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1. Abstract
Agriculture is the primary use of water in the Maipo River basin of Central Chile, 
accounting for ~ 75% of the total demand. Assessment of irrigation needs for 
agricultural production has commonly relied on reference crop coefficients (Kc) 
derived from geographic and climatic conditions that differ from those of Chile. In 
partnership with the Centro de Información de Recursos Naturales (CIREN), this 
work focused on calculating site-specific crop coefficients tailored to crop 
production in the water-stressed Maipo River Valley. Two distinct approaches were
implemented, each relying on remotely-sensed Earth observation datasets from 
NASA over consecutive growing seasons from 2019 to 2022. The first method 
estimated Kc values based on their linear relationship with the Normalized 
Difference Vegetation Index (NDVI) obtained from either Terra Moderate 
Resolution Imaging Spectroradiometer (MODIS) or Landsat 8 Operational Land 
Imager (OLI) surface reflectance. The second technique leveraged information 
from the ISS Ecosystem Spaceborne Thermal Radiometer Experiment on Space 
Station (ECOSTRESS) by computing the ratio between actual crop 
evapotranspiration (ET) and potential evapotranspiration (PET). Both procedures 
showed promising results that can build on one another. The former approach best
captured vegetation signals of annual crops while the latter appeared suited for 
perennials. Overall, this study provides a strong basis and novel way to accurately 
estimate Kc using remote sensing, with the potential for improved irrigation 
management and reduction in water consumption.  

Key Terms
Crop Coefficient, Evapotranspiration, Irrigation Needs, Water Scarcity, LANDSAT, 
MODIS, ECOSTRESS

2. Introduction
2.1 Background Information
The Maipo River in Central Chile flows from the Andes Mountain to the Pacific 
Ocean, collecting water over approximately 15,300 km2 that encompass the 
Santiago metropolitan area (Figure 1). The Maipo River Basin provides livelihood 
to nearly 40% of the Chilean population and contributes to roughly 44% of Chile’s 
Gross Domestic Product (Bauer, 2017). With its Mediterranean climate, the region 
is an agricultural hub producing a range of crops (Figure A1). However, annual 
precipitations are concentrated in the winter months, causing the agricultural 
sector to rely on irrigation and use roughly three-quarters of the basin’s water 
(Peña-Guerrero et al., 2020; World Bank, 2011). Most of these irrigated areas 
depend on water withdrawals from surface flows (Rosegrant et al., 2000). But 
water availability is becoming a concern as this semi-arid region is experiencing 
increasingly dryer conditions with a decrease in precipitation and increase in 
temperatures (Falvey et al., 2009; Dai, 2011; Boisier et al., 2016). Climate-related 
changes are affecting runoff and streamflow, posing the threat of water supply 
shortages (Magrin et al., 2014). Additionally, Chile has been affected by a multi-
year drought beginning in 2010 and extending to present (August 2022) that 
exacerbated the water deficit (Rangecroft et al., 2016). Based on an assessment by
World Resources Institute (WRI), extremely high levels of baseline water stress 
have been observed across the Maipo River Basin with water withdrawals 
exceeding 80% of the available supply from surface and groundwater annually 
(Hofste et al., 2019). The potential aridification of the Maipo region and the 
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ongoing drought could further alter the water availability for cities, hydropower 
generation, and agriculture. More competition across sectors for water withdrawal
in the Maipo River Valley puts irrigated agriculture at risk and calls for research 
on irrigation practices tailored to the region’s crop-specific water requirement.

Figure 1. Elevation map of the Maipo River basin and streams.
[Base map credits: Esri, FAO, NOAA, USGS, CGIAR, HERE, Garmin, NASA, WWF,

IDE Chile]

Crop water requirements and irrigation needs are based on crop 
evapotranspiration (ETc). ETc is often calculated as the product of two factors: the 
reference or potential evapotranspiration (ETo or PET) based on climatic 
parameters and a crop coefficient (Kc) value that accounts for site constraints and 
converts ETo to ETc for a given crop. However, Kc (and therefore ETc estimates) 
can vary significantly in different parts of the world and under varying climates 
(Guerra et al., 2016). Crop coefficients also fluctuate as plants reach different 
growth stages. The same can be said about crop greenness and vegetation 
reflectance throughout the growing season. Previous work has drawn relationships
with good correlation between Kc and remotely sensed vegetation indices such as 
the Normalized Difference Vegetation Index, also known as NDVI (Singh & Irmak, 
2009; Kamble et al., 2013). While Kc modeling has proved successful using Earth 
observations (EO), others have gone as far as to demonstrate that farmers could 
reduce their irrigation volumes by nearly one-fifth using updated ETc estimates 
from satellite remote sensing techniques (Reyes-González et al., 2018). 

