complex command understanding and ground frame actions
in robot control primitives. We test our approach on two
robot platforms and multiple tasks. Our proposed compos-
able semantic frames allow robots to recognize and execute
complex commands, thereby providing a scalable approach
to using restricted language for commanding robots.



II. RELATED WORK

A. Language as a Robot Percept

Researchers have long investigated different ways for users
to intuitively interact with robots, due to the rich input signals
different modalities can provide. In particular, researchers
explore how to use language to intuitively communicate task
goals to robots. In the 1970s, the system SHRDLU [47],
[48] was developed, which carried out natural language com-
mands in a virtual environment. Since then, researchers have
aimed to expand the use of natural language to command
intelligent agents and robots [42].

Many works demonstrate the power of using natural
language to command robots in specific domains. Dzifcak et
al. [10] explore how to translate natural language instructions
into descriptions of task goals and actions. Chernova et al.
[7] use data-mining for robots to ground action-oriented
natural language. Matuszek et al. [26] investigate how robots
can learn what objects are being referred to in deictic
gestures and language (meaning gestures and language that
draw attention to objects without naming them directly).
Many works explore understanding natural language in route
navigation tasks [23], [20], [24], [25]. While these works
demonstrate the widespread interest in using language to
command robots, scaling to new commands and new do-
mains remains an open question.

Due to the challenges of scaling to truly natural language,
commanding robots using restricted language is a useful
approach. Voice interfaces–such as Amazon’s Alexa, Apple’s
Siri, Google’s Assistant, and Microsoft’s Cortana [36], [9],
[22]–are part of everyday life. These systems demonstrate
the power of restricted language for commanding intelligent
agents. Some research indicates that restricted language
allows users to achieve similar or better task performance
than natural (unrestricted) language without detracting from
overall user experience [27]. These works demonstrate the
power of using restricted language to communicate intu-
itively with robots about task goals.

B. Semantic Frames

Semantic frames have been used in the field of natural
language processing (NLP) to represent a scene being acted
out [40], [45], [46], [16]. FrameNet [40] emphasizes that a
verb alone is not sufficient to describe a scene or action, and
frame elements are necessary to describe agents and direct
and indirect objects involved in the action. For example, the
verb “give” cannot be acted out until we know what object is
being given and to whom. FrameNet also uses lexical units
to map language into the appropriate semantic frame. Lexical
units are hand-annotated to express how frame elements are
related to a command.

RoboFrameNet [43] uses semantic frames to serve as
a middle-ground between a spoken command and robot
action. RoboFrameNet interprets spoken commands as text,
then parses the text to instantiate a semantic frame. Rep-
resentations of object affordances for robotics generally do
not explicitly note the direct and indirect objects being

acted on, which limits the complexity of robot action that
can be performed [49]. For this reason, semantic frames
are a particularly useful middle-ground between a spoken
command and robot action because it augments the robots
understanding of the action being performed.

RoboFrameNet demonstrates the power of semantic
frames in allowing robots to comprehend spoken commands.
We extend RoboFrameNet by advancing the capabilities
and scalability of semantic frames. Rather than focusing on
semantic frame instantiation, we place greater emphasis on
the execution of the actions represented by semantic frames.

C. Hierarchical Robot Control

Many works control robots using hierarchical control [1]
or subsumption architectures [15]. Robots can execute object
affordances [11] using a control basis of object-centric [4]
controllers. A control basis builds up complex actions from
simple behavioral building blocks such as grasping [34],
[33], [35] or conditioning behaviors [13] such as avoiding
joint limits and singularities. Executing complex tasks re-
quires composition of the low-level building blocks [39] and
sequencing these behaviors [6] to achieve a task goal.

We take inspiration from the compositions seen in robot
control to ground our composable semantic frames in robot
action. Similar to how complex robot actions are composed
from simple, low-level controllers, our composable semantic
frames are composed from simple, low-level grounded com-
mands. Composition allows our pipeline to ground high-level
commands in a scalable way.

III. METHODS

A. Composable Semantic Frames

For robots to understand a command, we need to spec-
ify a lexical unit that defines a command. Lexical units
contain important information such as synonymous verbs
and grammatical dependencies that may be used in the
command involving that verb. Semantic frames ground the
information contained within the corresponding lexical unit
by mapping grammatical dependencies to words in the verbal
command. Semantic frames can also have children semantic
frames, which are more specific versions of a command. For
example, a turn semantic frame may have more specific
children frames turn left and turn right.

Our proposed composable semantic frames (CSFs) of-
fer several improvements upon previous implementations
of semantic frames, specifically RoboFrameNet [43]. The
following sections detail the improvements in our CSFs.

