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Abstract 20 

Background: Accurately estimating burned area from satellites is key to improving biomass 21 

burning emission models, studying fire evolution and assessing environmental impact. Previous 22 

studies have found that current methods for estimating burned area of fires from satellite active-23 

fire data do not always provide an accurate estimate. Aims and Methods: In this work, we 24 

develop a novel algorithm to estimate hourly accumulated burned area based on the area from 25 

boundaries of non-convex polygons containing the accumulated Visible Infrared Imaging 26 

Radiometer Suite (VIIRS) active-fire detections. Hourly time series are created by combining 27 

VIIRS estimates with fire radiative power (FRP) estimates from GOES-17 data. Conclusions, 28 

Key Results and Implication: We evaluate the performance of the algorithm for both 29 

accumulated and change in burned area between airborne observations, and specifically examine 30 

sensitivity to the choice of the parameter controlling how much the boundary can shrink towards 31 

the interior of the area polygon. Results of the hourly accumulation of burned area for multiple 32 

fires from 2019 and 2020 generally correlate strongly with airborne infrared (IR) observations 33 

collected by the United States Forest Service National Infrared Operations (NIROPS), exhibiting 34 

correlation coefficient values usually greater than 0.95 and errors < 20%.   35 

Plain language summary 36 

We propose a new method to estimate burned area of wildfires. Using fire detections from 37 

multiple types of satellites, burned area can be estimated reasonably well when compared to 38 

burned area measurements from aircraft. This method works well for large and small wildfires, 39 

when tested on a variety of wildfires.   40 

 41 

 42 
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Introduction 43 

In addition to the destruction that wildfires can cause to infrastructure and homes, wildfires also 44 

emit large amounts of smoke that contain compounds harmful to human health like PM2.5 45 

(Wegesser et al. 2009; Munoz-Alpizar et al. 2017). Accurately predicting and estimating wildfire 46 

emissions has become critical as more people move into the wildland-urban interface and 47 

wildfire activity in the western United States continues to increase (Westerling et al. 2006; 48 

Radeloff et al. 2018). Longer fire seasons, earlier snowmelts and springs contribute to increasing 49 

fire activity (Westerling et al. 2006).  50 

 51 

Improving quantification of burned area of wildfires is essential to enhancing biomass burning 52 

emissions predictions. The commonly used “bottom-up” methodology requires a combination of 53 

fuel information, estimated burned area and emission rates of chemical species (Seiler and 54 

Cruzten 1980; French et al. 2011; Paton-Walsh et al. 2012). Fuel availability and other bottom-55 

up components may better predict carbon emissions and changes in fire size (Fernandes et al. 56 

2016; Walker et al. 2020). Improved burned area estimates may therefore facilitate improved 57 

predictions of biomass burning emissions for a variety of modeling applications. Recent work in 58 

biomass burning emissions predictions have used a fusion of polar-orbiting and geostationary 59 

sources to enhance hourly estimates (Li et al. 2022). 60 

 61 

Satellite remote sensing provides the only pathway to quantify fire activity and biomass burning 62 

emissions worldwide. These active-fire detection data have the capacity to estimate burned area 63 

and emissions using instruments onboard polar-orbiting satellites, such as Moderate Resolution 64 

Imaging Spectroradiometer (MODIS) or the Advanced Very High Resolution Radiometer 65 
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(AVHRR) (Soja et al. 2004; Sukhinin et al. 2004; Wiedinmyer et al. 2011). However, the 66 

resolution of the fire products for AVHRR and MODIS (Csiszar et al. 2003; Giglio et al. 2006),  67 

which at nadir are 1.1 km and 1 km respectively (Belward and Lambin 1990; Giglio et al. 2016), 68 

is not sufficient to capture details of individual fire fronts located within a given pixel (Peterson 69 

and Wang 2013; Peterson et al. 2013; Schmidt 2019).  70 

 71 

Fire detections from the Visible Infrared Imaging Radiometer Suite (VIIRS) I-Band sensor have 72 

an enhanced nadir spatial resolution of 375 m, thus having the capacity to detect smaller fires 73 

and increase overall accuracy of burned area estimations (Schroeder et al. 2014; Oliva and 74 

Schroeder 2015). This higher resolution imagery provides the resolution necessary to 75 

approximate a solution for the Gauss Circle Problem (Berndt et al. 2018), which constrains the 76 

number of integer lattice points needed to define the area of a polygon, which is the basis for our 77 

method. The higher resolution VIIRS data enable an increased number of active-fire detections 78 

in a fire perimeter compared to MODIS or AVHRR (Goldberg et al. 2013; Wolfe et al. 2013; 79 

Schroeder et al. 2014). Gaps still remain, however, in assessing how well VIIRS sensors can be 80 

used to estimate burned area (Briones-Herrera et al. 2020), especially utilizing the VIIRS sensor 81 

launched aboard the National Oceanic and Atmospheric Administration (NOAA) NOAA-20 82 

satellite launched in 2017.  83 

 84 

In addition to active-fire detections from polar-orbiting satellites, active-fire detections and fire 85 

radiative power (FRP) derived from geostationary satellite sensors, such as the Geostationary 86 