Frequently used Kc values from Allen et al. (1998) were based on areas with 
differing geographic and climate conditions than those of Chile, resulting in 
potentially inaccurate assessments of water requirements specific to the Maipo 
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River basin (Figure A2). Previous scientific studies give ground for a remotely 
sensed determination of site-specific Kc values that will inform irrigation practices 
in the water-stressed Maipo River Valley. For this feasibility project, the team 
selected study sites within the Maipo River Basin to capture consistency and 
variability in geographic and climatic conditions across the region. Annual and 
perennial crops of interest to the partners were maize (Zea mays) and English 
walnut (Juglans regia), respectively. EO were analyzed during the crops’ growth 
stages (September to May) of consecutive growing cycles from 2019 to 2022. 
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2.2 Project Partners & Objectives
On the ground and through the use of geospatial technologies, the Centro de 
Información de Recursos Naturales (CIREN) works to advance land-use planning, 
resource management, and public decision-making in Chile. In 2021, CIREN 
performed a study examining the demand for water of agricultural production 
among four watersheds including the Maipo River basin. In that process, concerns 
were raised about relying on standardized crop coefficients from FAO guidelines 
and a need was identified for linear models and Kc values that would capture the 
geographic and climate conditions of Chile. 

Our DEVELOP team collaborated with CIREN and the Embassy of Chile, 
Agricultural Office to enhance current approaches for assessing irrigation needs. 
Specifically, we leveraged NASA EO datasets to obtain crop coefficients specific to 
the geographic and climatic conditions of the Maipo River Valley. Furthermore, we
compared different Kc methodologies and confirmed Kc estimates between crop 
types through growing seasons and across the region. Last, we assessed actual 
evapotranspiration and water demand of agricultural production based on 
remotely sensed information.

3. Methodology
3.1 Data Acquisition
The team acquired data for the time period from September to May, between 2019
and 2022 for the study area. Primary EOs used include Landsat 8OLI, Terra 
MODIS, and the ISS ECOSTRESS (Table 1). For NDVI calculations, we utilized 
level 2 surface reflectance data from Landsat 8 OLI (Masek et al., 2006; Vermote 
et al., 2016). In addition, we obtained ET and PET products from ISS ECOSTRESS 
(Hook & Fisher, 2019). We also relied on PET information from Terra MODIS 
(Didan, 2021; Running et al., 2021). 

Table 1
Acquired Data and Data Sources

Platform &
Sensor

Data
Source Parameter Time Period

Landsat 8
OLI

Google
Earth

Engine
Surface Reflectance 2019–2022 (September–

May)

Terra
MODIS

Google
Earth

Engine
ET 2019–2022 (September–

May)
ISS

ECOSTRES
S

NASA
AppEEARS ET & PET 2019–2022 (September–

May)

In addition, several ancillary datasets were instrumental in the site selection 
(detailed in Section 3.3). The watershed limits were based on basin delineation 
from the Infraestructura de Datos Geoespaciales de Chile (IDE Chile) límite de la 
cuenca del Río Maipo. Partner organization CIREN provided two additional 
datasets, with a geospatial database of agricultural parcels (i.e. ‘uso de suelo 
actual cuenca del Río Maipo’) and a phenological calendar for the region (i.e. 
‘calendario de fenología de cultivos dentro de la cuenca del Río Maipo’). While the 
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former informed on the type and extent of the agricultural production, the latter 
consisted of the timeframes for sowing, flowering, harvesting and leaf fall of crops 
such as Maize and English walnut as summarized in Table 2. Typical crop 
coefficient values and development stage durations were taken from the FAO 
irrigation and drainage paper No. 56 (Allen et al, 1998). Digital land elevation data
for the Maipo River basin came from NASA's Shuttle Radar Topography Mission 
(SRTM). 

Table 2
Approximate Timeframe of Growth Stages for Crop Types (from CIREN)

Growth
Stages/ Crop

Types
Sowing Flowering Defoliation Harvest

Maize Sep 8 to Oct
14

Nov 1 to Dec
14 N/A Dec 22 to Mar

28
English
Walnut N/A Sep 8 to Oct 7 Apr 8 to May

7 May 8 to Jun 7

3.2 Data Processing  
We composited the ET and PET product from ECOSTRESS using Esri ArcGIS Pro 
3.0.0 for each growing season. Thereafter, our team uploaded all EOs to Google 
Earth Engine (GEE) and performed additional processing using the JavaScript 
Application Programming Interface (API). The data were clipped to the basin 
extents on the GEE platform. Using the pixel Quality Assessment (QA) bands on 
GEE, we considered the impact of cloud cover on Landsat reflectance and masked 
pixels containing cloud cover or cloud shadow. We then used the resulting raster of
red and near-infrared (NIR) bands was to calculate NDVI using the Equation 1 
below (Tucker, 1979):

