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MITIGATING THE IMPACT OF MOMENTUM UNLOADS ON
STATION-KEEPING AROUND LIBRATION POINT ORBITS

Arianda Farrés* David C. Folta” Cassandra M. Webster: and Adam Z.
Michaels?

Station-keeping maneuvers are required to maintain a spacecraft close to a Libra-
tion point orbit, where the size of these maneuvers depends on different perturba-
tions and any unmodeled forces. In many missions, despite being small, frequent
momentum unloads can have a large impact on the size of station-keeping maneu-
vers. In this paper we will show that applying momentum unloads in the Linear
Approximation of the Non-Escape (LANE) direction can significantly reduce their
impact on the station-keeping delta-v budget.

INTRODUCTION

Over the past decade, there has been an increased interest in sending spacecrafts to Libration Point
Orbits (LPOs), to both the Sun-Earth Libration 1 and 2 (SEL; and SELj5). The location of these
two points is ideal for space weather application and deep space observations. Over the next five
5 years NASA is planning several missions to these locations in space, such as the Space Weather
Follow On (SWFO) at SEL; and the Nancy Grace Roman Space Telescope (RST) at SEL,. SWFO
is a space weather mission that will monitor the Sun for signs of solar storms which may harm the
Earth’s telecommunication Network. On the other hand, RST is an observatory designed to answer
questions about dark energy, exoplanets, and astrophysics.

Periodic and quasi-periodic motion around SEL; /SEL; is unstable, hence station-keeping (SK)
strategies are required to cancel this instability and overcome the effect of perturbations and un-
certainties. Some of the perturbations come from: orbit determination errors (ODE) where the
uncertainties on the position and velocity of the spacecraft affect the size of the planned SK maneu-
vers; maneuver execution errors (MEE) which will deviate the trajectory from the desired nominal
path; solar radiation pressure uncertainties (SRP) due to attitude changes that affect the orbits tra-
jectory between maneuvers; and momentum unloads (MUs) which are small maneuvers performed
to desaturate the spacecraft’s reaction wheels used for attitude control. These small maneuvers can
be very frequent and deviate the spacecraft from the nominal path, impacting on the magnitude of
SK maneuvers. In this paper we will focus on the impact of MUs on the station-keeping delta-v
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budget and study how to mitigate their effect. This is of special relevance for SWFO mission, which
will experience frequent and large MUs.

We use the Circular Restricted Three Body Problem (CRTBP) as a base model to describe the
dynamics of a spacecraft around LPOs as it is a representative model of the true dynamics around
SEL;/SELy. The CRTBP also allows us to derive analytical expressions for the directions to per-
form SK maneuvers and derive alternatives for the MUs directions. We note that when performing
analyses to evaluate the impact of the different strategies proposes here we use a higher fidelity
force model including the gravitational attraction of all the planets in the solar system, the Moon
and SRP.

To understand the impact of maneuvers on the motion around LPOs it is useful to look at the
projection of the trajectories in the Floquet Mode (FM) reference frame: a set of periodic or quasi-
periodic functions that provide a reference frame, centered at these orbits, where the dynamics can
be simplified as a saddle x center x center motion.! This reference frame has great potential for:
(a) understanding and describing the motion around the Libration point orbits; (b) finding minimum
delta-v maneuvers to cancel the instability; and (c) understanding the impact of MUs on the orbit’s
instability. In Reference 3 we studied the relation between the size of the SK maneuvers and the
thrust direction, and saw that thrusting along the position components of the stable eigenvector
gave the minimum delta-v. Moreover, the FM reference frame allowed us to give a geometrical
interpretation to these relations, and to how restrictions on the SK thrust direction impact the station-
keeping delta-v budget. We can use the same ideas to study the impact of MUs have on the motion
around LPOs and the size of SK maneuvers.

Generally, the direction of MUs is unknown and are modeled as a small maneuver in a random
direction. However, in the case of SWFO these will be nominally applied along the Sun-line di-
rection, which has a large impact on the size of SK maneuvers. To mitigate their impact on the
size of the SK maneuvers, we propose to change the direction of the MUs, applying them in a di-
rection that does not enhance the instability of the LPO. We use the linearized equation of motion
around the LPO to derive the so-called “Escape” and “Non-Escape” directions. Maneuvers in the
non-escape directions, at first order, do not add instability to the natural motion. We will see that
applying MUs in the non-escape direction significantly reduces the impact on the station-keeping
delta-v maneuvers, and for SWFQO’s support it may eliminate over 90 percent of the station-keeping
fuel cost.

SWFO MISSION OVERVIEW

The Space Weather Follow On mission is a ride-share on the SpaceX Falcon 9 launch vehicle
carrying NASA’s Interstellar Mapping and Acceleration Probe (IMAP) spacecraft. The spacecraft
will be operated by the National Oceanic and Atmospheric Administration (NOAA) and will fa-
cilitate early warnings for space weather events. SWFO is expected for launch in February 2025,
and will orbit the Sun—Earth L1 (SEL;) Lagrange point. While orbiting around SEL;, SWFO will
collect solar wind data and coronal imagery, the mission will continue the critical measurements
from other observatories at SEL;, such as the Deep Space Climate Observatory (DSCOVR), the
Solar and Heliospheric Observatory (SOHO) and the Advanced Composition Explorer (ACE).