Operational Environmental Satellite (GOES)-R Series, can also be used to characterize fire 87 

behavior (Schmidt 2019). The GOES-17 Advanced Baseline Imager produces fire information 88 
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on a relatively coarse spatial footprint covering 5-8 km2 over the contiguous United States based 89 

on WFABBA outputs. However, when compared with twice-daily observations from polar-90 

orbiting satellite senors, geostationary sensors provide a much higher temporal resolution with 91 

scans every five minutes over CONUS (Schmit and Gunshor 2019). This finer temporal 92 

resolution provides a detailed representation of fire behavior over time, which is critical for 93 

estimating growth between overpasses of polar-orbiting sensors.  94 

 95 

Large incidents in the western United States are routinely observed by the National Infrared 96 

Operations (NIROPS) program run by the United States Forest Service (USFS) using airborne 97 

infrared (IR) sensors (Page et al. 2019). Verification of satellite-based burned area with aircraft 98 

observations can be challenging due to the temporal offset between polar-orbiting satellite 99 

overpasses and these aircraft observations (Oliva and Schroeder 2015). If a satellite overpass 100 

occurs during a time of major fire growth after aircraft have already observed the fire, it may 101 

appear that the satellite is overestimating true fire size when in reality, it may be accurately 102 

estimating fire size at the time of the overpass.  103 

 104 

This study develops a new method to estimate burned area using a combination of polar-orbiting 105 

and geostationary satellite sensors. Incorporating near-continuous data from geostationary 106 

satellite sensors based on FRP variations observed with burned area estimates from polar-107 

orbiting satellite sensors, hourly time series of fire burned area can be obtained. This method can 108 

be used to reduce the impact of time offsets between airborne and polar-orbiting satellite 109 

overpasses. The main improvement this method provides is a way to achieve high temporal 110 

burned area estimates without sacrificing high spatial resolution. This can be helpful in multiple 111 
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applications, such as calculations of hourly emissions for bottom-up approaches without having 112 

to apply fixed diurnal cycles (Ye et al. 2021) assist with evaluation of methods to predict fire 113 

spread at hourly time resolution which are generally evaluated at coarser time resolutions such as 114 

those from VIIRS, NIROPS or with final perimeters (Cohen et al. 2020; Munoz-Esparza et al. 115 

2018). 116 

Study region and test fires  117 

This study focuses on wildfires in the western United States (final fire sizes from 4200 ha to 118 

>100,000 ha) shown in Figure 1. The western United States has robust spatial and temporal 119 

coverage from both geostationary satellites, like GOES-17 (occupying the GOES-West position 120 

during the study period), and polar-orbiting satellites. Additionally, the western United States has 121 

frequent IR observations of large fires from NIROPS..  122 

 123 

Williams Flats 124 

The Williams Flats Fire was selected for detailed examination in this study. The Williams Flats 125 

Fire burned on the Colville Indian Reservation in Washington State from 2 August 2019 until it 126 

was fully contained on 25 August 2019 with a final size of 17,986 ha, according to the Incident 127 

Command System ICS-209 report. The Williams Flats Fire was heavily observed and exhibited a 128 

range of fire growth patterns. The fire was monitored by NIROPS, multiple satellites and 129 

NASA’s ER-2 and DC-8 aircraft during the Fire Influence on Regional to Global Environments 130 

Experiments- Air Quality (FIREX-AQ) field campaign (Warneke et al. 2022).  131 

 132 

The Williams Flats Fire exhibited unique patterns of diurnal fire growth. During the first days 133 

after ignition, the fire followed a typical diurnal pattern of fire growth (Mu et al. 2011; Andela et 134 
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al. 2015) with the largest growth occurring during the afternoon and the fire becoming less active 135 

at night. As the fire continued to grow, however, the fire actively burned overnight. This 136 

behavior has been repeatedly observed in large western wildfires during periods of extreme fire 137 

growth (Peterson et al. 2015; Saide et al. 2015). Large active periods of fire growth were 138 

detected by satellites overnight, especially on 7 and 8 August 2019 UTC. The Williams Flats 139 

Fire exhibited extreme fire behavior on 8 August 2019 UTC when the fire produced multiple 140 

pyrocumulonimbus. (National Aeronautics and Space Administration (NASA), 2019).  141 

 142 

Other 2019 fires 143 

In addition to the Williams Flats Fire, other fires sampled during the FIREX-AQ field campaign 144 

and notable incidents from 2019 were used (Table 1). Additional fires were chosen to diversify 145 

the location, fire behavior, size and topography, among other features, to provide rigorous testing 146 

of the algorithm across a variety of conditions. Of the 2019 fires, the 204 Cow and Walker Fires 147 

are also discussed in the text. Detailed statistics and maps for the other 2019 fires are in the 148 

supplement. 149 

 150 

2020 Fires 151 

2020 was a record-breaking fire season with some of the largest fires in state history for multiple 152 

states in the United States. In total, more than 4 million hectares burned in the United States in 153 

2020 (National Interagency Fire Center, no date). Table 1 shows the fires chosen from the 2020 154 

fire season. All fires studied are single incident fires, none are complexes. Complexes are two or 155 

more incidents in a general area managed by the same incident commander or a unified 156 

command (United States Forest Service, no date). Complexes are an area of future research to 157 
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continue to explore the performance of the algorithm. Of the 2020 fires, the Dolan, Lake and 158 