NDVI = NIR - RED
NIR + RED      (1)        

3.3 Data Analysis
Our team selected 16 study sites for data analysis: 4 English walnut orchards 
(labeled WA) and 12 maize fields (labeled CO). To capture redundance and 
variability in geographic and climate conditions, sites for each crop included 
locations in a lower elevation range between 100 and 200 m above mean sea level 
(labeled LO) along with some at higher elevations around 400 meters (labeled HI). 
These locations are spread over a large spatial distribution from Melipila and 
Maria Pinto to the West, to the vicinity of Santiago and Laguno de Acuelo to the 
East (Figure B1). Our partners indicated that the former two had particularly large
agricultural activities while the latter two experienced increasing water stress. 
Next, we subtracted a buffer of 50 m into the site parcels to reduce contamination 
from nearby pixels and potential edge effects along an agricultural field (Figure 
B2). We considered buffered parcels ranging in size, with a minimum acreage of 3 
ha or at least 30 NDVI pixels as indicated in Table 3 below. We then utilized 
Python 3.7.13 on Google Colab to convert the processed raster data into data 
frames at each site. Further analyses were performed separately for the two 
methodologies detailed below. 
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Table 3
Geographic Variables and Parcel Characteristics of Study Sites

Elevation
Range

(m)

Nearby
Locality

Crop Type Site
Designation

Parcel Size
(ha)

100–200 Melipilla Maize CO-LO-101
CO-LO-102
CO-LO-103

77
62

103
100–200 Melipilla English

Walnut
WA-LO-101
WA-LO-102

28
17

100–200 Maria Pinto Maize CO-LO-104
CO-LO-105
CO-LO-106

13
27
12

300–400 Talagante Maize CO-HI-101
CO-HI-102
CO-HI-103

4
4
3

300–400 Laguna de
Aculeo

Maize CO-HI-104
CO-HI-105
CO-HI-106

7
8
6

400–500 Lampa English
Walnut

WA-HI-101
WA-HI-102

125
23

3.3.1 NDVI – based Kc Methodology
The NDVI-based crop coefficient approach relied on the FAO-Kc curve and 
leveraged added information found in NDVI signals. This method built on the 
relationship and variability in between these datasets to produce site-specific Kc as
shown in Figure 2. To study the linkage between the datapoints of NDVI and 
corresponding Kc, our team aggregated spatial arrays of NDVI values across each 
site into an average for each day of record. For reference Kc, we used typical 
values and stages from Allen et al.(1998). We interpolated those reference Kc 
values for the particular dates of NDVI observations. 
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Figure 2. NDVI-based Kc methodology

Thereafter, we aimed to match the seasonal pattern in NDVI with the reference Kc 
curve at each of the 12 maize sites. Through the iterative process illustrated in 
Figure 3, we adjusted how far along the growing cycle a crop was likely to be when
the observations of NDVI were made. Accounting for the most likely day of 
planting in the growing cycles of each site enabled us to consider days after 
planting instead of dates in the year, thus filtering out some of the temporal 
variability in agricultural practices across sites. 

 
Figure 3. Iterations of the assumed day of planting for NDVI values at site CO-LO-
101 in growing cycle 2021–2022. Based on reference Kc curve from FAO, the 
middle frame appeared to be the most likely scenario.
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We proceeded by dividing the 12 maize sites into two categories: those for model 
fitting and those for validation purposes. We performed linear regressions at 8 of 
the 12 sites, as indicated in Table 4 below. For each of these sites, we derived 
model parameters of Kc as a function of NDVI across 3 years of data.

Table 4.
Use of Maize Sites in Model Fitting

Site Designation Used for
CO-HI-101 Linear Regression
CO-HI-102 Ensemble Validation
CO-HI-103 Linear Regression
CO-HI-104 Linear Regression
CO-HI-105 Ensemble Validation
CO-HI-106 Linear Regression
CO-LO-101 Linear Regression
CO-LO-102 Ensemble Validation
CO-LO-103 Linear Regression
CO-LO-104 Linear Regression
CO-LO-105 Ensemble Validation
CO-LO-106 Linear Regression

To produce a single model applicable to the whole basin, an ensemble equation 
was developed by taking the mean of each regression parameter across all 8 sites. 
The mean ensemble equation was compared with those obtained by taking the 
median and averaging with weighted R-squared. Being relatively consistent, the 
project was further advanced with the mean ensemble approach.

We then applied our model at the 4 sites that had been set aside for this validation 
step. New crop coefficients were estimated using the NDVI observations of the 
sites across the study period. To assess the robustness of the model, we compared 
the site-specific Kc values against the Kc reference. We also studied the 
performance of the regional ensemble with respect to individual models derived 
from the best-fit regression at each validation site. We considered the difference in
between these estimates and assessed the any potential bias in our model.