In order to meet NOAA’s operational requirements to monitor and forecast impacts from solar
storm activity, SWFQO’s trajectory must maintain a Sun-Earth-Vehicle (SEV) angle between 4 and
13 degrees for at least 5 years, which drives the size of the SEL; Lissajous mission orbit. The top



plot in Figure 1 shows the transfer trajectory and mission orbit for the mission, where the red and
green cones represent the upper and lower bounds for the SEV angle. We note that this constraint is
only imposed on the mission orbit. The bottom plot in Figure 1 shows the variation of the SEV as
a function of time, the blue line represents the transfer trajectory, the red line the mission orbit and
the black dot is the Libration Orbit Insertion (LOI) maneuver location. As we can see, the mission
orbit SEV angle remains between 4 and 13 degrees.
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Figure 1. Top: SWFO transfer and mission orbit at SEL;, Bottom: Variation of the
SEYV angle for 5 years in the mission orbit.

To cancel the instability of the SEL; region and overcome the effect of perturbations and uncer-
tainties SWFO will be performing station-keeping maneuvers every 30 days. The spacecraft will
maintain a Sun-pointing attitude during the entire mission, only changing the attitude to perform
the SK maneuvers, hence SRP is included in the force model using the cannonball approximation,
where no uncertainties due to attitude changes are considered. The only perturbations that have
been taken into account in our analysis are ODE and MEE. Finally, due to the spacecraft’s design
the MUs are every 3 days along the spacecraft-Sun direction with a residual delta-v of approximately

2.5 cm/s.



Station-keeping Strategy

The main goal of a station-keeping maneuver is to ensure that the spacecraft continues to orbit
around SEL; and remains close to the mission orbit. In the literature we find different approaches
to solving this problem, for SWFO we have implemented the so-called velocity constraint at plane
crossing approach, which has a long heritage among previous NASA missions like ACE, DSCOVR
and most recently the James Webb Space Telescope (JWST).*

The strategy is formulated as follows: at the time of the maneuver, find a Av which ensures that
after propagating the trajectory to the 4th y = 0 plane crossing the v, component of the velocity
is zero (in the Rotation Libration Point (RLP) reference frame). Thanks to the symmetries in the
CRTBP, this condition ensures that the spacecraft is close to a LPO and will continue orbiting around
the Libration point over the next two orbital periods. Moreover, if the maneuvers are frequent we
can also guarantee that we stay close to the nominal mission orbit.’

In order to find the required delta-v maneuver for station-keeping we use a targeting method,
where for a fixed thrust direction, @ = u/||u||, we target the maneuver magnitude (dvmag) such
that if we apply Av = dvmag - 1 and propagate the trajectory to the 4th plane crossing, then
v, = £1lm/s. Where the sign depends on the location of the spacecraft at the plane crossing
relative to SEL; (+ if the spacecraft is between the SEL; and Earth, — if it is between SEL;
and Sun). This targeting method can be solved with a classical Newton-Raphson method.? Note
that due to the high instability of the region it is difficult to attempt to find the dvmag by directly
targeting the 4th plane crossing. For robustness, it is best to start by finding the dvmag such that
v, = +1m/s at the Ist plane crossing, and use that as an initial condition for 2nd plane crossing,
and follow the same procedure until we reach the 4th plane crossing. Fig. 2 shows a schematic
representation of the targeting strategy.
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Figure 2. Schematic representation of the targeting method used to derive the SK maneuvers.



The size of the SK maneuvers (dvmag) is strictly related to the thrust direction @ in which this
one is applied. In order to find the minimum thrust direction one could add a minimization scheme
to the targeting sequence allowing the thrust direction @1 to vary. However, from previous studies
we know that the minimum thrust direction is aligned with the position components of the stable
eigenvector associated to the LPO.3-° The stable eigenvector v, at the time of the maneuver can
be estimated by propagating the trajectories state transition matrix for one orbital period and finding
its stable eigenvector. However, one can also use the position components of the stable eigenvector
associated to SEL; as an approximation, that has the following closed form:

Votb = [<20, A% — 2c5 — 1,0, A2 4+ 2¢5 + 1, =23 — (1 — 2¢2) ] (1)

where the constant cp = 4.0304 comes from the linear approximation of the CRTBP equations and
A = 2.5205 is the real eigenvalue at SEL;. Hence, take u = [—2), A2 — 2¢5 — 1,0] as the thrust
direction for the station-keeping strategy (. = u/||ul]).

While the direction of the stable and unstable eigenvector associated to a LPO varies along the
orbit, they remain close to the stable and unstable eigenvector associated to SEL;. The left hand
side of Fig. 3 shows the variation for two orbital periods of the azimuth and elevation of the stable
(green) and unstable (red) directions in the RLP frame. The blue dashed line corresponds to the
azimuth and elevation of the & which are 28.25° and 0° respectively.
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Figure 3. Left: Variation of the Azimuth and Elevation of the stable and unstable
eigenvector for one orbital period. Right: Variation of the stable and unstable direc-
tions along the mission orbit.

To compare the difference between using the varying stable eigenvector or the SEL» eigenvector
to determine the SK thrust direction we have performed one year of station-keeping for SWFO
with the two different thrust vectors. In both simulations we include MUs every 3 days along the
spacecraft-Sun direction with a residual delta-v of 2.5 cm/s. Fig. 4 (top) shows the size of the SK
maneuvers as a function of time, the red line represents the size of the SK maneuvers that uses as
thrust vector the position components of the SEL; stable eigenvector (V;), and the purple line
represents the size of the SK maneuvers that uses the Lissajous orbits stable eigenvector (vg;) as
thrust direction. Notice how the purple line is slightly below the red line, providing the minimum
delta-v maneuvers. Table 1 shows the mean value of the SK maneuvers and the total delta-v for one-
year of station-keeping using the two different thrust directions. As we can see the difference in the
maneuver magnitudes is less than 0.25 cm/s, which is below the classical 5% maneuver execution



error. The impact on the total delta-v is of 3 cm/s, negligible given that the station-keeping cost is
4.77 m/s. These results show that, from an operational perspective, using the same thrust direction
for all SK maneuvers helps simplify the SK strategy, using the SEL; stable direction as the thrust
direction has a minimal impact on the overall station-keeping delta-v budget.
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Figure 4. Top: variation of the maneuver magnitudes for one-yer of station-keeping;
Bottom: variation of the maneuver azimuth along the mission orbit.

