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Text S1: NO2 observations

We obtain observed hourly NO2 concentrations from 1 January 2019 to 30 June 2020

from the European Environment Agency [1]. The number of NO2 monitors in each city

considered for this study varies from 2 in Zagreb, Croatia to 126 in London, United

Kingdom with an average of ∼13 monitors per city (Table S1, Figure S1). We generally

choose one city per country (usually the capital or largest city) as publicly available

databases on diesel shares at the subnational level do not exist to our knowledge.

However, for some countries (e.g., Germany, Italy) we select two cities within a county

if both cities have their own traffic trends to illustrate how different meteorology and

changes in traffic impact results.

To the best of our knowledge, all monitors are regulatory-grade (not low-cost).

Most regulatory monitors measure using the chemiluminescence method, which captures

other reactive nitrogen species such as nitric oxide and a small fraction of nitric acid.

The designation of a monitor as belonging to a particular city is determined using

municipality or equivalent unit definitions from the Nomenclature of Territorial Units

for Statistics, a hierarchical system for delineating administrative units in Europe.

While we primarily feature this European cohort of cities in our study due to the
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need to have a range in diesel shares, we complement this cohort with four additional

cities in the Americas and Oceania (Auckland, New Zealand; Mexico City, Mexico; Los

Angeles, United States of America; and Santiago, Chile). These additional cites report

data to C40 Cities as part of the C40 Cities network. They generally have lower diesel

shares than European cities (Table S1) and specifically allow us to test whether our

results are robust for cities with these small diesel shares.

Text S2: Diesel, traffic, and stay-at-home data

We rely on national-level diesel shares for the most recent year available (generally 2019)

from the European Automobile Manufacturers Association and International Council

on Clean Transportation [2, 3]. We focus on passenger vehicle diesel shares for two

reasons. The first is that most heavy-duty vehicles, regardless of country, use diesel fuel

[3] whereas there is a wide range of passenger vehicles diesel shares (Table S1). The

second reason we focus on passenger vehicles is that one of the most salient impacts of

the pandemic was on the passenger vehicle sector given the shift to remote work for many

jobs [e.g., 4, 5]. Using national-level data assumes that diesel shares are homogeneous

throughout individual countries and does not account for regional or local policies (e.g.,

low emission zones in city centers) that may target diesel vehicles. If more than one city

from a particular country is used in our study, these cities have the same diesel shares.

We account for changes in traffic emissions on NO2 concentrations using Apple

Mobility Trends Reports [6], which provide daily traffic trends during COVID-19 relative

to a baseline volume from 13 January 2020 (Figure S2). We select the highest level

of granularity available for a given city. Of our 22 focus cities, 19 have traffic data

aggregated to the city-level, and we use national-level data for the other three cities

(Table S1). This dataset has been previously used to examine the impacts of different

degrees of social distancing on COVID-19 spread [7] and air quality [8].

The timing of stay-at-home measures and lockdowns varies across and within

countries, and we use the Oxford COVID-19 Government Response Tracker (OxCGRT)

to provide country-specific dates of stay-at-home recommendations and requirements

[9]. OxCGRT discretizes stay-at-home measures into four categories ranging from “no

measures” to “required to not leave the house with minimal exceptions” (Figure S2).

Text S3: GEOS-CF

NASA’s GEOS-CF v1.0 provides three-dimensional gridded historical estimates of

meteorology and atmospheric composition at 0.25◦ × 0.25◦ (∼ 25 km) horizontal

resolution globally from the surface to about 80 km for the period since 1 January

2018 [10]. This is possible because the GEOS-Chem chemical transport model [11] is

fully integrated into the GEOS Earth System Model [12, 13, 14]. We obtain near-surface

(lowest model level) hourly-average meteorological and atmospheric composition fields

(Table S2) from GEOS-CF from 1 January 2019 to 30 June 2020 and thereafter sample
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the model for the grid cell closest to the location of each air quality monitor within

individual cities shown in Figure S1.