Riverside Fires are analyzed here with the statistics and maps for the remaining fires found in the 159 

supplement.  160 

 161 

Observational datasets  162 

VIIRS 375 m data 163 

The NASA-generated VIIRS Active Fire 375 m VNP14IMG and VJ114IMGTDL Collection 1 164 

data products and compatible NOAA-generated products are available from both the SNPP 165 

(2019 and 2020) and NOAA-20 (2020) satellites of the Joint Polar Satellite System (Schroeder 166 

and Giglio 2017).  SNPP flies in a sun-synchronous orbit, crossing the equator at about 1:30 PM 167 

and about 1:30 AM locally for ascending and descending nodes, respectively, while NOAA-20 168 

also has a local equatorial crossing time of about 1:30AM/PM and has ~50.5 minutes of 169 

separation from SNPP (Wolfe et al. 2013; Schroeder et al. 2014; Cao et al. 2018).  170 

 171 

GOES  data 172 

The GOES-17 ABI, referred to as ABI hereafter, FRP data from the Wildfire Automated 173 

Biomass Burning Algorithm (WFABBA) Versions 6_5_012g and 6_6_001g hotspot detection 174 

algorithm were used (Schmidt 2019). Most 2019 data are available on the FIREX-AQ archive, 175 

while some 2019 and all 2020 ABI FRP data were obtained directly from University of 176 

Wisconsin Space Science and Engineering Center (SSEC).  While the GOES-W ABI spatial 177 

resolution is coarser than the VIIRS spatial resolution (5-8 km2 for the CONUS based on 178 

WFABBA outputs), the ABI data have a much higher temporal resolution at 5 minutes over 179 

CONUS. The relatively large size of the detections makes the area estimates much larger than 180 
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reality using an accumulation method. FRP is an instantaneous estimate of the power released by 181 

a fire and has been extensively tied to various measurements of fire behavior and intensity (Li et 182 

al. 2018). Additionally, geostationary FRP has shown to be well correlated with fire behavior 183 

and aerosol and gas emissions from wildfires (Wiggins et al. 2020). As a result, ABI FRP data 184 

were used to describe the temporal evolution of burned area and is expected to result in a more 185 

realistic evolution than linearly interpolating VIIRS estimates.  186 

 187 

NIROPS data 188 

To evaluate the estimated burned area from the satellite detections, fire size is also estimated by 189 

the USFS’ NIROPS program, which maps large incidents in the United States using both 190 

dedicated USFS airborne IR sensors (Greenfield et al. 2003) as well as privately owned sensors 191 

flown under contract. Both USFS and contractor flights were used in this study, collectively 192 

referred to as NIROPS, but are denoted separately in figures. Area estimates, included in daily 193 

fire perimeter maps, from NIROPS consist of the outer NIROPS polygon, which do not include 194 

interior areas like unburned islands. NIROPS data are the best available data for detecting ‘daily’ 195 

burn perimeters, when available. Even though ICS-209 reports and GeoMAC perimeters are the 196 

best estimates of the total burned area of the fire scars, the daily data can be vastly under- and 197 

over-estimated. Further details about all datasets can be found in the supplementary material.  198 

 199 

Fire burned area algorithm   200 

Identification of fire perimeter and selection of satellite pixels   201 

VIIRS data for a fire were filtered within a bounding box based on the latitude/longitude range of 202 

the final map from NIROPS (Figure 2). This range was chosen to ensure that the entire area of 203 
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the fire was included in our estimation, as well as providing a consistent framework to evaluate 204 

across datasets. Some fires required further geographic filtering using a polygon bounding box. 205 

This secondary filtering was needed when there are other incidents or spot fires within the initial 206 

bounding box to prevent their inclusion in the area estimates. Spot fires within 0.1° of the fire 207 

and included on the NIROPS perimeter map were not filtered out, as they are reasonably close to 208 

the main body of the fire. This further filtering increases accuracy of the area estimate by 209 

removing close active-fire detections not from the main incident. This smaller bounding box is 210 

not applied to all fires, but only when needed, and is applied to both VIIRS and ABI detections. 211 

The filter was applied to the Cameron Peak, Creek, Holiday Farm and Riverside fires.  212 

 213 

Once spatially filtered, active-fire detections from both SNPP and NOAA-20 are accumulated 214 

beginning from 00 UTC on the day the fire began to the end of the day of the last NIROPS flight 215 

used for the fire. There are cases where fires continued to have active-fire detections after the last 216 

NIROPS flight, but we have chosen to end our estimations when the NIROPS flights ended. 217 

There are also cases with NIROPS flight when there were no new active-fire detections since the 218 

previous NIROPS flight. Those NIROPS flights are removed when evaluating the algorithm but 219 

are included in time series plots.  220 

 221 

Calculation of fire area from VIIRS active-fire detections 222 

Area is calculated for every overpass by drawing a polygon around the accumulated detections. 223 

This polygon is drawn using MATLAB’s boundary function. The algorithm consists of 224 

constructing an alpha-shape (Edelsbrunner et al. 1983) from the specified points and then 225 

determining which points lie on the boundary. The convexity of the hull derived from the 226 
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accumulated detections is changed by modifying the shrink factor, an input parameter to the 227 

boundary function which controls the radius used to build the alpha-shape. The shrink factor 228 

ranges from zero to one, with zero resulting in a convex hull and one providing the most compact 229 

single-polygon around the detections which is generally non-convex. (The MathWorks, Inc., 230 