Table 1. Table summarizing the size of the total delta-v for one year of station-keeping and the mean
value for a station-keeping maneuver using two different options for the SK thrust direction.

‘ dV using vy ‘ dV using vy

Total Av [m/s] 4,77 m/s 4.80 m/s
Mean SK Av [cm/s] 39.77 cm/s 39.98 cm/s

Monte Carlo Simulations

In order to asses the main drivers of the station-keeping delta-v budget we have performed several
Monte Carlo simulations including ODE and MEE in the simulations. For all the simulations we
consider a high fidelity force model that includes the gravitational attraction of the Sun, Earth, Moon
and the rest of the planets in the solar system. The force model also considers the SRP acceleration
modeled using the cannonball model, given that the spacecraft will always maintain a sun-pointing
attitude except during station-keeping maneuvers this is a good approximation.

Maneuver execution errors are applied to the planned station-keeping maneuver, these errors are
randomly generated following a normal distribution, considering a 5% maneuver execution errors
(3-sigma) and 2.5 degree cone angle error (3-sigma). Orbit determination errors are included to
the position and velocity used to plan the delta-v maneuvers using the targeting strategy described
above. We have assumed a 10 km 3-sigma normal distribution for the position uncertainties, and 5
cm/s 3-sigma normal distribution for the velocity uncertainties.

In all the simulations SK maneuvers are performed every 30 days along the position component
of the Lissajous stable direction at the time of the maneuver (v), and MUs performed every 3
days along the spacecraft-Sun direction and a residual delta-v of 2.5 cm/s. We have also included



MEE to the MUs using the same 3-sigma distributions as the SK maneuvers, as both maneuvers are
using the same thruster sets in this mission.

We have performed three Monte Carlo simulations, one where we include both MEE and ODE,
one where we only include MEE and a third one where we only include ODE. Note that in all
simulations MEE are always included for the MUs, and that each Monte Carlo runs contains 1000
different simulations. The idea behind these three Monte Carlo simulations is to determine if either
MEE or ODE have a significant impact on the total station-keeping delta-v. Fig. 5 shows histograms
of the total station-keeping delta-v for the different cases, where all three cases follow normal dis-
tributions with a mean value of 4.77 m/s, the total delta-v for the no error case (see Table 1). The
difference between the three different simulations is the 3-sigma intervals, where the upper bound
is 5.13 m/s when both ODE and MEE are included, and around 5.03 m/s when either only MEE or
ODE are included. The uncertainties in the maneuver execution and orbit determination add up to
36 cm/s to the total delta-v in the worst case scenario.
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Figure 5. Histograms with the station-keeping total delta-v distribution of 1000
Monte Carlo simulations including MEE and ODE.

It is clear from these results that the main driver of the SK maneuvers are the frequent MUs. We
propose to change the direction in which the momentum unloads are applied in order to mitigate
the impact of the MUs on the SK maneuvers. The frequent MUs along the spacecraft-Sun direction
excite the instability of the Lissajous orbit, resulting in large SK maneuvers. We propose to find
directions where maneuvers along those directions have a smaller impact on the natural instability
of the orbit.

METHODOLOGY

In order to derive the directions for the momentum unloads (dH) that do not have a large impact
on the instability of the orbit in order to reduce the overall delta-v cost to keep SWFO in its mission
orbit we use the CRTBP. This allows us to derive analytical expressions for these directions and
also get a dynamical understanding of the problem. However, we recall that all the simulations



performed with the different dH directions are done using the high fidelity force model described
in the previous section.

Circular Restricted Three Body Problem

It is well known that the CRTBP provides good estimates for the dynamics of the spacecraft in
the Sun-Earth/Moon system, and is simple enough to derive some analytical approximations for
Av maneuvers. The CRTBP considers the spacecraft to be a mass-less particle that is affected
by the gravitational attraction of two primaries, which are assumed to be point masses evolving
around their mutual center of mass in a circular motion. In this case the two primaries are Sun and
Earth/Moon barycenter. The equations of motion are derived taking a rotating reference where the
origin is at the center of mass of both primaries, and they are both fixed on the X-axis (with the
positive side pointing towards the Earth/Moon barycenter); the Z-axis perpendicular to the ecliptic
plane and the Y -axis completes an orthogonal positive oriented reference frame. The units of mass,
distance, and time are normalized such that the total mass of the system is 1, the Sun-Earth distance
is 1 and the period of one Sun-Earth revolution is 27. The equations of motion are given by:

B} 0 . .00 . 00
X -2Y =— Y +2X =— Z=—— 2
0xX’ + oY’ 07z’ @)
L o 2 L —p H 6
where, Q(X,Y, Z) = i(X +Y%)+ ——+ —, p=3.0404234 x 10~° is the mass parameter
Tps Tpe

of the system, and 7ps = /(X + )2 + Y2 + Z2, rpe = /(X + p+ 1)2 + Y2 + Z2 denotes the
relative distances between the spacecraft and the two primaries.