It is important to note that the meteorology and fire emissions are constrained

by observations; in particular, the inclusion of fire radiative power based on MODIS

from the Quick Fire Emissions Dataset [QFED; 15] informs the model of recent

fires. Anthropogenic NOx emissions are generally derived from the global Hemispheric

Transport of Air Pollution inventory [HTAP; 16]. HTAP v2.2 harmonizes the complete

global coverage of EDGAR with the latest-available regional inventories. GEOS-CF

v1.0 incorporates the monthly HTAP v2.2 anthropogenic emissions from 2010 for

all subsequent years and applies weekly and diurnal scaling factors [10]. Therefore,

the model has no knowledge about COVID-19 restrictions impacting anthropogenic

emissions but does have realistic meteorology and fire emissions for 2019 and 2020 and

thus represents a business-as-usual scenario for the COVID-19 period [see also 17]. Full

details regarding the GEOS-CF configuration and available model output are described

by Keller and colleagues [17, 10] and Knowland and colleagues [18], respectively.

Text S4: Emissions inventories

We use the Greenhouse gas–Air pollution Interactions and Synergies (GAINS) model [19]

to quantify NOx emissions from light-duty vehicles. GAINS is an integrated assessment

model that brings together emissions estimates from a number of global inventories

and direct submissions from European Union member states. These estimates are

then merged within GAINS’ unified framework to estimate historic emissions of key

air pollutants and greenhouse gases.

GAINS disaggregates NOx emissions by vehicle category (e.g., light-duty vehicles,

heavy-duty vehicles), unlike many publicly available gridded inventories that only

include on-road transportation emissions. This capability allows us to calculate the

contribution of NOx emissions from light-duty vehicles to total anthropogenic NOx

emissions. These emissions are only available as national sums, and we use these

national-level estimates for each country in our analysis. This level of granularity is

consistent with our use of national-level diesel shares (Text S2). Similar to our treatment

of diesel shares, cities within the same country share the same value for light-duty vehicle

and total NOx emissions.

We specifically consider two different GAINS baseline emissions scenarios:

ECLIPSE (V6b CLE) and the Second Clean Air Outlook [20, 21] and average these

two scenarios together to create a single estimate per city. NOx emissions from these

scenarios represent 2020 values. These 2020 emissions scenarios do not consider any

impacts of the COVID-19 pandemic. While the scenarios use some common data

inputs, including both indicates how different methods and assumptions within GAINS

may impact the estimated contribution on light-duty vehicle emissions to total NOx

emissions.
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Text S5: Data post-processing

We average observed NO2 and modeled meteorology- and composition-related variables

to daily mean values from hourly time slices beginning 0000 UTC. For each focus city,

all variables taken from in-situ monitors or model grid cells colocated with monitors

are spatially averaged to produce a “meta-site” following Ivatt and Evans [22] that

represents daily observed or modeled NO2, meteorology, and composition at the city

level.

Our machine learning technique trains on data from 2019; however, the Apple

Mobility Trends Reports dataset begins on 13 January 2020. To remedy this issue,

we calculate mean day-of-the-week-specific traffic volumes from 13 January 2020 to 29

February 2020 to capture volumes prior to most stay-at-home measures (e.g., Figure

S2) and thereafter apply these day-of-the-week-specific volumes to the period spanning

1 January 2019 to 12 January 2020. While this reconstructed time series is imperfect

and may miss seasonal variations or holidays, it captures weekday-weekend patterns,

which are important for urban NO2.

Text S6: Machine learning algorithm

For each city meta-site, we use a k-fold cross validation technique to predict the time-

varying bias between GEOS-CF and observed NO2 with the following steps:

(i) Data from 1 January to 31 December 2019 are decomposed into six 2-month folds.

We split the data into consecutive folds, without reshuffling, to avoid overfitting

due to the autocorrelation present in the data. The first fold is reserved for

validation, and we build a bias-corrected model using the remaining five folds as

a training dataset. We do not include data from 2020 in the training of the bias

corrector. Previous work has demonstrated that one year of data is adequate for

bias-correcting an atmospheric composition model to observations [22].

(ii) We quantify model performance using a variety of metrics with the reserved

(testing) fold and training folds (Figure S3).

(iii) We use the bias-corrected model derived from each fold to predict the bias for the

entire measuring period (1 January 2019 - 30 June 2020).

(iv) The first three steps are repeated five times (thus, every fold of the dataset is

treated as a test), resulting in a total of six bias-corrected models. We average

bias-corrected NO2 concentrations over these six folds [17, 10].