2022). Non-convexity allows for the exclusion of unburned area around the generally irregular 231 

fire perimeters.  232 

 233 

Application of ABI FRP data to refine temporal evolution  234 

Once the VIIRS detections have been processed, area decreases have been filtered out and 235 

combined by overpass time, a continuous, hourly time series can be created with hourly ABI 236 

FRP data. Averaged ABI FRP, with units of megawatts, estimates are integrated  over the entire 237 

life of the fire to create a cumulative FRP estimate, also known as fire radiative energy (FRE). 238 

The FRE is then used to interpolate between VIIRS area estimates using: 239 

sat_area(t)  =   𝑣𝑣(𝑡𝑡1)  ∗  �𝑓𝑓(𝑡𝑡1)− 𝑓𝑓(𝑡𝑡)�
�𝑓𝑓(𝑡𝑡1)− 𝑓𝑓(𝑡𝑡2)�

 +  𝑣𝑣(𝑡𝑡2) ∗ (𝑓𝑓(𝑡𝑡)−𝑓𝑓(𝑡𝑡2))
(𝑓𝑓(𝑡𝑡1)−𝑓𝑓(𝑡𝑡2))

                   (1)  240 

where sat_area corresponds to the combined burned area estimates in hectares, v corresponds to 241 

the VIIRS area estimates in hectares, and f corresponds to the ABI FRE in megajoules. The times 242 

t, t1 and t2 are the current time, closest overpass before the current time and the closest overpass 243 

after the current time, respectively. The equation is run for each hour during the life of the fire 244 

and for ten shrink factor values ranging from 0.1 to one. When FRP is constant with time or there 245 

are no FRP measurements, a linear interpolation is used to estimate area between the overpasses. 246 

To examine how well the model predicts both accumulated burned area and change in burned 247 

area, the normalized mean bias (NMB), normalized mean error (NME), mean absolute error 248 
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(MAE), root mean square error (RMSE) and mean bias (MB) were calculated (Willmott and 249 

Matsuura, 2005; Eder and Yu, 2006). 250 

Results  251 

The combined time series from VIIRS and ABI were evaluated, using NIROPS as a reference, in 252 

two ways, by total accumulated burned area and by change in burned area between NIROPS 253 

flights. Flight times were converted from local time to UTC, and rounded to the nearest hour, for 254 

easier comparison to accumulated burned area. The latter roughly corresponds to daily burned 255 

area where NIROPS flew in consecutive days. Obtaining a strong agreement for both metrics 256 

ensures that the algorithm is not only estimating true fire size well, but that it is accurately 257 

capturing changes in fire behavior which may improve bottom-up emissions estimates as they 258 

generally use daily changes in burned area. 259 

  260 

Spatial agreement  261 

Figure 2 shows accumulated fire detections against the final NIROPS heat perimeter for the 262 

Williams Flats Fires, as well as the boundary with a shrink factor of one (the most compact 263 

polygon)., The fire shows good spatial agreement between the active-fire detections and 264 

NIROPS perimeter. There are some interior areas of another large 2019 fire, the Walker Fire, 265 

surrounded by VIIRS detections and are included in our burned area estimations, but did not 266 

burn according to NIROPS (Figure S14). Despite these unburned “islands”, which are a known 267 

problem for all burned area estimations (Kolden et al. 2012, Hall et al. 2020), that worsens with 268 

coarser resolution data, the outer VIIRS perimeter for the Walker Fire has good spatial 269 

agreement with the final NIROPS heat perimeter. Spatial agreement assesses how well the filters 270 
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work to retain only detections from the incident, a critical component to accurate burned area 271 

estimates. 272 

  273 

For the 204 Cow Fire, a relatively small 2019 fire (3912 ha), initial examination of the satellite 274 

perimeter against the NIROPS perimeter indicated further geographic filtering would be 275 

necessary (Figure 3). The NOAA-20 pass on 29 August at 09:00 UTC contains a number of 276 

detections in the vicinity of the fires deemed to be false, resulting in a large overestimation in 277 

burned area and an incorrect perimeter. To filter out these false detections, detections and 278 

boundaries from both VIIRS sensors are used to find a common set of points. Once detections 279 

are accumulated for both SNPP and NOAA-20, boundaries are created for both sets. The 280 

boundary from each satellite is then applied to the other set of detections; the SNPP boundary 281 

was applied to the set of NOAA-20 detections and vice versa, as shown in Figure 3. With this 282 

additional filtering, agreement between the satellite and NIROPS perimeter was greatly 283 

improved. 284 

 285 

The accumulated fire detections with the final NIROPS perimeter and most compact shrink 286 

factor for three of the 2020 fires, the Dolan, Lake and Riverside Fires are shown in Figures S29, 287 

S38 and S41. Like 2019, there are fires where the algorithm has limitations. The 2020 Lake Fire 288 

that occurred in the Angeles National Forest is a prime example of cloud coverage affecting the 289 

detection of active burning. (https://inciweb.nwcg.gov/incident/6953/). Due to persistent cloud 290 

coverage early in the fire, some active-fire detections were missed, leading to large 291 

underestimations (~3800 ha max) in burned area that affect the subsequent area estimations 292 