In this paper we focus on the dynamics around SEL;, however all the derivations also apply
around SELy, as they both share similar dynamics. We recall that the location of SEL; and SEL,
depends on the value of p, and their the distance to the small primary (Earth/Moon barycenter) is
the only positive solution of the Euler quintic equations:

YFB -+ B2~y £ 2y — =0,

where the upper sign corresponds to SEL; and the lower to SEL.

Linear approximation of motion around SEL; /SELy

To get a first order approximation of the solutions around the SEL; and SEL, equilibrium we
linearize the equations of motion in Eq. 2. Following Reference 7, we center the equations of
motion at one of the two equilibrium points and scale the distances such that the distance between
the origin (the equilibrium point) and the closest primary (Earth/Moon barycenter) is equal to one.
This is done to ensure good numerical properties for the coefficients of higher order expansions.
The linearized equations are:

-2y = (1-2c)x
j+2i = (I-c)y 3)
zZ = —c9z
1 73 .
where, co = — | p+ (1— ,u)m is a constant that only depends on the parameter y, where
gl gl

the upper sign corresponds to SEL; and the lower to SELy. The solution of the linearized system



(Eq. 3) is:
) = ApeM 4+ Age M 4+ Azcoswt + Agsinwt
y(t) = cAreM — cAre ™ + kAzsinwt + kA3 sinwt 4)
) = Ascosvt+ Agsinvt
c

given by:

N = \/62—24—\2/90%—8627 v = \/2—02—{—\2/90%—802’ v = Ja,

—(W? + 1+ 2¢2) A2 —1—2c
K = , c = —.
2\

2w
Note that +\, 4w and +iv correspond to the eigenvalues of the linearized system given by Eq. 3.

The coefficients Az, A4, A5 and Ag are related to the oscillatory motion which corresponds to
the center x center components of the phase space. Solutions with A; = Ao = 0 belong to the so-
called center manifold, as they only have bounded terms, and they contain the part of the solution
corresponding to the pure imaginary eigenvalues. However, when we look at the motion on the
center manifold it is more convenient to rewrite the equations using the following relationships
Az = Apcos, Ay = Aysinf, A5 = A, cosvy and Ag = A, sinp. Where the central part of the
motion is now expressed as:

x(t) = Ay cos(wt + @), y(t) = KAy sin(wt + @), z(t) = A, cos(vt + ).

Using this formulation, the solution on the center manifold are the coupling of two oscillatory mo-
tions: one oscillation in the xy components with amplitude A,; coupled with another oscillation
along the z axis of amplitude A, ; both oscillations with different periods (w/27 and v /27 respec-
tively). These coupled oscillatory motion represents the Lissajous orbits in the linearized CRTBP,
where A, and A, are the Lissajous orbit in-plane and out-of-plane amplitudes of the oscillations
respectively.

The coefficients Ay and Ao determine the exponential part of the solutions, which corresponds
to the saddle component of the phase space. A; is called the unstable hyperbolic amplitude, be-
cause it corresponds with the eigenvalue with positive real part (A), which is responsible for the
orbits instability. On the other hand, A, is the stable hyperbolic amplitude as it corresponds to
the eigenvalue with negative real part (—\) and is related to the stable manifold. For instance, the
relation A; = 0, Ay # 0, defines a stable manifold, as for any orbit verifying this condition the
term containing the A>-component tends to zero, and the trajectory will tend towards the Lissajous
orbit defined by A, and A,. Similarly, the relation A; # 0, Ay = 0, defines points on the so-called
unstable manifold, where the trajectory escapes from the Lissajous orbit.

From Eq. 4 we can derive the following relations between the trajectories coordinates (x, y, z, &, 9, 2)
and the constant A1, As, Az, A4, A5 and Ag:

x eM e cos wt sin wt Aq
Y e —ceM K sin wt —K coswt Ao
| AeM e M _wsinwt  wcoswt Az |’ )
Y exeM —cde ™M kwceoswt  —kw sinwt Ay
[z} _ [ cos vt sin vt } [A5} ©)
z —vsinvt vcosvt Ag |-



Linear Approximation of the Escape and Non-Escape directions

By inverting Eq. 5 one can get the constants A; and As, associated to the unstable and stable
manifolds, as a function of the trajectory coordinates (x(t),y(t), z(t), &(t),y(t), 2(t)) at a given
time ¢ :

7
A2 —kw A\t —w At —K ,—At 1 e)\t ( )

—Kw ,— At w =t K —At 1 =\t
[Al}:[ 2d; © 25 © 2d5 € 2d; ©

2d; © 2ds € 2, € 2d1

LSR8

where d; = ¢\ — kw and dy = cw + kA (further details in Reference 8).

Let us assume that we are on a trajectory that verifies the non-escape condition A; = 0, i.e.
the trajectory is on, or tends towards the Lissajous orbit. Using Eq. 7, the non-escape condition is
equivalent to having (x,y, &, ) satisfy:

. + 1 . kw1 w1
—X — Yy =—T — Y.

PR (®)

Let us then consider the trajectory after a delta-v maneuver (x,y, z, & + Az, y + Ay, 2 + AZ) and
impose that it also satisfies the non-escape condition A; = 0. As a result, the non-escape condition
(Eq. 8) is kept for maneuvers [Az, Ay, AZ] along the s = +[da, —kdy,0] direction. While for
maneuvers along the u = +[kd;, da, 0] direction the escape condition is maximized (i.e., note that
s L u).