Finally, our team demonstrated the application of the NDVI–Kc model (derived and
validated) over the course of a growing cycle at two of the validation sites. Along 
with site-specific Kc estimates based on NDVI, we acquired potential 
evapotranspiration data from Terra MODIS and interpolated it for the days at 
which we had modeled Kc. Last, we multiplied PET by modeled Kc to estimate 
actual evapotranspiration. 

3.3.2 ETc – based Kc Methodology
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Figure 4. ETc-based Kc methodology

The ETc-based crop coefficient approach is based on the actual crop 
evapotranspiration (ETc) and reference evapotranspiration (ETo) products from 
the ISS ECOSTRESS mission at 70 m resolution (Figure 4). Our team reviewed the 
variability in the two dataset and applied a moving average across each timeseries 
to filter out some of the noise. Thereafter, we calculated the ratio of the two 
variables at one site to obtain Kc over time as shown in the Equation 2 below 
(Allen et al, 1998). 

K c=
ET c
ET r

     (2)

In addition, we merged the Kc estimates over the first 100 days of the growing 
cycle to capture the significant water requirement during the development stage of
the English walnut. Once calculated, the typical crop coefficient obtained for a 
growth stage at a site does not require a model input like the prior approach. As 
such, a site-specific Kc value can readily convert PET into ET. 

4. Results & Discussion
4.1 Analysis of Results
4.1.1 NDVI – based Kc Methodology
In reviewing the spatial distribution of NDVI over time, our team observed a range 
of signals over the growing cycle of maize (Figure C1). Based on information from 
the Table 2, we recognized successive growth stages in the remotely sensed 
vegetation response. We found that NDVI values increased following seeding, 
reached a plateau in the mid-season, and decreased as the plant experienced 
senescence. Our team was able to align this typical pattern in NDVI with the 
reference Kc curve to identify the most likely date of planting. Working within the 
growth cycle timeframes provided by our partner, we were able to establish when 
seeding occurred in 31 of the 36 combinations for the 12 sites and 3 seasons we 
studied (Table 5). Assumed day of planting ranged from the beginning of 
September to the end of October. 

Table 5.
Assumed Day of Planting for Maize Sites and Seasons 

Site Designation 2019–2020 2020–2021 2021–2022
CO-HI-101 Oct-22 N/A Oct-27
CO-HI-102 Sep-04 Oct-08 Sep-25
CO-HI-103 Sep-04 N/A Sep-09
CO-HI-104 Sep-04 Sep-06 N/A
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CO-HI-105 Sep-20 Sep-22 Sep-09
CO-HI-106 Sep-04 Sep-22 Sep-09
CO-LO-101 Sep-04 Sep-06 Sep-25
CO-LO-102 Sep-20 Sep-06 Sep-25
CO-LO-103 Sep-20 Sep-06 N/A
CO-LO-104 Oct-22 Oct-08 Oct-11
CO-LO-105 Oct-22 Oct-08 Oct-11
CO-LO-106 Sep-04 Sep-06 N/A

When plotting Kc against corresponding NDVI at 8 sites, we observed a generally 
linear trend between the two datasets (Figure C2). Our team found R-squared 
scores around 0.61 to 0.89, implying that most variations in Kc can be explained 
linearly by NDVI. We hypothesized that NDVI was also capturing site-specific 
responses, not taken into account by the theoretical FAO curve. From our linear 
regressions, we obtained 8 sets of slope parameter and intercept (or constant) as 
shown in Table 6 below. The fields in the low elevation range had lower slope 
coefficients (in the range of 2.12 to 2.58) compared to the higher elevation parcels 
(with slopes of 2.58 to 3.01). This meant that a relatively greater coefficient was 
needed to match FAO Kc in higher sites where NDVI signals were potentially not 
as strong. We also noted that the two lower coefficients of determination were 
found near Maria Pinto. Our team suspected that water stress and/or irrigation 
practices in the area might have impacted vegetation signals. 

10



Table 6.
Linear Regression Parameters and Ensemble Formulation for Maize Sites
Site Designation Regression 

Slope
Regression 
Intercept

Regression R-
squared

CO-LO-101 2.451 0.024 0.878
CO-LO-103 2.582 -0.003 0.859
CO-LO-104 2.125 0.184 0.738
CO-LO-106 2.344 0.236 0.614
CO-HI-101 3.014 0.176 0.838
CO-HI-103 2.581 0.174 0.854
CO-HI-104 2.669 0.123 0.891
CO-HI-106 2.794 0.098 0.855
Averaged-
Ensemble Eq.