(Figures 5 and S39). The accumulated burned area is persistently low biased compared to 293 

https://inciweb.nwcg.gov/incident/6953/


Berman et al. 14 
 

NIROPS, and there are small (R < 0.3) to negative R values for the change in burned area 294 

(Figure S40). We note that while clouds decrease algorithm skill for the Lake Fire, the algorithm 295 

is capable of overcoming cloud coverage such as in the 204 Cow Fire. 296 

 297 

Accumulated burned area 298 

Figures 4 and 5 show the combined NOAA-20 and SNPP VIIRS time series (multi-colored 299 

symbols for different shrink factors from 0.5 to 0.8), the accumulated FRP (green line) and the 300 

burned area estimate for the 0.5 shrink factor (black dashed line) for the 204 Cow, Walker and 301 

Williams Flats (Figure 4) and Dolan, Lake and Riverside (Figure 5) Fires. Area estimations from 302 

SNPP and NOAA-20, multi-colored symbols for four shrink factors (S = 0.5 to S = 0.8) shown, 303 

visually agree well with the values and trend of the NIROPS (black circles) estimates for the 304 

Williams Flats and 204 Cow Fires. The estimations mainly agree with the trend for the Walker 305 

Fire but overestimate the final NIROPS area estimate by 14–32% (~3000–7800 ha), depending 306 

on the shrink factor, due to unburned islands being included in the area estimated. Errors in 307 

burned area for the 204 Cow and Williams Flats Fires range from –2.2–9.6%  (–87–~400 ha) and 308 

–3.5–18% (~–600–~3300 ha).  309 

 310 

 311 

The top of Figures S3, 16, 19, 31, 40 and 43compare the NIROPS area estimations to the 312 

estimated accumulated burned area at the same time and shows the correlation coefficient for 313 

four of the mid-range shrink factors (0.5, 0.6, 0.7 and 0.8). All of the fires show high R values 314 

(>0.98) for accumulated burned area for those shrink factors. Having very high, positive 315 

correlation coefficient values for all of the fires makes sense, as a strong relationship between 316 
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satellite estimated accumulated burned area and NIROPS perimeter areas over time is expected, 317 

regardless of high or low biases that may arise from detection mapping issues. The high and low 318 

biases for fires like the Walker and Lake Fires become evident when looking at the correlation 319 

plots.  320 

 321 

Error metrics for all fires with linear interpolations between the VIIRS overpasses only can be 322 

found in the supplement (Tables S1-S3). For most fires, there is minimal change between the 323 

calculated error metrics without the inclusion of the ABI data (R = 0.52 vs 0.50 for Pedro 324 

Mountain). NIROPS flights and VIIRS nighttime overpasses tend to occur at similar times of 325 

typically decreased fire activity. This will yield similar results between the methods with and 326 

without the inclusion of ABI FRP when NIROPS and VIIRS area estimates are compared. 327 

 328 

Change in burned area  329 

The bottom of Figures S3, 16, 19, 31, 40 and 43compare change in burned area estimates for all 330 

six fires, with a variety of results. The Dolan, Riverside, Walker and Williams Flats Fires all 331 

have high correlation coefficients (R >= 0.96), while the 204 Cow and Lake Fires have much 332 

lower, and even negative, correlation coefficients (R < 0.5). The 204 Cow and Lake Fires are 333 

both <13,000 ha in size compared to the other four which are >22,000 ha indicating a potential 334 

dependence on fire size for accuracy of the change in burned area estimates. These values do not 335 

necessarily mean that the algorithm does a poor job at predicting change in burned area as many 336 

factors can impact correlation values (Aggarwal and Ranganathan, 2016).   337 

 338 

Additional error metrics  339 
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Accumulated burned area 340 

Table 2 compares error metrics for the Williams Flats Fire across all shrink factors from 0.1 to 341 

one. While the range in the errors across the shrink factors is small, there is not one shrink factor 342 

that is universally better than the others. However, shrink factors in the range of 0.7–1.0 (the 343 

most compact shrink factors) tend to produce the smallest errors, < 6% for NMB and < 11% for 344 

NME, for the Williams Flats Fire. This trend follows with the other error metrics calculated as 345 

well, with the smallest MB, RMSE and MAE values in the S = 0.7 to S = 1.0 range, with most 346 

being the smallest at S = 0.8.   347 

 348 

The algorithm performs similarly across a range of fire sizes, and sensitivity to the shrink factor 349 

is small relative to other errors. Table 3 compares all 2019 fires at the 0.8 shrink factor, more 350 

compact than the default setting of 0.5. The NMB and NME for accumulated burned area range 351 

from –23.7% to 19.4% and 6.5% to 23.7% respectively. Excluding the Granite Gulch and 352 

Walker Fires, the range of NMB and NME drop to ~ +/–6% and <12%, respectively, with an 353 

overall slight under-prediction. The NMB and NME values are similar to other error values from 354 

previous studies (Oliva and Schroeder, 2015), with the exception of the Granite Gulch and 355 

Walker Fires, which are slightly larger errors, (–4.1%–1.4% for NMB and 6.5%–11.9% for 356 

NME)  but within the error range (<~50%) seen in Oliva and Schroeder (2015).  357 

 358 

Statistics for 2020 fires are slightly worse than for 2019. Excluding the Lake Fire, the range of 359 

