

Coordinating Innovative Technology Development at NASA

Dr. Erica Rodgers

NASA Office of Technology, Policy, and Strategy October 25, 2022

Office of Technology, Policy and Strategy (OTPS)

Overarching Goal – Help Support the Why, What, and How of NASA Working in <u>collaboration</u> across NASA and the broader space community...

...Provide NASA leadership with data- and evidence-driven advice to develop and shape

- policy (<u>what</u> NASA should do and <u>why</u>),
- strategy (<u>how</u> should NASA do what it does), and
- technology (<u>how</u> to best develop/leverage the right technology)

Policy (why, what)

Strategy (how/global)

> Technology (how/tech)

Office of Technology, Policy, and Strategy (OTPS) Stakeholders

Every activity has technology, innovation, policy, and strategy components

Smart innovation at NASA

• NASA missions span decades

4

- ISS: Presidential policy (1984), first modules launched (1998), crewed ops began (2000)
- JWST: Next Generation Space Telescope Workshop (1989), formal recommendation for next-gen infrared telescope (1996), construction began (2004), launched (2021)
- Innovation has a unique role in NASA missions
 - New technologies are critical to enable inspiring missions in science, exploration, and aeronautics
 - However, innovation cycles in industry can be months to years
 - Smart innovation is necessary to leverage emerging technologies or disruptive breakthroughs
- Smart innovation is a key element of sustainability at NASA
 - Programs proactively plan technological on-ramps to remain resilient to unanticipated challenges
 - Improves coordination throughout the full program lifecycle

JWST Deep Infrared Image Credit: NASA, ESA, CSA, STScI

Hitching a ride to Mars

- 2018: Mars Cube One
 - Technology demonstration of interplanetary CubeSats
- Mars Cube One (MarCO) spacecraft Credit: NASA

- Rapid process
- Pathfinder for other interplanetary CubeSats
 - Sun Radio Interferometer Space Experiment (SunRISE) – Expected launch 2024-2025

SunRISE Artist Concept Credit: NASA JPL

Prospecting for water on the Moon

 2018: NASA's Moon Mineralogy Mapper (M3) on ISRO Chandrayaan-1showed promise of south pole

2020: SOFIA
 captured
 lunar water
 cycle, informs
 future ISRU

SOFIA and illustration of H2O molecules on the lunar surface. Credit: NASA

Ice locations at the Moon's south pole detected by M3. Credit: NASA

Rendering of 13 candidate landing regions for Artemis III. Credit: NASA

Challenge: Connecting knowledge to future objectives and opportunities

- Challenge: NASA is planning today for missions that will be enabled by technologies we may not be able to envision
- NASA connects experience and vision to NASA programs
- NASA relies on expert input from a broad community of stakeholders
- To leverage expert input NASA mission directorates have created coordinated processes to inform future programs.

STMD Strategic Framework

N855	Finsuring Janevican	Go Rapid, Safe, & Efficient Space Transportation	Frable Human Earth-to-Mars Round Trip mission durations less than 700 days. Enable rapid, low cost delivery of robotic payloads to Moon, Mars and begrand. Frable resuble, safe launch and in space propulsion systems that reduce bunch and operational costs/complexity and leverage potential destination based ISU for propeilants.	Cryogenic Fluid Management & Propulsion Advanced Propulsion
	Lunar Exploration building to Mars and new discoveries at	Land Expanded Access to Diverse Surface Destinations	 Enable Lunar and Mars Global Access with "20t payloads to support human missions. Land Poyloads within 50 meters accuracy while also avoiding local landing heards. 	Iluman & Robotic Entry, Descent and Landing Precision Landing
IAUTICS	estreme locations • Robust national space technology engine to meet national needs	Live Sustainable Uning and Working Farther from Farth	 Conduct Human/Robotic Juner Surface Missions in excess of 28 days without receptly. Conduct Human Mars Missions in excess of 800 days including transit without receptly. Provide practice than 75% of propellant and water/air consumables from local resources for Lunar and Mars missions. Enable Surface habits that stutist local construction resources. Enable intelligent robotic systems argementing operations during crewed and un-crewed mission segments. 	Sustained human life support systems Operate in Extreme Furinoments Advanced Materials, Structures and Manufacturing Sustainable Power Institu Propelliart and Consumable Production Intelligent/Realient Systems & Advanced Robotics
	U.S. scanomic growth for space industry Expanded commercial enterprise in space	Explore Transformative Missions and Discoveries	 Enable new discoveries at the Moon, Mars and other extreme locations. Enable new architectures that are more rapid, affordable, or capable than previously achievable. Enable new approaches for in-space servicing, assembly and manufacturing. Enable new generation space data processing with higher performance computing, communications and ravigation in harsh deep space environments. 	Extreme Access On orbit Scricing, Assembly and Manufacturing. Small Spacecraft Technologies Advanced Axtenies Advanced Communications & Navigetien
entation Plan ₄₀	Note: Mul Credit: NAS	Itiple Capabilities	ere cross cutting and support multiple Thrusts. Primary e	mphasis is shown

Technology Taxonomy

- NASA's 2020 Technology Taxonomy provides a standard framework for communicating about technologies
- Incorporates input from across NASA centers, internal experts, and external review
- Taxonomy is updated over time to include new technologies relevant to NASA and to re-align technology areas

https://www.nasa.gov/offices/oct/taxonomy/index.html https://techport.nasa.gov/

8

Science and Technology Partnership Forum

S&T Topic Areas

Prior

- Small Satellite Technology
- Big Data Analytics
- In-Space Assembly
- Cyber Resilient Space
 Systems
- Cis-lunar Capabilities
- Radiation-Hardened, High-Performance Electronics for Space Assets

Ongoing

- Space Trusted Autonomy
- Cyber Space Mission
 Assurance

Vision: Technology solutions to joint problems. Multi-agency collaboration on cross-cutting S&T solutions to benefit the Nation.

S&T Partnership Goals

- Enable interagency collaboration
- Leverage synergies
- Influence agency portfolios

S&T Partnership Objectives:

- Leverage
- Encourage
- Connect
- Coordinate and Champion
- Identify
- Remove Interagency Barriers

Credit: NASA

Established in 2015

Strategic forum established to identify synergistic efforts and technologies.

Focus on key pervasive and game-changing technologies across government space

Customers

- NASA Mission Directorates
- NASA Centers
- Technology Transition and Mission Support Offices
- Service Laboratories
- Research and Engineering Centers
- Other Technology Centers of Excellence

Credit: NASA

https://www.nasa.gov/offices/otps/st_partnership.html

Envisioning the aeronautics and space enterprise for the next 20-50 years: NASA futures study

Goal: Inspire and prepare NASA leadership to move towards achieving its preferred futures and to be prepared for a variety of future states that could come to realization.

Conclusions

- NASA relies on coordinated processes to enable smart innovation
 - Each mission directorate develops tailored processes
 - These processes incorporate technology onramps across long mission timelines
- Expert input is critical to smart innovation at NASA
 - NASA relies on expert input to help anticipate and respond to unanticipated challenges
 - Input is critical to enabling sustainability and resiliency across the agency
- As an independent office, OTPS helps enable coordinated innovation

Thank you!

Questions, Comments, Feedback

Dr. Erica Rodgers

S&T Partnerships Lead NASA, OTPS Email: <u>erica.m.rodgers@nasa.gov</u> Phone: 202.358.0063 https://www.nasa.gov/offices/otps/home/index.html