Notice that the non-escape directions (§ = +s/||s||) are good for applying the MUs residuals, as
they have no impact on the instability of the orbit in the linearized system, and will have a small
impact in the non-linear system. While maneuvers along the escape directions (i = +u/||ul|)
are good for SK, because a small delta-v along that direction has a significant change along the
unstable manifold. It is worth noting that the escape direction u = +[kdy, da, 0] is parallel to the
position components of the SEL; stable eigenvector vy, = [—2A, A2 —2¢y — 1, 0] introduced in
the previous section. Where we saw that performing SK maneuvers along this direction instead of
the stable direction at the time of the maneuver had a small impact on the overall delta-v budget.

Fig. 6 shows the relation between these different directions in the RLP reference frame centered
at SEL;. As we can see the SEL; stable direction and escape direction coincide, while the non-
escape direction is 61.75 degrees off the spacecraft-Sun direction and perpendicular to the escape
direction. While the SEL; stable and unstable directions are +-28.25 degrees off the spacecraft-Sun
direction. Finally, we recall that in Reference 3 we used the Floquet Mode reference frame to derive
the minimum-thrust direction for the station-keeping of Halo orbits, using the same idea, derive a
maneuver that maximized the change along the unstable mode.

Proposed dH/dV strategy

We recall that the current nominal plan for SWFO is to perform the momentum unloads (dH)
along the spacecraft-Sun direction to maximize the time we are observing the Sun, and the station-
keeping maneuvers (dV') along the direction defined by the position components of the stable eigen-
vector. In order to mitigate the impact of the momentum unloads on the station-keeping delta-v
budget we propose to use the non-escape direction (§) for dH, as these are frequent maneuvers and
we want to avoid deviating from the Lissajous pattern, and use the escape directions (1) for dV/, as
we want to maximize the change along the unstable manifold to get back to the Lissajous orbit with
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Escape and Non-Escape directions in the XY-RLP plane
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Figure 6. Representation of the spacecraft-Sun direction, the stable and unstable

directions, and the escape and non-escape directions in the RLP reference frame at
SEL;.

minimum delta-v. Fig. 7 shows a schematic representation of these two dH/dV sequences along
the mission orbit.
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Figure 7. Relation between the dH/dV directions along the Lissajous orbit pattern.
Left: Nominal case where the dH is along the spacecraft-Sun line and dV along the
stable direction; Right: Proposed case where the dH are along the non-escape direc-
tion (S), and dV along the escape direction (1).

As we know, while moving along the Lissajous orbit, the stable and unstable directions vary
(see Fig. 3), and so do the escape and non-escape directions. In order to account for this, we
could approximate the non-escape direction by a direction perpendicular the stable eigenvector and
contained in the ecliptic plane. In the next section we analyze the impact of this proposed dH /dV
strategy on the total delta-v for station-keeping.
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RESULTS

In this section we study how much the station-keeping delta-v cost varies when we change the
direction in which the momentum unloads are applied. We will look at two different scenarios, first
applying the MUs along the non-escape direction derived in the previous section, second applying
the MUs along a range of directions between the spacecraft-Sun direction (RS) and the linear ap-
proximation of the non-escape (LANE) direction. We compare these results with the nominal case,
where the MUs are applied along RS. For all simulations, as it was done for the nominal case, the
SK maneuvers are applied every 30 days along the stable direction, and the MUs every 3 days with
aresidual delta-v of 2.5 cm/s. We assume that the residual delta-v is the same regardless of the MUs
direction.

Fig. 8 shows the direction of the MUs (d H maneuvers) relative to the stable and unstable direc-
tions for different cases that have been studied, in both plots all directions are centered at the origin.
On the left hand side, we can see how the variations of the stable (green) and unstable (red) direc-
tions, as well as the variation of the non-escape direction (yellow) and the purple arrow represents
the LANE direction. On the right hand side, we have the stable (dashed green) and unstable (dashed
red) direction associated to SEL;, and the range of directions used in the simulations between RS
and the LANE direction.

dH/dV maneuvers directions in the XY-RLP plane dH/dV maneuvers directions in the XY-RLP plane
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Figure 8. Relation between the directions to apply the ¢ maneuvers and the stable
and unstable directions for the different simulations. Left: dH maneuvers in the
non-Escape direction; Right: scan different d/ directions between spacecraft-Sun
direction and the linear approximation of the non-escape direction.

Momentum Unload along the Non-escape direction

In the previous section we proposed to perform all the MUs along the linear approximation of
non-escape direction (). However, as mentioned in the previous sections this direction varies as
we move along the Lissajous orbit, and can be approximated by a perpendicular direction to the
direction defined by the position component of the stable eigenvector. For this first analysis run the
following scenarios:

1. dH in non-escape direction with fixed Azimuth: case in which the MUs are applied along
the LANE direction, given by the vector (§) derived in the previous section. We recall that
this direction is 61.75 degrees off RS.
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2. dH in non-escape direction with varying Azimuth: case in which the MUs are applied
along the non-escape direction, that is kept fixed between SK maneuvers. For each SK in-
terval the non-escape direction is approximated by a vector perpendicular to the position
components of vgi}, that is contained in the ecliptic plane (z = 0). We can either consider
the stable direction at the time of the SK maneuver (option 1) or the mean stable direction
between two SK maneuvers (option 2).

