

Evolution of biological satellites: from low Earth orbit to NASA's BioSentinel deep space mission

Sergio R. Santa Maria KBR/FILMSS, NASA Ames Research Center

sergio.santamaria@nasa.gov

EXPLORE MOONtoMARS

What are we going to encounter in deep space?

Galactic Cosmic Rays (GCRs)

Solar Particle Events (SPEs)

Trapped particles

Schaefer et al. 1972

Cell nuclei showing DNA damage

Cucinotta & Durante, 2006

- Both SPEs & GCRs are interplanetary, modulated by the 11-year solar cycle
- SPEs: sporadic, transient (mins to days); high proton flux (low-medium energy)
- GCRs: high-energy protons and highly charged, energetic heavy particles
- GCRs not effectively shielded; can break up into lighter, more penetrating pieces

Challenges: SPEs – unpredictable; large doses in short time

GCRs - biology effects poorly understood (but most hazardous)

The limits of life in space – as we know it – is 12.5 days on a lunar round trip or 1.2 years in LEO. As we send people further into space, we need to understand the biological risks and how they can be addressed

E. coli GeneSat-1 (2006 / 3U): *gene expression* EcAMSat (2017 / 6U): *antibiotic resistance*

- S. cerevisiae
 - *iae* PharmaSat (2009 / 3U): *drug dose response* BioSentinel (2022 ⁽²⁾ / 6U): *cell damage repair*

- B. subtilis
 - O/OREOS* (2010 / 3U): survival, metabolism
 *Organism/Organic Response to Orbital Stress

- C. richardii
 - *dii* SporeSat-1 (2014 / 3U): **ion channel sensors, µ-centrifuges**

GeneSat mission: NASA's 1st CubeSat

1st bio nanosatellite in Earth's orbit, 1st real-time, *in-situ* gene expression measurement in space

12-well fluidic card

- Nutrient deprivation in dormant state (6 weeks)
- Launch: Dec 2006 to low Earth orbit (440 km)
- Nutrient solution feed upon orbit stabilization, grow *E. coli* in microgravity
- Monitor gene expression via GFP
- Monitor optical density: cell population

3U CubeSat

Dec 16, 2006

PharmaSat mission

S. cerevisiae

Effect of microgravity on yeast susceptibility to antifungal drug

- Launch: May 2009 to LEO (~450 km)
- Grow yeast in multiwell fluidics card in microgravity
- Measure inhibition of growth by antifungal
- Optical absorbance (turbidity: cell density)
- Metabolism indicator dye: alamarBlue (3-LED optical detection)
- Control + 3 concentrations of antifungal

3U CubeSat

May 19, 2009

O/OREOS mission

Organism / Organic Response to Orbital Stress (1st astrobiology CubeSat)

- Effects of space exposure on biological organisms (6 mo) & organic molecules (18 mo)
- Bus and 3U configuration derived from GeneSat & PharmaSat
- Launch: Nov 19, 2010 to highly-inclined orbit (~630 km)
- SESLO (Space Environment Survival of Living Organisms): monitor survival, growth, and metabolism of *B. subtilis* using *in-situ* optical density /colorimetry
- SEVO (Space Environment Viability of Organics): track changes in organic molecules and biomarkers: UV / visible / NIR spectroscopy

Nov 19, 2010

B. Subtilis (dried spores)

SporeSat mission

Gravitational response of fern spores via Ca²⁺ ion channel response

- Model organism: Ceratopteris richardii (aquatic fern spores)
- 2U payload (3U total)
- Launch: April 18, 2014 to LEO (325 km)
- Variable gravity in microgravity using 50-mm microcentrifuges
- 32 ion-specific [Ca²⁺] electrode pairs (lab-on-a-chip devices, bioCDs)

³U CubeSat

EcAMSat mission

EcAMSat

E. coli AntiMicrobial Satellite mission (1st 6U bio CubeSat)

- Antibiotic resistance in microgravity vs. dose in uropathogenic *E. coli*
- Heavy reuse of PharmaSat design (6U format provided 50% more solar-panel power)
- Launch: Nov 12, 2017 (ISS deployment: Nov 20; ~400 km)
- 1st 6U bio satellite to be deployed from ISS

48-well fluidic card

6U CubeSat

Deployment from ISS

Objective: develop a deep space tool with autonomous life support technologies to study the biological effects of the space radiation environment

NASA's first biological study in interplanetary deep space

- First CubeSat to combine bio studies with autonomous capability & dosimetry beyond LEO
- Far beyond the protection of Earth's magnetosphere
- BioSentinel will allow to compare different radiation & gravitational environments (free

Why?

Space radiation environment's unique spectrum cannot be duplicated on Earth. It includes high-energy particles, is omnidirectional, continuous, and of low flux.

How?

Lab-engineered S. cerevisiae cells will sense & repair direct (and indirect) damage. Yeast cells will remain dormant until rehydrated and grown using a microfluidic and optical detection system.

Why budding yeast?

It is a eukaryote; easy genetic & physical manipulation; assay availability; flight heritage; ability to be stored in dormant state

While it is a simple model organism, yeast cells are the best for the job given the limitations & constraints of spaceflight

BioSentinel: a bio CubeSat for deep space

BioSentinel: a bio CubeSat for deep space

BioSentinel: a bio CubeSat for deep space

16-well fluidic card (x18) 9-card fluidic manifold (x2) Card stack Budding yeast μm 4 cm 4U BioSensor payload 6U BioSentinel spacecraft LET spectrometer ISS (& Ground)

BioSentinel: microfluidic system

BioSentinel: microfluidic card

Optical Source

Heater layer

Fluidic card

Heater layer

Optical

detector

BioSentinel: how did we get here?

Instrument & flight heritage

- Model organism & strain selection
- How to fly the biology? Dry/wet?
- Long-term viability & biocompatibility
- Materials, sterilization method, reagents, fluidic components...
- Multiple fluidic cards; 288 wells
- LEO control (and ground)
- Data telemetry & processing

LEIA: Lunar Explorer Instrument for space biology Applications

- Three awarded Space Biology ground investigations (two ARC PIs)
- Significant instrument heritage from BioSentinel
- ARC team selected for a PRISM2 award to perform science experiments on the lunar surface (synthetic biology & stress/damage response)
- LEIA will have additional countermeasures to improve long-term viability (*e.g.*, late load of biology and improved desiccant storage)
- LEIA suite also include a LET spectrometer and a fast neutron detector
- Power & data from CLPS lander

Why CubeSats?

- Small satellites are very capable: technology miniaturization & maturation
- Access to space: multiple low-cost launches possible (test \rightarrow learn \rightarrow iterate)
- Excellent education vehicle (worldwide)
- Autonomous operations
- Technology migration: ISS; free-flyers; landers/orbiters for moon, Mars & other planets

Achieving Science with CubeSats

Thank you!