1) Optional Frame Elements: Lexical units and seman-
tic frames include frame elements to describe grammatical
dependencies involved in a verbal command. These frame
elements may or may not be core to the command, but each
frame element is required to understand the command. CSFs
differentiate between required frame elements and optional
frame elements. This allows more variation in commands,
since some command variations may not use all frame
elements.



For example, the commands “give me the block” and
“give me the red block” both use the give lexical unit
and semantic frame. Defining an optional adjective modifier
allows both commands to be recognized by telling the
CSF to not always expect a modifier. For example, red
provides optional information to differentiate one block from
another, but is not required to understand the command.
CSFs can be instantiated as long as the required elements
are identified during parsing; the optional elements provide
helpful information, but do not prevent the CSF from being
instantiated.

2) Head Dependency Relations: The frame elements in
each lexical unit and semantic frame have a corresponding
grammatical relation. For example, the command “pick up
the blue block” includes an adjectival modifier “blue” and a
direct object “block”. CSFs provide additional information
about frame relations by specifying a head dependency
relation, effectively tying a frame element to other elements
it depends on. For example, the head dependency relation for
adjectival modifier “blue” would be the direct object “block”
since the adjectival modifier describes the direct object.

RoboFrameNet [43] and our CSF pipeline use the Stanford
parser [19], which parses the head dependencies of each
word in a command. However, whereas RoboFrameNet did
not make use of these head dependency relations, our CSF
pipeline does. Specifying the head dependency relations
allows CSFs to differentiate between frame elements with
the same grammatical relation type, and therefore recog-
nize more complex commands. For example, consider the
command “stack the red block on the blue block.” When
parsed, this command involves a direct object (the block
being stacked) and an indirect object (the block being stacked
on top of). Each of these objects have adjectival modifiers
to differentiate the two objects. Previous implementations of
semantic frames would not be able to differentiate between
the two blocks or determine which block to act on. In
contrast, the CSF for stack uses head dependency relations
to differentiate between the adjectival modifiers; the head
dependency relation for “red” is the direct object while the
head dependency relation for “blue” is the indirect object.
Head dependency relations allow CSFs to make use of
additional information in commands and understand more
complex commands.

3) Frame Actions: The most important feature of CSFs is
that they are grounded in robot action. Each CSF contains
a sequence of actions required to carry out the commanded
task. For CSFs to be grounded in robot action, the actions
listed within a CSF must be either: (a) a robot motion control
primitive (described further in Section III-B), or (b) a CSF
command. By allowing actions within a CSF to be other
CSFs, we can create semantic frames that are composed
from other semantic frames. The composable nature of
CSFs results in a recursive expansion of actions to obtain
a complete sequence of grounded actions for a command.

Composition makes our CSF pipeline modular
and scalable. For example, a general purpose CSF
wait for confirmation tells the robot to wait for

input from the operator before continuing with a task.
Such frames can be reused within other frames; in fact,
the wait for confirmation CSF was used within
every experiment in Section IV. Composition of CSFs
also means that high-level commands can be created from
lower-level commands. With a basis of CSFs grounded
in robot control primitives, we guarantee that high-level
commands composed of these basis elements can also be
grounded in action. Users can communicate high-level task
goals to robots without thinking about the low-level action
execution. The composability of CSFs provides significant
features such as reuse, scalability, high-level task goals, and
abstraction of low-level execution.

4) Argument Substitution: Because CSFs use more com-
plex, possibly optional, dependency relations, they also need
to (optionally) use these arguments within the frame actions.
If a frame element is successfully parsed, it can be substituted
in to any of the frame actions within the CSF. This allows
the robot to carry out actions involving these frame elements.

Argument substitution in CSFs can be used to differentiate
between and act on corresponding objects. For example, the
command “stack the red block on the blue block” can be
enacted by substituting in the appropriate frame elements to
allow the robot to understand it should first pick up the “red
block” and then move towards the “blue block.” Argument
substitution is also useful for command variations. For ex-
ample, the commands “go to office 103” and “go to office
105” can be recognized using a single CSF go to office.
By substituting in the appropriate office number, the robot
can scalably carry out all variations. Argument substitution
in CSFs is a powerful tool for execute task variations.

B. Robot Control Primitives

The most important feature of CSFs is that each command
is grounded in robot action. To ground the command and
enact each CSF, we require that actions within the frames
are either other CSF commands or robot control primitives.
Depending on the robot, the robot control primitives can take
a variety of forms. Our implementation of CSFs does not
depend on the form of the robot control primitives, just that
some basis of primitives exists. For example, robot control
primitives can be affordance templates [14], affordance prim-
itives [31], [32], or a control basis [34]. One work defines
an example control basis–a set of controller building blocks
–as 6D pose, 3D position, alignment (relative rotation), and
screw controllers [41].