Fig. 9 (top) shows the size of the SK maneuvers as a function of time, for the three different
scenarios described above. The purple line corresponds to the scenario where the MUs are along
the LANE direction, while the yellow and light blue corresponds to the scenarios where the MUs
direction changes between SK maneuvers (options 1 and 2 respectively). As we can see the results
improve if we change the direction of the MUs along the mission orbit, to better approximate the
non-escape direction. However, in all three scenarios the size of the SK maneuvers have been
drastically reduced. Recall that in the nominal case (Table 1) the average size of the SK maneuvers
was 39.77 cm/s, while in all three scenarios the size of the SK maneuvers is always below 9 cm/s.
Having reduced the average size of the SK maneuvers more than 30 cm/s. The bottom plot of Fig. 9
shows the Azimuth variation of the MUs for each of the three scenarios.

Table 2 summarizes the mean value of the SK maneuvers and the total delta-v for one-year of
station-keeping for these three scenarios, as well as the nominal case (MUs along RS) for compar-
ison. As we can see, even for the scenario where the MUs are along the LANE direction the total
station-keeping delta-v is reduce more than 90%, as well as the size of the average SK maneuvers
that goes from 39.77 cm/s to 3.34 cm/s. In the scenarios in which the MUs is adjusted between SK
maneuvers the reduction of the delta-v cost is of more than 95%.

10 Variation of dV maneuvers Magnitude

=—8—dH in Non-ESC (fixed AZ)
8 dH in Non-ESC (vary AZ opt1)
dH in Non-ESC (vary AZ opt2)

6
4 - B_‘A\ M /
0 L [ " 1 et i [

0 50 100 150 200 250 300 350

Time [days]
Variation of dH maneuvers Azimuth

AV [cm/s]

2 CEEEEEED SR SO (D CHTE | 35 D
=
2

110 —@— dH in Non-ESC (fixed AZ)

dH in Nen-ESC (vary AZ opt1)
dH in Non-ESC (vary AZ opt2)
| |

100 L
0 50 100 150 200 250 300 350

Time [days]
Figure 9. For simulations with d H along the non-escape direction. Top: variation of

the maneuver magnitudes for one-year of station-keeping; Bottom: variation of the
maneuver azimuth along the mission orbit

13



Table 2. Table summarizing the size of the total delta-v for one year of station-keeping and the mean
value for a station-keeping maneuver for the different non-escaped options for the dH direction.

dHin RS | dH in Non-ESC | dH in Non-ESC | dH in Non-ESC

(fixed Az) (vary Az optl) | (vary Az opt2)
Total Av [m/s] 4.77 m/s 0.40 m/s 0.16 m/s 0.05 m/s
Mean SK Av[cm/s] | 39.77 cm/s 3.34 cm/s 1.37 cm/s 0.44 cm/s

Momentum Unload along different fixed directions

Let us now check how the station-keeping delta-v is affected when we consider the MUs along
different fixed directions. We consider different fixed dH directions between RS (Azimuth of 180
deg) and the LANE direction (Azimuth of 118.25 deg). We expect the size of the SK maneuvers
to decrease as we move from RS to LANE. The idea of this scan is to address the cases in which
the MUs have some limitations regarding of the slew times between a Sun-pointing attitude and a
LAME attitude for the momentum unload dumps.

The top plot in Fig. 10 shows the variation of the size of the SK maneuvers as a function of time,
and the bottom plot of the same figure shows the corresponding azimuth variation for each of the
analyzed cases. As we can see on the top plot, the size of the SK maneuvers drops by ~ 9 cm/s
every 15 degree increase on the angle between RS and the MUs, having all SK maneuvers below 20
cm/s for dH 45 degrees away from RS.

Variation of dV maneuvers Magnitude
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Figure 10. For simulations with different dH directions between RS and LANE.
Top: variation of the maneuver magnitudes for one-yer of station-keeping; Bottom:
variation of the maneuver azimuth along the mission orbit

Table 3 summarizes the mean value of the SK maneuvers and the total delta-v for one-year of
station-keeping for the scanned cases, as well as the nominal case (MUs along RS) for comparison.
As we can see, the total delta-v is almost halved for the dH 30 degrees away from RS case, and
goes below 2 m/s for the dH 45 degrees away from RS, showing the significant impact we can have
on the SK maneuvers if we change the direction of the MUs.
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Table 3. Table summarizing the size of the total delta-v for one year of station-keeping and the mean
value for a station-keeping maneuver for the different dH directions between RS and LANE.

‘ dH in RS ‘ dH 15 deg off ‘ dH 30 deg off ‘ dH 45 deg off ‘ dH 60 deg off

Total Av [m/s] 4.77 m/s 3.94 m/s 2.84 m/s 1.55 m/s 0.40 m/s
Mean SK Av[cm/s] | 39.77 cm/s 32.86 cm/s 23.70 cm/s 12.93 cm/s 3.31 cm/s

Monte Carlo Simulations

We have performed Monte Carlo simulations including orbit determination and maneuver execu-
tion errors in the simulations for two of the best dH /dV strategies to mitigate the impact of MUs on
the station-keeping delta-v, where each Monte Carlo runs contains 1000 different simulations. The
first scenario (dHdV_f ixed) considers the d H maneuvers along the LANE direction (u) and the
dV maneuvers along the escape direction (s) (i.e, recall that this is the same direction as the stable
eigenvector of SEL;). The second scenario (dHdV_vary) considers the d H maneuvers along the
mean non-escape direction between SK maneuvers and the dV' maneuvers along the position com-
ponents of the stable eigenvector at the time of the maneuver. We compare these two scenarios to
the Monte Carlo simulations performed for the current nominal case analyzed before, where the dH
maneuvers are along the spacecraft-Sun direction. All the simulations SK maneuvers are performed
every 30 days and MUs performed every 3 days with a residual delta-v of 2.5 cm/s.

