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The Case for Additive Manufacturing in Propulsion
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• Metal Additive Manufacturing (AM) provides 
significant advantages for lead time and cost over 
traditional manufacturing for rocket engines

• Lead times reduced by 2-10x 

• Cost reduced by more than 50%

• Complexity is inherent in liquid rocket engines 
and AM provides new design and performance 
opportunities

Part 
Complexity

Challenging 
Alloys

Processing
Economics

Opportunity to allow for better process economics and advance 
enabling alloys through rapid development not previously 

possible with traditional manufacturing techniques



New Alloy Development to Improve Performance
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Max. Use 
Temp. (°C)

Alloy 
Family

Purpose
Novel AM 

Alloys
Propulsion Use

200 Aluminum Light weighting - Various

750 Copper
High conductivity; 

strength at temperature
GRCop-42
GRCop-84

Combustion 
Chambers

800 Iron-Nickel
High strength and 

hydrogen resistance
NASA HR-1

Nozzles, 
Powerheads

900 Nickel High strength to weight -
Injectors, 
Turbines

1100 ODS Nickel
High strength at elevated 

temp; reduced creep
GRX-810

Alloy 718-ODS

Injectors, 
Turbines

1850 Refractory Extreme temperature
C-103, C-103-
CDS, Mo, W

Uncooled 
Chambers

GRCop-42 L-PBF

New alloy development using various additive manufacturing processes (PBF and DED) 
can yield performance improvements over traditional alloys

NASA HR-1 LP-DED

GRX-810 
L-PBF

C103 
L-PBF



GRCop-42 and GRCop-84 for High Conductivity
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• GRCop-42 and GRCop-84 (Cu-Cr-Nb) offer high conductivity (>350 W/mK) and high 

strength at elevated temperatures (up to 800 °C).

• Oxidation and blanching resistance during thermal and oxidation-reduction cycling.

• Established powder supply chain and commercial supply chain.
• Significant maturity in characterization and hot-fire testing (high TRL).
• Over 41,000 seconds of hot-fire time and 1,100 starts on >30 chambers

Testing of L-PBF GRCop-42 Chamber

L-PBF GRCop-42 Integral 
Channel Chambers



NASA HR-1 Hydrogen Resistant Alloy
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• NASA HR-1 (Fe-Ni-Cr) is a hydrogen resistant high strength superalloy.

• Formulated for AM processes for low cycle fatigue, ductility, and H2 resistance properties.

• Targeted use is Laser Powder Directed Energy Deposition (LP-DED) for large scale nozzles.
• Supply chain maturity for powder feedstock, build parameters, and demonstrator builds.
• Single NASA HR-1 LP-DED nozzle accumulated 207 starts and >6,800 secs.

1.52 m dia. x 1.78 m height Hot-fire Testing of 156 KN LP-DED Cooled Nozzle



GRX-810 for Extreme Temperature and High Strength
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• GRX-810 (Glenn Research Center EXtreme -810) is an oxide dispersion strengthened (ODS) 

Ni-Co-Cr alloy specifically formulated for AM using Y2O3 nanoparticles.

• 2x strength of standard superalloys approaching 1100 °C.

• Orders of magnitude better oxidation resistance compared to superalloys.

• Demonstrated process parameters and feasibility of powder feedstock.



Refractory Alloys for Ultra High Temperature
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• Refractory alloy development for AM allows for significant reduction in feedstock cost.

• Tungsten, C-103 has been matured with L-PBF and LP-DED processes along with feedstock.

• Mechanical properties shown to exceed specification minimums and density >99.98%.

• W, Mo, Ta, Re, and Nb alloys being developed under Refractory Alloy Additive 

Manufacturing Build Optimization (RAAMBO) project.

L-PBF C-103 Demonstrator Parts

L-PBF W 1N green chamber 
heated to 2300 °C



Summary

• NASA has formulated and matured novel alloys specifically intended for use with additive 
manufacturing for high temperature and harsh environments.

• Alloys include GRCop-42, GRCop-84, NASA HR-1, GRX-810, Refractory-based (C103).

• AM processes to manufacture components and material properties required have matured.

• NASA has accumulated over 50,000 secs and 1400 starts of hot-fire testing on these alloys.

• Commercial space is actively using these alloys for development and flight infusion.

• Data and properties available to commercial and government partners.
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LP-DED Large Scale Nozzle Development

60” (1.52 m) diameter and 70” (1.78 m) 
height with integral channels

90 day deposition 11

95” (2.41 m) dia and 111” (2.82 m) height
Near Net Shape Forging Replacement

Reference: P.R. Gradl, T.W. Teasley, C.S. Protz, C. Katsarelis, P. Chen, Process Development and Hot-fire Testing of Additively Manufactured NASA HR-1 for Liquid 
Rocket Engine Applications, in: AIAA Propuls. Energy 2021, 2021: pp. 1–23. https://doi.org/10.2514/6.2021-3236.

JBK-75
NASA HR-1
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