In our experiments, we use the following robot control
primitives: open/close hand, move end-effector to target 6D
pose, plan footstep trajectory, and execute footstep trajectory.
For the robots we tested on (the Fetch robot and NASA John-
son Space Center’s Valkyrie robot [38], [17]), we determined
that these robot control primitives were sufficient for a wide
variety of tasks. These control primitives correspond directly
to operations within the motion control libraries running on
these robots (MoveIt [8] for Fetch and IHMC Open Robotics
Software [37] for Valkyrie).



Fig. 2: Our CSF pipeline. The verbal command is parsed and
matched with a CSF, which contains the sequence of actions
needed to execute the command.

Fig. 3: Our pipeline for converting CSFs to the corresponding
sequence of grounded robot control primitives. Each action
in a CSF is either a grounded control primitive or a command
that can be recursively grounded into another CSF.

IV. EXPERIMENTS AND RESULTS

Figure 2 describes the pipeline for using composable
semantic frames to ground verbal commands and execute the
commanded actions. Figure 3 further details the grounding of
verbal commands into sequences of robot control primitives.
We assume human-in-the-loop perception through interactive
object registration [12]. For the robot to execute a command,
it needs to know where the required objects are in the scene.

To demonstrate the capabilities of CSFs, we performed
several experiments on the University of Michigan Labo-
ratory for Progress Fetch robot and NASA Johnson Space
Center’s Valkyrie robot [38], [17], [18].

Fig. 4: Lexical unit and CSF for give. The lexical unit
(left) defines optional frame elements and head dependency
relations for each frame element, which gives CSFs the
flexibility to understand related commands. The CSF (right)
contains two related children frames, one of which (blue box)
can be seen in Figure 5.

Fig. 5: CSF for command give high five. The CSF
actions use argument substitution (orange box) and compo-
sition of other recognizable commands such as “raise right
hand,” “wait for confirmation,” and “home all” (blue box).

A. Verbs with Multiple Meanings

A single verb can have many different meanings de-
pending on the context. CSFs are able to unambiguously
determine what frame corresponds to the command by using
optional frame elements and argument substitution. This
allows the CSF pipeline to determine which verb meaning is
being commanded based on the direct and indirect objects in
the command. For example, Figure 4 shows the lexical unit
for “give” with several optional frame elements. The CSF
for “give” has two children, give high five (Figure 5)
and give object to. Each child requires substitution of
different optional frame elements. Based on the parsing of
the command, the CSF pipeline identifies the corresponding
child command.

Using the CSF pipeline, Valkyrie is able to understand and



(a) “Give me a high five.” (b) “Give Emily the disruptor.”

Fig. 6: CSFs allow robots to understand that the same verb
(in this case, “give”) involves different actions depending on
the objects being acted on.

(a) “Go to Emily’s desk.” (b) “Go to Steven’s desk.”

Fig. 7: CSFs allow robots to scalably understand command
variations . A single CSF (go to desk) represents all desk
destinations by using argument substitution.

execute the commands “give me a high five” and “give Emily
the disruptor,” as seen in Figure 6. Though both commands
use the same verb “give,” the robot understands that the
affordances required to execute these commands depend on
the direct objects (“high five” and “disruptor” respectively).
We see that the CSFs allow the robot to accurately compre-
hend the multiple meanings associated with these verbs and
execute the commanded tasks.

B. Command Variations

CSFs can scalably instantiate command variations due
to argument substitution, as seen in Figure 7. Commands
“go to Emily’s desk” and “go to Steven’s desk” only differ
in terms of the final destination. Previous implementations
of semantic frames would require separate frames for each
office the robot would need to navigate to. Because of argu-
ment substitution, CSFs can represent all variations using a
single frame. Both commands use a single CSF go to desk
and use argument substitution to handle variations in desk
destination. CSFs allow the robot to comprehend and execute
command variations in a scalable way.

C. Compound Nouns

Previous implementations of semantic frames cannot ef-
fectively instantiate frames involving compound nouns. This
means that any distinctions between nouns such as “grey

(a) “Put the disruptor in the grey
bag.”

(b) “Put the disruptor in the
white bag.”

(c) “Put the disruptor on the left
table.”

(d) “Put the disruptor on the
right table.”