2.57 0.13 N/A

During validation of the ensemble model, NDVI-Kc estimates appeared to follow 
the FAO-Kc curve closely over the growing seasons at 4 sites (Figure C3). When 
plotting one variable against the other, we observed that the datapoints fell 
generally near the 1:1 line (Figure 5). This signified that the modeled Kc remained 
strongly correlated to the reference values. Per the R-squared scores ranging from 
0.56 to 0.90 (Figure 5), we found that NDVI-Kc was not entirely dependent on the 
FAO-Kc. However, the amount of residual was low with RMSE between 0.01 and 
0.06 (on the order of 2 to 7%), therefore, our team determined the quality of the 
prediction to be high. 

Figure 5. NDVI-Kc ensemble validation against FAO reference at 4 maize sites over
3 growing seasons

Additionally, we compared the modeled values from the ensemble to those of 
individual best-fit specific to each validation site and found similar outputs (Figure 
C4). As anticipated, the site-specific regressions explained more variations in NDVI
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with respect to FAO-Kc at each site and yielded greater R-squared scores. 
However, the benefit of a site-specific regression appeared to be marginal, 
implying that the regional model captured most of the vegetation signals across 
validation sites. 

When looking into the potential bias of the model and investigating the difference 
in Kc estimates from the ensemble equation and best-fit at each site, we observed 
a slight overestimation at the sites in the lower elevation range along with an 
underestimation at one of the two higher elevation sites (Figure C5). Overall, the 
residuals appeared to balance out with no particular pattern observed. Based on 
these results, no further tuning of our ensemble parameters was deemed 
necessary, and our team concluded that the model could be used to determine crop
coefficients for maize fields across the Maipo River basin.

Using NDVI inputs, our Kc model, and PET observations, we produced a novel set 
of ET estimates for the growing season of two sites. In the first case (Figure 6), we 
found that our values plotted below those of the FAO, implying a potential 
overestimation of irrigation needs per the FAO reference alone. For the second 
case, we obtained more nuanced findings, with both a potential prior 
underestimation by FAO in the first half of the season along with a possible 
overestimation of water requirements in the second half of the season (Figure C6).

Figure 6. Applications of ensemble Kc model (left) along with PET (middle) for
water requirement estimation (right) at site CO-HI-102 in growing season 2021–

2022

4.1.2 ETc – based Kc Methodology
After failing to sense meaningful variations over the successive growth stages of 
the English walnut by looking at NDVI (Figures C7 & C8), our team explored a 
second methodology. Our team studied ET and PET products from ECOSTRESS 
and observed that the observed values varied widely. We hypothesized that 
observations were influenced by various terrestrial changes in undergrowth, 
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irrigation patterns, or weather conditions along with the sensor having no fixed 
revisit period over the season or time of day.  Because of this, no clear indication of
flowering and harvest of the English walnut could be inferred from snapshots in 
time of ET (Figure C9). 

Only after applying a moving average to both ET and PET were we able to 
successfully filter out some noise at this particular site and given season (Figure 
C10). We identified an averaged Kc of 0.80 in the first 100 days of the growing 
cycles, as denoted by the dash line in Figure 7. This value is thought to be 
representative of the development stage of the English walnut, with the potential 
to capture the significant water requirement during that timeframe.

Figure 7. Variability in evapotranspiration and Kc estimates at site WA-LO-101 in
growing season 2021–2022.

4.2 Future Work
Further statistical analyses across elevation ranges could add insightful 
information to the first methodology. Along those lines, our partner recommended 
that a range of applicability for input values of NDVI be added to our model. This 
work could also be expanded to account for additional years and more sites. This is
of particular interest with ECOSTRESS as only one growing cycle for a given site 
was considered and limited sampling with significant noise was encountered. To 
strengthen the robustness of our techniques, more comparisons could be drawn 
between datasets of NDVI and PET across MODIS and ECOSTRESS. In addition, 
in-situ data from flux towers and pan evaporation could corroborate some of the 
PET and ET estimates. Lastly, this approach could be applied to other crop types, 
particularly tomato fields which were suggested by our partner s as a next step.

5. Conclusions
Chile has recently ranked 18th of the most water-stressed country in the world 
(Hofste et al., 2019). The FAO has also predicted that conditions could worsen with
desertification and salinization potentially affecting 50% of agricultural lands in all 
Latin America by 2050 (FAO, 2004). Our team collaborated with CIREN and the 
Embassy of Chile, Agricultural Office to improve irrigation need assessment and 
generate site-specific crop coefficients tailored to the agricultural production of 

13



the Maipo River Valley in Central Chile. This project leveraged NASA Earth 
observations and identified two approaches based on remote sensing from space. A
NDVI-based and ETc-based Kc techniques were implemented, validated, and 
compared between crop types, through growing seasons, and across the region. 
Specifically, we produced a NDVI-based Kc model for maize that incorporates 
vegetation health to assess crop water requirements. We also calculated typical Kc
values during the development stage of the English walnut based on EOs.