NMB and NME is –10 to +13% and < 14%, respectively. Three of these fires (Riverside, 360 

Holiday Farm and Creek) show NBM values larger than 10%. The Riverside Fire shows an 361 

overestimation due to spot fires near the fire (Table 4), but the change in burned area error 362 
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metrics show an underestimation for most shrink factors. Holiday Farm presents overestimations 363 

due to spotting as well (Figure S24), while the Creek Fire has overestimations due to large 364 

irregularities in the fire perimeter and large unburned islands. The Lake Fire has larger errors 365 

than the other 2020 fires (~40% NME), due to previously described complications with cloud 366 

coverage. Despite some large errors, the consistency across fire size shows the algorithm can 367 

handle both very large and small fires well.  368 

 369 

Change in burned area error metrics  370 

There is less of an identifiable trend in the 2019 change in burned area error metrics (Table 3). 371 

Larger spread is expected as uncertainty and error are introduced when taking the difference 372 

between times, but the range of values for NMB (from roughly –18% to +50%) and NME 373 

(roughly 30–73%) is large. These large spreads show the error ranges widely and appears to be 374 

independent of fire size. For instance, while the two smallest fires have the smallest NMB 375 

values, the Walker Fire has a smaller NMB than the Williams Flats or Pedro Mountain Fires 376 

(which are smaller in size) for change in burned area. While the Walker Fire has the worst skill 377 

for accumulated burned area, we note that fire growth estimates can still have skill even when 378 

the algorithm overpredicts accumulated burned area.  379 

 380 

Excluding the Creek Fire, the 2020 fires, have similar error values to 2019 fires (NMB, –22% to 381 

8%, NME 33% to 64%, Table 4). In the case of the Creek Fire, previously described 382 

irregularities in fire perimeter led to large over-estimations of true fire size which also impacted 383 

the change in burned area errors. There is also a much larger range (–0.14 to 0.99) of correlation 384 

coefficients between the algorithm estimated change in burned area and the NIROPS change in 385 
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burned area (Table 4). This is much larger than the range of accumulated burned area correlation 386 

coefficients for the 2020 fires (0.85– 0.99), but the NMB and NME ranges are comparable to the 387 

2019 ranges. The algorithm has a tendency to slightly under-predict at this shrink factor (S = 388 

0.8), with negative NMB values for all fires except for Cameron Peak and Holiday Farm.  389 

 390 

Comparison to other datasets 391 

The results of the algorithm for Williams Flats can be evaluated against the burned area 392 

estimations the FIREX-AQ Fuel2Fire team performed (https://www-air.larc.nasa.gov/cgi-393 

bin/ArcView/firexaq?ANALYSIS=1#SOJA.AMBER/). MODIS and VIIRS active-fire 394 

detections were used to estimate daily burned area by assuming an instrument-resolution 395 

footprint of 1 km and 375 m respectively, and then removing overlapping areas, similar to the 396 

methods of Oliva and Schroeder (2015) and allowing comparison between different methods 397 

with similar inputs Area is accumulated over every local day, and time is then converted to UTC 398 

for comparison. For the Williams Flats Fire, there is a strong correlation (R > 0.97) between the 399 

accumulated algorithm burned area estimates and the Fuel2Fire estimates (Figure 6). The strong 400 

correlation is seen across the shrink factors shown from S = 0.5 to S = 0.8. The final burned area 401 

estimates for all fires for the 0.8 shrink factor was also compared to the final burned area from 402 

ICS-209 reports (Figure 6). There is good agreement (R = 0.99) between the algorithm and the 403 

ICS-209 reports burned area estimates. These results are encouraging as it proves the veracity of 404 

this method and shows that when compared to different data, the algorithm-estimated final 405 

burned area is usually close to what is measured in official reports.  406 

 407 

Discussion and conclusions 408 
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We developed a novel algorithm to estimate burned area of wildfires from satellite active-fire 409 

detections. Using active-fire detections from NOAA-20 and SNPP VIIRS data and FRP 410 

estimates from GOES ABI data, we can generate generally accurate hourly burned area estimates 411 

of wildfires. Once geographically filtered, acccumulated active-fire detections visually compare 412 

well to United States Forest Service’s National Infrared Operations airborne derived perimeters. 413 

Using polygons of different convexity around accumulated fire detections provides a measure of 414 

uncertainty in the algorithm. Inclusion of unburned islands on fire interiors remain an issue for 415 

accumulated burned area estimates, however. While there are some manual components to this 416 

method, in the future, it could be the basis for automated techniques and be applied to other 417 

regions. 418 

 419 

Larger shrink factors, i.e. more compact polygons, typically provide better results as they 420 

minimize the inclusion of unburned islands and irregular perimeters. Some smaller fires, 421 

however, have better results with smaller shrink factors, less compact polygons, indicating a 422 

potential size dependence on shrink factor. There is not one shrink factor that minimizes all 423 

errors universally, but rather the choice of shrink factor is driven by the type of error that should 424 

be minimized. The inclusion of ABI FRP data does not significantly improve the algorithm, but 425 

does better capture the pronounced diurnal cycle of fires, making the estimates more realistic 426 