We recall that the Monte Carlo runs include MEE that are applied to the planed station-keeping
maneuver and DE that are added to the position and velocity used to plan the delta-v maneuvers
using the targeting strategy. The MEE are randomly generated following a normal distribution, con-
sidering a 5% maneuver execution errors (3-sigma) and 2.5 degree cone angle error (3-sigma), while
for the ODE we have assumed a 10 km 3-sigma normal distribution for the position uncertainties,
and 5 cm/s 3-sigma normal distribution for the velocity uncertainties.
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mean = 4.77m/s mean = 0.47m/s mean = 0.27m/s
3-sigma = 5.13m/s 3-sigma[=|0.73m/s 3-sigma = 0.54m/s

250 1

O

200 1

150 A —

Count
]

100 A

50 1

A ] T

44 46 48 50 52 02 0.4 0.6 0.8 0.0 02 0.4 0.6
Total DeltaV [m/s] Total DeltaV [m/s] Total DeltaV [m/s]

Figure 11. Histograms with the station-keeping total delta-v distribution of 1000
Monte Carlo simulations including MEE and ODE.

Fig. 11 shows histograms of the total station-keeping delta-v for the different scenarios, where
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we can see that all three cases follow normal distributions. The mean value for the nominal case
is 4.77 m/s, and the two proposed dH/dV strategies have a much smaller mean value for case
dHdV_fixed is 0.47 m/s and for case dHdV_vary is 0.27 m/s. For the three simulated cases the
upper bound for the 3-sigma distribution is of 5.13 m/s, 0.73 m/s and 0.54 m/s respectively. Having
a reduction of almost 85% using dH/dV strategy in the dHdV_fixed case and of almost 90%
using the dH /dV strategy in the dHdV_vary case. Hence, changing the direction in which the
momentum unloads are applied can help mitigate the impact of the MUs on the SK maneuvers and
drastically reducing the overall station-keeping delta-v.

GEOMETRIC INTERPRETATION

In the previous section we saw that changing the direction of the MUs can have a large impact
on the size of the station-keeping maneuver. As we studies, applying the MUs close to the non-
escape direction can drastically reduce the size of the SK maneuvers, as the non-escape direction
does not deviate the trajectory along the unstable direction. To understand the differences between
the dH/dV strategies simulated in the previous section, we have to look at the projection of the
spacecraft trajectory and maneuver directions on the saddle plane? (i.e., the plane generated by the
stable and unstable directions).

As we know, the linear dynamics around SEL; is saddle xcenterxcenter, and so is the linear
behavior around a small Lissajous orbit.® To describe the motion close to a Lissajous orbit one
should derive the quasi-periodic Floquet Mode reference frame, in the same way it is done for Halo
orbits.!=> For the purpose of this study, as we are considering small Lissajous orbits, one can also
use the linear approximation of the equations of motion at SEL; and derive a reference frame that
splits the motion into a saddle and the two center planes (the SCC reference frame from now on)
and use this reference frame to describe how different maneuver directions impact the spacecrafts
trajectory. The SCC reference frame is defined by the eigenvalues of the linearized equations of
motion.

The change of variables, £ = C7, between the RLP and the SCC reference frames can be found
as follows. Let us start by taking the linearized equations of motion around SEL; given by Eq. 3,
that can be expressed as § = A¢g, with & = (z,y,2,2,y,%). Where £\, +iw and +iv are the
eigenvalues of A and vy, v_y, u, = u’® & iu™ and u, = u’® & ul™ are their associated
eigenvalues. We define C as the matrix that has as columns the vectors vy, v_y, u'®, ul™ u® and

w ) u(AJ Y ul/
u) ™. One can see that C is invertible and satisfies D = C ~1 AC, where D can be written as,

F N0 -
0 =X

The linearized equations of motion are expressed as 77 = Dn after applying the change of vari-
ables ¢ = Cn , where we 1) = (e, €2, €3, ey, €5, €6). The solution of the equations of motion in the
SCC reference frame is simple: on the plane generated by {e;, 2} the motion is a saddle, and the
trajectory escapes with an exponential rate along the unstable direction; and on the planes generated
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by {es,e4} and {es, e} the dynamics consists of a rotation of period w/2m and v/27 respectively.
Fig. 12 shows a schematic representation of the solutions around SEL; using the SCC reference

frame.
N NG
y Ny /
o —— ﬁ X 33\‘ C_) / X | D /
A .

Figure 12. schematic representation of the dynamics around a halo orbit using the
SCC reference frame €;(t)