Study findings provided partner organizations with tested methodologies to follow 
for Kc calculation, application, and limitation. Findings will assist CIREN in 
evaluating water demands and improving irrigation management approach in 
Chile's agricultural regions. To further alleviate water scarcity and provide greater
community resilience, these end products will also be shared with other 
organizations such as the Comisión Nacional de Riego (CNR) and the Fundación 
Para la Innovación Agraria (FIA) to support their decision making around 
agriculture and irrigation.
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7. Glossary
Aridification – The gradual change of a region from a wetter to a drier climate.
Centro de Información de Recursos Naturales (CIREN) – CIREN works to 
ensure decision-making on irrigation management, and land use policies in Chile. 
In this project, CIREN contributed greatly with local knowledge and in-situ data. 
Crop Evapotranspiration (ETc) – The amount of water transpired by plants to 
the atmosphere.
Desertification – A type of land degradation in drylands in which biological 
productivity is lost due to natural processes or induced by human activities 
whereby fertile areas become increasingly arid.
ECOSTRESS – ECOsystem Spaceborne Thermal Radiometer Experiment on Space
Station.
Earth observations (EO) – Satellites and sensors that collect information about 
the Earth’s physical, chemical, and biological systems over space and time.
Evapotranspiration (ET) – The process by which water is transferred by the soil 
surface and transpiration by plants from the land to the atmosphere.
Food and Agriculture Organization (FAO) – Food and Agriculture Organization 
of the United Nations that specializes in the fight against world hunger.
Intergovernmental Panel on Climate Change (IPCC) – A United Nation 
organization that is responsible for advancing knowledge on human-induced 
climate change. 
LANDSAT 8 Operational Land Imager (OLI) – A satellite and sensor that 
rotates around the Earth every 16 days and measures in the visible, near infrared, 
and shortwave infrared portions (VNIR, NIR, and SWIR) of the spectrum. 
MODIS – Moderate Resolution Imaging Spectroradiometer is a sensor aboard 
Terra satellite that collects various data by viewing the entire Earth’s surface 
every 1 to 2 days. 
Normalized Difference Vegetation Index (NDVI) – A simple graphical indicator
that can be used to analyze remote sensing measurements, often from a space 
platform, assessing whether or not the target being observed contains live green 
vegetation.
Potential Evapotranspiration (PET) – The amount of evaporation that would 
occur if a sufficient water source were available.
Quality Assessment (QA) – The data collection and analysis through which the 
degree of conformity to predetermined standards and criteria are exemplified. 
Reference Evapotranspiration (ETo) – The estimation of evapotranspiration of a
reference field that assumes the field is large of four to seven-inch tall, cool season 
grass that has unlimited water availability.
Remote sensing – The acquisition of information from a distance via remote 
sensors on satellites and aircraft that detect and record reflected or emitted 
energy.
R-squared (or Coefficient of Determination) – A statistical measure that 
represents the proportion of the variance for a dependent variable that's explained 
by an independent variable or variables in a regression model.
Root Mean Square Error (RMSE) – Used measure of the differences between 
values predicted by a model or an estimator and the values observed.
Senescence – The process of aging in plants.
Water Scarcity – The limited water availability due to climate change, change in 
water balance, and other factors.
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World Resources Institute (WRI) – A research organization that aims to develop
practical solutions that improve people’s lives and ensure nature can thrive.

16



8. References
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-

Guidelines for computing crop water requirements-FAO Irrigation and 
drainage paper 56. Food and Agriculture Organization (FAO) of the United 
Nations, Rome. https://www.fao.org/3/x0490e/x0490e00.htm

Bauer, C. J. (2017). The evolving water market in Chile’s Maipo River Basin: A case
study for the political economy of water markets project. Ecosystem 
Economics LLC, AMP Insights LLC, and the Rockefeller Foundation. 
https://static1.squarespace.com/static/56d1e36d59827e6585c0b336/t/
5805460515d5dbb1ab599b91/1476740618944/Chile-Maipo-Bauer.pdf

Boisier, J. P., Rondanelli, R., Garreaud, R.D., & Muñoz, F. (2016). Anthropogenic 
and natural contributions to the Southeast Pacific precipitation decline and 
recent megadrought in central Chile. Geophysical Research Letters, 43(1), 
413–421. https://doi.org/10.1002/2015GL067265

Dai, A. (2012). Erratum: Drought under global warming: A review. Wiley 
Interdisciplinary Reviews: Climate Change, 3(6), 617–617. 
https://doi.org/10.1002/wcc.81 

Didan, K. (2021). MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN 
Grid V061 [Data set]. NASA EOSDIS Land Processes DAAC. Retrieved July 5,
2022, from https://doi.org/10.5067/MODIS/MOD13Q1.061

Tucker, C. J. (1979). Red and photographic infrared linear combinations for 
monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. 
https://doi.org/10.1016/0034-4257(79)90013-0.