Fig. 8: CSFs allow robots to understand compound nouns
and differentiate between multiple similar objects (such as
grey bag, white bag, and bag).

bag” or “white bag” cannot be understood or acted on appro-
priately. Due to optional frame elements, head dependency
relations, and argument substitution, CSFs can comprehend
compound nouns and act on these objects accordingly, as
seen in Figure 8. Because the robot comprehends compound
nouns, it correctly differentiates between similar object types
and executes the appropriate affordances with respect to
those objects. Furthermore, these experiments demonstrate
recognition of command variations, as all of these experi-
ments use the same put object in on CSF.

D. Command Ambiguity

Our CSF pipeline works on multiple robots that execute
the grounded control primitives in different ways. Figure 9
shows the Fetch robot executing the command “move that
to the left.” Since CSFs do not restrict the form of robot
control primitives, commands can be executed on multiple
robots. The CSF pipeline can also make sense of command
ambiguity, as demonstrated by the robot’s ability to act on
“that” object in the scene. Since the only object present
in front of the robot is the cup, the robot understands that
the only possible grounding for “that” is the cup. CSFs can
effectively handle some ambiguity in language and can be
executed my multiple robots.

E. Multiple Modes of Interaction

Finally, we wanted to explore how grounded commands
could improve ease of interaction with robots through differ-
ent interaction platforms. NASA’s Johnson Space Center has
developed a virtual reality (VR) interface for commanding
the Valkyrie robot [18] using a VR headset and controllers.



(a) Operator: “Move that to the left.”

(b) Fetch picks up the cup. (c) Fetch places the cup to its left.

Fig. 9: CSFs allow multiple robots to ground commands in
action. The robot can also understand some ambiguity in the
command, and understands that “move that to the left” can
only refer to the cup.

Fig. 10: CSF pipeline commanding Valkyrie in virtual re-
ality. Valkyrie executed commands such as “report listening
status,” “set waypoint,” “plan and execute to waypoint,” and
“give Lewis a high five,” pictured above.

The VR interface makes use of voice commands since
language is a natural part of human communication. The CSF
pipeline significantly expands the voice commands Valkyrie
can recognize and is a natural extension to the interactions
already supported in VR. Figure 10 shows the robot execut-
ing the task “give Lewis a high five.” Because the VR headset
can provide spoken feedback to the operator, we found that
the CSFs provided much more intuitive and conversational
interactions with the robot. Operators could command the
robot, the robot would execute and wait for feedback, and
the operators could prompt the robot to continue or abort
the task. Our experiments in different interaction platforms–
specifically virtual reality–demonstrate the power of CSFs to
improve ease of interaction between robots and humans.

F. Command Processing

To evaluate the safety and responsiveness of our CSF
pipeline, we recorded the processing time for each CSF.
Due to the added capabilities of CSFs–specifically argument
substitution and recursive definitions of frame actions–we
need to ensure that commands can be processed quickly,
especially if command execution needs to be interrupted for

Task Type Total Mean SD
Commands Time (s) Time (s)

Multiple Verb Meanings 24 0.309 0.189
Command Variations 5 0.365 0.179

Compound Nouns 76 0.268 0.201
VR Commands 32 0.324 0.163

All Tasks 137 0.292 0.192

TABLE I: Mean and standard deviation (SD) of processing
times for CSF commands. Processing times are reported
for each task type as well as aggregate data for all CSF
commands.

safety purposes.
Table I shows the mean and standard deviation of process-

ing times for each task type as well as aggregate data across
all experiments. Note that several trials were performed for
each task to verify that commands were being grounded
accurately. Some trials were repeated to improve the human-
in-the-loop object registration required for robot execution of
object. Overall, we see that CSFs can be processed quickly,
ensuring responsiveness and safety of robots listening for
CSF commands.

V. DISCUSSION AND CONCLUSION

The robot’s ability to successfully perform a variety of
tasks from verbal commands demonstrates the power of
our proposed composable semantic frames as a middle-
ground between language and robot action. The CSFs greatly
improve upon the capabilities of past semantic frame imple-
mentations by allowing robots to recognize a wider variety of
commands in a scalable manner. Since CSFs are grounded
in robot control primitives, we demonstrate that the robot
can not only understand spoken commands, but physically
execute these commands. By composing semantic frames to-
gether to create high-level commands, we ensure that robots
can execute tasks from commands that abstract individual
actions from the user.

Future work includes expanding the capabilities of seman-
tic frames to incorporate more ambiguous language. Our
experiments require that the robot interacts with known,
labelled, and registered objects. Future work would also in-
volve testing the effectiveness of CSFs with autonomous seg-
mentation and registration. Overall, our work in composable
semantic frames demonstrates the power of commanding
robots through actions grounded in robot control primitives.
Our composable semantic frames allow users to intuitively
interact with robots in a variety of tasks.
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