(Mu et al. 2011; Wiggins et al. 2020; Li et al. 2022). 427 

 428 

Errors (NME) in accumulated burned area for most fires are below 14%. Larger under-429 

predictions are found when clouds obscure detections in the edge of the final perimeter of the 430 

fire, while large overpredictions occur when the fire has unburned islands, spotting or highly 431 
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irregular fire perimeters. Change in burned area results see a wider spread in errors, typically 432 

between 30-73%, with one outlier over 200% due to irregular fire perimeters impacting 433 

accumulated burned area estimates. Smaller fires, relative to other fires in the same season, tend 434 

to have smaller normalized mean bias and normalized mean error values. Many of the patterns 435 

with fire size and corresponding trends in various error metrics seen in 2019 are also seen in 436 

2020. Correlation coefficients are usually >0.95 for accumulated burned area, but more variable 437 

for change in burned area, with R typically >0.89, but with some R values <0.5. When compared 438 

to other burned area datasets, both the accumulated burned area and final estimated burned area 439 

perform well with correlation coefficients >0.96. 440 

 441 

 Realistic burned area estimates can improve emissions estimations for air quality forecasts, 442 

potentially in near real time. Many air quality and emissions models currently rely on persistence 443 

to forecast burned area, which can lead to drastic over- or under-estimations in emissions 444 

predictions (Ye et al. 2021). Burned area estimates from this algorithm can be used to inform 445 

better predictions of burned area, using methods such as machine learning shows tremendous 446 

potential for forecasting fire spread and emissions, especially if trained with fire-weather and 447 

fuels, variables that control fire growth and spread (Reid et al. 2015; Jain et al. 2020). Recent 448 

work shows the uses of ABI FRP to predict hourly biomass burning estimates (Wiggins et al. 449 

2020). When used with near real time burned area, following a similar approach with hourly ABI 450 

FRP estimates, emissions and air quality forecasts are expected to be improved due to the strong 451 

correlation of ABI FRP and smoke concentrations (Wiggins et al. 2020).  452 

 453 

 454 
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Figures and Tables:  705 

 706 

 707 

Figure 1: Map of the study domain. Fires used to test the algorithm are highlighted with red dots, with 

fire names near the corresponding marker. 
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Figure 2: Accumulated active fire detections (black circles) compared to final NIROPS heat 708 
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perimeters (red solid line) and most compact, S = 1.0, shrink factor (blue dashed line) for the 709 

Walker (a/b) and Williams Flats (c/d) Fires for NOAA-20 (left) and SNPP (right). 710 
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Figure 3: Map of accumulated detections for NOAA-20 (a) and SNPP (b) for the 204 Cow Fire. 711 
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Detections used to estimate area (red circles) from filtering algorithm based on final perimeter 712 

(black dashed line) for each satellite are shown. Detections filtered out are in blue. 713 

 714 
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Figure 4: Interpolated FRP and burned area estimate time series from VIIRS and ABI for the 204 715 
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Cow (a), Walker (b), and Williams Flats (c) Fires. The rainbow-colored symbols represent the S 716 

= 0.5 to S = 0.8 combined time series shrink factors, black circles are NIROPS data, black 717 

dashed line is the interpolated burned area estimate for the S = 0.5 shrink factor, the aggregated 718 

FRP is the solid green line 719 
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Figure 5: Interpolated FRP and burned area estimate time series from VIIRS and ABI for the 720 
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Dolan (a), Lake (b) and Riverside (c) Fires. The rainbow-colored symbols represent the S = 0.5 721 

to S = 0.8 combined time series shrink factors, black circles are NIROPS data, black dashed line 722 

is the interpolated burned area estimate for the S = 0.5 shrink factor, the aggregated FRP is the 723 

solid green line. 724 
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Figure 6: Correlation scatter plot between aggregated burned area and the cumulative Fire2Fuel 725 

burned area estimates for the Williams Flats Fire (a) and the ICS-209 reports and final S = 0.8 726 

shrink factor algorithm burned area estimates (b).  727 

 728 
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Figure Captions:  729 

Figure 2: Map of the study domain. Fires used to test the algorithm are highlighted with red dots, 730 

with fire names near the corresponding marker.  731 

 732 

Figure 2: Accumulated active fire detections (black circles) compared to final NIROPS heat 733 

perimeters (red solid line) and most compact, S = 1.0, shrink factor (blue dashed line) for the 734 

Walker (a/b) and Williams Flats (c/d) Fires for NOAA-20 (left) and SNPP (right). 735 

Figure 3: Map of accumulated detections for NOAA-20 (a) and SNPP (b) for the 204 Cow Fire. 736 

Detections used to estimate area (red circles) from filtering algorithm based on final perimeter 737 

(black dashed line) for each satellite are shown. Detections filtered out are in blue. 738 

Figure 4: Interpolated FRP and burned area estimate time series from VIIRS and ABI for the 204 739 

Cow (a), Walker (b), and Williams Flats (c) Fires. The rainbow-colored symbols represent the S 740 

= 0.5 to S = 0.8 combined time series shrink factors, black circles are NIROPS data, black 741 

dashed line is the interpolated burned area estimate for the S = 0.5 shrink factor, the aggregated 742 

FRP is the solid green line. 743 

Figure 5: Interpolated FRP and burned area estimate time series from VIIRS and ABI for the 744 