Falvey, M., & Garreaud, R.D. (2009). Regional cooling in a warming world: Recent 
temperature trends in the southeast Pacific and along the west coast of 
subtropical South America (1979 – 2006), Journal of  Geophysical Research: 
Atmospheres,114(D4) D04102. https://doi.org/10.1029/2008JD010519

FAO (2004). 28ava Conferencia Regional de la FAO para América Latina y el 
Caribe. Food and Agriculture Organization (FAO) of the United Nations, 
Ciudad de Guatemala, Guatemala. https://www.fao.org/3/J1697s/J1697s.htm

Guerra, E., Ventura, F., & Snyder., R.L. (2016). Crop coefficients: A literature 
review. Journal of Irrigation and Drainage Engineering, 142(3). 
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000983

Hofste, R. W., Kuzma, S., Walker, S., Sutanudjaja, E. H., Bierkens, M. F., Kuijper, 
M. J., Sanchez, M. F., Van Beek, R., Wada, Y., Rodríguez S. G., & Reig, P. 
(2019). Aqueduct 3.0: Updated Decision Relevant Global Water Risk 
Indicators. World Resources Institute. 
https://doi.org/10.46830/writn.18.00146

17

https://doi.org/10.46830/writn.18.00146
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000983
https://www.fao.org/3/J1697s/J1697s.htm
https://doi.org/10.1029/2008JD010519
https://doi.org/10.5067/MODIS/MOD13Q1.061
https://doi.org/10.1002/2015GL067265
https://static1.squarespace.com/static/56d1e36d59827e6585c0b336/t/5805460515d5dbb1ab599b91/1476740618944/Chile-Maipo-Bauer.pdf
https://static1.squarespace.com/static/56d1e36d59827e6585c0b336/t/5805460515d5dbb1ab599b91/1476740618944/Chile-Maipo-Bauer.pdf
https://www.fao.org/3/x0490e/x0490e00.htm


Hook, S., Fisher, J. (2019). ECOSTRESS Evapotranspiration PT-JPL Daily L3 Global
70 m V001 [Data set]. NASA EOSDIS Land Processes DAAC. Retrieved July 
5, 2022, from https://doi.org/10.5067/ECOSTRESS/ECO3ETPTJPL.001

Kamble, B., Kilic, A., & Hubbard, K. (2013). Estimating Crop Coefficients Using 
Remote Sensing-Based Vegetation Index. Remote Sensing, 5(4), 1588–1602. 
https://doi.org/10.3390/rs5041588

Magrin, G.O., Marengo, J.A., Boulanger, J.-P., Buckeridge, M.S., Castellanos, E., 
Poveda, G., Scarano, F.R. & Vicuña, S. (2014). Central and South America. 
Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: 
Regional Aspects. Contribution of Working Group II to the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change, Barros, V.R., 
Field, C.B. Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., 
Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S.,
Levy, A.N., MacCracken, S., Mastrandrea, P.R., and White, L.L., Eds., 
Cambridge University Press, Cambridge, United Kingdom and New York, 
NY, USA, pp. 1499–1566. 
https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartB_FINAL.pdf

Masek, J.G., Vermote, E.F., Saleous N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., 
Gao, F., Kutler, J., and Lim, T-K. (2006). A Landsat surface reflectance 
dataset for North America, 1990–2000. IEEE Geoscience and Remote 
Sensing Letters, 3(1), 68–72. http://dx.doi.org/10.1109/LGRS.2005.857030

Peña-Guerrero, M. D., Nauditt, A., Muñoz-Robles, C., Ribbe, L., & Meza, F. (2020). 
Drought impacts on water quality and potential implications for agricultural 
production in the Maipo River Basin, Central Chile. Hydrological Sciences 
Journal, 65(6), 1005–1021. https://doi.org/10.1080/02626667.2020.1711911

Rangecroft, S., Van Loon, A.F., Maureira, H., Verbist, K., & Hannah, D.M. (2016). 
Multi-method assessment of reservoir effects on hydrological droughts in an 
arid region. Earth System Dynamics, [preprint] , https://doi.org/10.5194/esd-
2016-57

Reyes-González, A., Kjaersgaard, J., Trooien, T., Hay, C., & Ahiablame, L. (2018). 
Estimation of crop evapotranspiration using satellite remote sensing-based 
vegetation index. Advances in Meteorology, 2018. 
https://doi.org/10.1155/2018/4525021