We use the SCC reference frame to describe the behaviour of the different dH/dV strategies
presented in the previous sections, paying special attention on the projection of the trajectories on
the saddle plane (i.e., plane generated by {e1, e2}). We recall that delta-v maneuvers are modeled
as instantaneous changes in the velocity and they can be seen as jumps on the phase space. Before
showing their impact on the trajectory let us discuss how the RS, escape ({1) and non-escape (S)
directions are projected on the saddle plane. Note that these are vectors in R? hence the vectors we
apply the change of variables defined by £ = Cn and project on the saddle planes are: (01x3,RS),
(01x3,1) and (013, 8). Fig. 13 shows the projection of these three directions, as well as the direc-
tions defined by the position components of the stable and unstable vectors in the RLP reference
frame (left) and the SCC reference frame (right). As we can see, the projection the non-escape
direction (purple line) in the SCC reference frame has no component in the unstable direction e; of
the saddle plane, hence maneuvers in that direction do not add instability to the spacecraft’s trajec-
tory, however this one will continue to deviate along the unstable direction due to the natural saddle
dynamics. On the other hand, maneuvers along RS and @i move the spacecraft’s trajectory away
from the stable direction (e2) adding to the natural instability of the orbit.
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Let us now show how the trajectory of the spacecraft looks on the saddle plane projection for
two different dH /dV strategies: nominal SWFO strategy (dH along the spacecraft-Sun direction
RS) vs the one proposed in this paper (dH along the non-escape direction §). In both cases the
dV maneuvers are along the escape direction Gi. For this example we have taken the linearized
equations of motion, set a random initial condition close to the Lissajous orbits, and propagated
the trajectories applying the two different dH /dV strategies. Where the d H maneuvers are applied
every 3 days with a residual delta-v of 2.5 cm/s, and the dV' maneuvers are applied every 30 days
with the size computed to cancel the instability (i.e. bring the trajectory back to e; = 0). We know
that the size of a station-keeping maneuver is related to the distance between the spacecraft and the
nominal orbit along the unstable direction, and the thrust direction of the maneuvers.? Given that all
dV maneuvers are applied along the same direction, the size will be only related to position along
e in the saddle plane at the time of the maneuver.

Fig. 14 shows the projection of both trajectories on the saddle plane. The left plot shows the
case where dH along RS, and the right plot shows the case when dH is along the non-escape
direction. In both plots the magenta lines represent the d H maneuvers and the green arrows the dV/
maneuvers,while the spacecraft trajectory is represented in blue (nominal case) and red (proposed
case). As we can see, applying the momentum unloads along R.S makes the trajectory escape faster
along e; resulting on a larger magnitude for the dV' maneuvers.
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Figure 14. Projection of the trajectory on the saddle plane for different dH /dV strate-
gies, dH along RS (left) and dH along the non-escape direction (right). In both plots,
the purple lines represent the d H maneuveres and the green lines the dV' maneuvers.
The spacecraft’s trajectory for the corresponding dH /dV is represented in blue (left)
and red (right).

The same analyses can be done for scenarios summarized in Table 3, where the d H maneuvers
are applied along a range of different directions between RS and §. The scenarios considered took
dH 15, 30, 45 and 60 degrees off the spacecraft-Sun line, and as we can see in Table 3 the size
of the station-keeping maneuvers decreases as dH gets closer to the non-escape direction that is
61,75 degrees off the satellite-Sun line. Fig. 15 shows the projection of these four new scenario
(from top to bottom and left to right cases dH 15, 30, 45 and 60 degrees off RS). As we can see,
as the projection of the dH maneuver on the saddle plane gets closer the non-escape direction, the
trajectory experiences a smaller excursion along the unstable direction (e;) resulting on smaller dV'
maneuvers (green arrow).
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Figure 15. Projection of the trajectory on the saddle plane for different d/dV strate-
gies, dH 15 deg off RS (top-left) , dH 30 deg off RS (top-right), dH 45 deg off RS
(bottom-left) and dH 60 deg off RS (bottom-right). In all plots, the purple lines rep-
resent the dH maneuveres and the green lines the ¢ maneuvers. The spacecraft’s
trajectory is represented with different colors in every case.

As we have seen, looking at the trajectories in the saddle plane helps understand the impact of
changing the direction of maneuvers on the over-all cost of the mission. When the momentum
unloads are applied along a fixed direction, this induces a natural drift of the trajectory along that
direction. Choosing the direction for the maneuvers to be close to the non-escape direction add
small bias along the unstable direction deriving on small station-keeping maneuvers.

CONCLUSION

The size of station-keeping maneuvers depends on many factors like unmodeled perturbation,
orbit determination errors, maneuver execution errors, momentum unloads, or the cadence of the
maneuvers. In the case of SWFO, the main driver is the frequent momentum unloads, which are
all applied along the spacecraft-Sun direction. In this paper we have explored the option of using a
different direction for the momentum unloads to minimize their impact on station-keeping.

The CRTBP has been used as a model to describe the motion around a Lissajous orbit, and
from the linearized equations of motion around SEL; derived what we call the escape and non-
escape directions. Maneuvers along the escape directions maximize the variation along the unstable
manifold, these are ideal for station-keeping as a small maneuver along the escape direction has a
large impact on the instability, and can be used to cancel the natural instability of the orbit at a small
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cost. While maneuvers along the non-escape directions should be used for frequent momentum
unloads, by definition maneuvers along the non-escape direction do not add to the instability of the
orbit.

Monte Carlo simulations have bee performed comparing SWFO’s nominal dH /dV strategy (where
dH are along the spacecraft-Sun direction) , with a new dH /dV strategy (where dH are along the
non-escape direction). In both cases dH are applied every 3 days with the same residual delta-v
and station-keeping maneuvers every 30 days. We have seen that this new dH /dV can reduce the
delta-v budget for station-keeping up to 90%, being a strategy to be considered for future mission
applications.

Finally, a geometric interpretation of the different dH /dV strategies is presented, using the SCC
reference frame (similar to the Floquet Modes) to describe the motion close to a Lissajous orbit.
Looking at the projection of the different delta-v maneuvers on the saddle plane (defined in the SCC
reference) helps understand how different maneuvers affect the escape rate of the trajectories along
the unstable manifolds. Using these reference frames to describe the behaviour of the trajectories
the delta-v maneuvers can help derive better strategies accounting for the mission constraints.
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