Dolan (a), Lake (b) and Riverside (c) Fires. The rainbow-colored symbols represent the S = 0.5 745 

to S = 0.8 combined time series shrink factors, black circles are NIROPS data, black dashed line 746 

is the interpolated burned area estimate for the S = 0.5 shrink factor, the aggregated FRP is the 747 

solid green line. 748 
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Figure 6: Correlation scatter plot between aggregated burned area and the cumulative Fire2Fuel 749 

burned area estimates for the Williams Flats Fire (a) and the ICS-209 reports and final S = 0.8 750 

shrink factor algorithm burned area estimates (b).   751 
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Table 1: List of analyzed fires and key information: start date, date of final NIROPS flight with 752 

used data, final ICS-209 area and if the fire was sampled by FIREX-AQ.  753 

Fire Name Location Start Date Date of Last 
NIROPS flight 
with used data 

Final Burned 
Area (ha) 

FIREX-AQ 
Sampled fire 

204 Cow OR 09 August 
2019 

08 September 
2019 

3,912 Yes 

Granite Gulch OR 28 July 2019 07 September 
2019 

2,246 Yes 

Shady ID 10 July 2019 02 September 
2019 

2,543 Yes 

Williams Flats WA 02 August 
2019 

20 August 2019 17,986 Yes 

Pedro Mountain WY 24 August 
2019 

03 September 
2019 

9,472 No 

Walker CA 04 September 
2019 

18 September 
2019 

22,099 No 

Bobcat CA 05 September 
2020 

07 October 
2020 

46,942 No 

Cameron Peak CO 13 August 
2020 

20 November 
2020 

84,544 No 

Creek CA 04 September 
2020 

10 November 
2020 

153,738 No 

Dolan CA 18 August 
2020 

27 September 
2020 

50,554 No 

East 
Troublesome 

CO 14 October 
2020 

18 November 
2020 

78,432 No 

Holiday Farm OR 07 September 
2020 

07 October 
2020 

70,169 No 

Lake CA 12 August 
2020 

28 August 2020 12,581 No 

Riverside OR 08 September 
2020 

08 October 
2020 

55,868 No 
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Table 2: Accumulated burned area error metrics for the Williams Flats Fire for all shrink factors.  754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 

 767 

 
S=0.1 S=0.2 S=0.3 S=0.4 S=0.5 S=0.6 S=0.7 S=0.8 S=0.9 S=1.0 

Mean Bias 
(ha) 

1920.1 1548.7 1263.1 949.2 787.4 593.3 447.9 107.4 -193.0 -324.3 

Normalized 
Mean Bias 

(%) 

24.7 19.9 16.2 12.2 10.1 7.6 5.8 1.4 -2.5 -4.2 

Normalized 
Mean Error 

(%) 

24.8 20.5 17.3 13.8 11.8 10.0 9.4 10.8 9.9 9.7 

RMSE (ha) 2779.5 2253.6 1871.5 1510.0 1320.9 1103.3 984.8 999.1 873.8 855.2 

Mean 
Absolute 

Error (ha) 

1927.1 1592.5 1344.9 1070.8 920.8 775.7 730.5 843.7 772.7 752.9 



Berman et al. 48 
 

Fire Final 
Size 
(ha) 

Normalized 
Mean Bias 

Normalized 
Mean Error 

Correlation 
Coefficient 

ΔBA 
Normalized 
Mean Bias 

ΔBA 
Normalized 
Mean Error 

ΔBA 
Correlation 
Coefficient 

204 Cow 3,912 -2.8% 6.5% 0.98 5.5% 65.3% 0.32 

Granite 
Gulch 

2,246 -23.7% 23.7% 0.99 -17.9% 43.8% 0.88 

Shady 2,543 -4.1% 7.1% 0.97 9.9% 53.5% 0.77 

Williams 
Flats 

17,986 1.4% 10.8% 0.98 29.3% 29.8% 0.99 

Pedro 
Mountain 

9,472 -4.0% 11.9% 0.98 50.2% 72.8% 0.51 

Walker 22,099 19.4% 19.4% 0.98 13.7% 48.2% 0.94 

Table 3: Error metrics for all 2019 fires at the S = 0.8 shrink factor.  768 

 769 

 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 
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Table 4: Error metrics for all 2020 fires at the S = 0.8 shrink factor.  781 

 782 

Fire Final 
Size 
(ha) 

Normalized 
Mean Bias 

Normalized 
Mean 
Error 

Correlation 
Coefficient 

ΔBA 
Normalized 
Mean Bias 

ΔBA 
Normalized 

Mean 
Error 

ΔBA 
Correlation 
Coefficient 

Bobcat 46,942 -2.8% 9.3% 0.99 -11.0% 39.4% 0.92 

Cameron 
Peak 

84,544 6.9% 7.1% 0.99 7.1% 54.1% 0.90 

Creek 153,738 12.1% 12.1% 0.84 -1.3% 212.6% 0.26 

Dolan 50,554 0.9% 2.8% 0.99 -1.7% 35.0% 0.96 

East 
Trouble-

some 

78,432 -9.7% 12.8% 0.98 -4.7% 34.2% 0.88 

Holiday 
Farm 

70,169 12.5% 12.5% 0.99 1.8% 27.5% 0.94 

Lake 12,581 -39.6% 39.6% 0.98 -21.7% 64.4% -0.14 

Riverside 55,868 12.2% 12.2% 0.98 -7.0% 33.8% 0.98 