Rosegrant, M.W., Ringler, C., McKinney, D.C., Cai, X., Keller, A., & Donoso, G. 
(2000). Integrated economic-hydrologic water modeling at the basin scale: 
The Maipo river basin. Agricultural Economics, 24(1), 33–46. 
https://doi.org/10.1111/j.1574-0862.2000.tb00091.x

Running, S., Mu, Q., Zhao, M. (2021). MODIS/Terra Net Evapotranspiration 8-Day 
L4 Global 500m SIN Grid V061 [Data set]. NASA EOSDIS Land Processes 
DAAC. Retrieved July 5, 2022, from 
https://doi.org/10.5067/MODIS/MOD16A2.061

18

https://doi.org/10.5067/MODIS/MOD16A2.061
https://doi.org/10.1111/j.1574-0862.2000.tb00091.x
https://doi.org/10.1155/2018/4525021
https://doi.org/10.5194/esd-2016-57
https://doi.org/10.5194/esd-2016-57
https://doi.org/10.1080/02626667.2020.1711911
http://dx.doi.org/10.1109/LGRS.2005.857030
https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartB_FINAL.pdf
https://doi.org/10.3390/rs5041588
https://doi.org/10.5067/ECOSTRESS/ECO3ETPTJPL.001


Singh, R., & Irmak, A. (2009). Estimation of Crop Coefficients Using Satellite 
Remote Sensing. Journal of Irrigation and Drainage Engineering, 135(5). 
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000052.

Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of 
the performance of the Landsat 8/OLI land surface reflectance product. 
Remote Sensing of Environment, 185, 46–56. 
http://dx.doi.org/10.1016/j.rse.2016.04.008

World Bank (2011). Documento del Banco Mundial: Diagnóstico de la Gestión de 
los Recursos Hídricos en Chile. Departamento de Medio Ambiente y 
Desarrollo Sostenible Región para América Latina y el Caribe. 78 pp, 
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Appendix A

Figure 1. Spatial distribution of the production of 5 crops for which water demand
was of concern to our partners. [Base map credits: Esri, USGS, CGIAR, WWF,

CIREN, IDE Chile]
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Figure A2. Spatial variability in the median of ECOSTRESS daily ET across the
Maipo River basin from 2019 to 2022. [Base map credits: EarthStar Geographics,

NASA, Esri, IDE Chile]
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Appendix B

Figure B1. Location of study sites across the Maipo River basin in the vicinity of
localities of particular interest to partners. [Base map credits: Esri, HERE, Garmin,

Foursquare, FAO, METI/NASA, USGS, CGIAR, WWF, CIREN, IDE Chile]
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Figure B2. Daily snapshot of NDVI at irrigated maize field CO-LO-101. [Base map
credits: Maxar, NASA, Esri]
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Appendix C

Figure C1. Spatial distribution of NDVI for site CO-LO-101 over the growing
season 2021–2022. NDVI successfully captured the different growth stages of

maize such as sowing, flowering and harvesting.

Figure C2. Linear Regression of Kc from FAO with respect to NDVI for 8 maize
sites across 3 growing seasons.
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Figure C3. NDVI-Kc ensemble validation at 4 maize sites over 3 growing seasons.
NDVI–Kc values for the 4 validation sites closely followed the FAO–Kc curve.

Figure C4 Performance of NDVI-Kc ensemble at maize validation sites over the 
2019–2022 growing seasons.

25



Figure C5. No particular bias of NDVI-Kc ensemble at maize validation sites over 
growing seasons 2019–2022.

Figure C6. Applications of ensemble Kc model (left) along with PET (middle) for
water requirement estimation (right) at maize site CO-LO-102 in growing season

2021–2022.
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Figure C7. Spatial distribution of NDVI for field WA-LO-101 over the growing
season 2019–2020. NDVI did not capture meaningful variations over the successive

growth stages of the English walnut such as flowering, defoliation, and harvest.

Figure C8. NDVI curve for sites WA-HI-101 and WA-HI-102 over the growing cycle
2019–2020. Duration of mid-season at either of the high sites appears to be longer

(left) or shorter (right) than the reference Kc curve from FAO.
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Figure C9. Spatial distribution of ECOSTRESS ET for site WA-LO-101 over the
growing season 2021–2022. ET showed sharp variations across observations with

no fixed revisit period over the season and time of day.

Figure C10. Trend and variability in ET and PET from ECOSTRESS at site WA-LO-
101 in growing season 2021–2022.

28


	1. Abstract
	2. Introduction
	3. Methodology
	4. Results & Discussion
	5. Conclusions
	6. Acknowledgments
	7. Glossary
	8. References
	Appendix A