We use default parameter values, listed in Table S3, when tuning the XGBoost

model. Optimizing these parameters would be computationally expensive and beyond

the scope of our study, but we note that their impact on XGBoost performance been

investigated in a recent study [17]. In this study, XGBoost performance was found to

only marginally improve when parameter values beyond the defaults were used.
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We test whether XGBoost-inferred ∆NO2 could be a function of our choice of time

periods for training data. To do so, we estimate ∆NO2 for two additional time periods.

(i) First, we train on 2018 data and apply this model to 1 January 2019 to 30 June

2019. Since there was no unprecedented drop in NOx emissions during early 2019,

we hypothesize that this application of XGBoost will not lead to a substantial

∆NO2 in 2019. This hypothesis indeed holds for our focus cities (Figure S4). For

example, in Paris we calculated ∆NO2 = -1.9% in January-June 2019 compared to

the ∼40% decrease we found during COVID (Figure 3 in the main text).

(ii) Second, we train on data from 1 January to 30 June 2018 and 2019 and apply

this model to the COVID-19 period. The rationale behind this sensitivity test

is whether XGBoost could underpredict in one season and overpredict in another

season during the 2019 training period used elsewhere in this study, falsely giving

the impression of good performance when averaged over a year. Our hypothesis

is that training XGBoost on January-June 2018 and 2019 and thereafter applying

this model to the COVID-19 period will still show a substantial decrease in NO2

during the pandemic. We find that this is the case in our focus cities (Figure S5).

Using Paris again as an example, we found ∆NO2 = -44.7% using the full 2018-2019

training period. This decrease is in reasonable agreement with the ∼40% decrease

in Figure 3 in the main text.

Both these sensitivity tests speak to the ability of XGBoost to detect changes in NO2

during the pandemic and indicate that the estimated ∆NO2 in early 2020 was not an

artifact of choices we made regarding training data for the model.

We exploit SHapley Additive exPlanations (SHAP) values to increase the

interpretability of business-as-usual NO2 concentrations. SHAP values employ game

theory to explain the contribution of individual input variables in predicting the bias

[23, 24, 25]. For each of the k folds in each city and for each day, SHAP values are

assigned to each input variable used to generate the predicted bias between GEOS-

CF and observed NO2 representing the marginal contribution of each input variable.

Variables with larger absolute SHAP values therefore have a greater influence on

correcting the bias between GEOS-CF and observed NO2. We show partial dependence

plots for each input variables to XGBoost in Figure S5. Many of the input variables

have a U-shaped impact on predicting the bias between observed and modeled NO2

(Figure S5). This result means that very low and very high values of the input variables

have the greatest impact on predicting the bias. Since the predicted NO2 is the bias

between a 0.25◦×0.25◦ grid cell and a point observation, days with high or low values for

variables could represent a scenario in which the modeled values of these variables in the

entire grid cell substantially differ from local conditions at the monitor. For example,

on days with extremely high or low traffic volumes, we might that the modeled NO2

concentrations would have a larger degree of disagreement with observations than on

days with average traffic volumes on account of the resolution of GEOS-CF (i.e., higher

traffic volumes in city → elevated NO2 concentrations at monitor compared to the
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underlying grid cell → larger bias).

Since XGBoost is unable to extrapolate beyond the training range [22], it is most

appropriate to consider ∆NO2 as accounting for weekday-weekend variations in traffic

but not for the plummeting traffic volumes in spring 2020. To determine whether traffic

volumes from Apple Mobility Trends Reports serve as a proxy for the day of the week,

we also perform a sensitivity analysis in which we recalculate ∆NO2 using the day of

the week (e.g., Monday = 0, Tuesday = 1, etc.) as an input variable rather than traffic

volumes (Figure S8).

Text S7: Sensitivity to traffic dataset

Accounting for differences in traffic among cities and traffic’s impact on NO2 pollution

requires spatially- and temporally resolved traffic data. Mobility datasets typically cover

only specific regions or are cost prohibitive. Apple and Google have offered data on

mobility trends during the pandemic, which is an important step to provide a globally

consistent, open-access dataset on traffic trends. We found that Apple Mobility Trends

Reports offer greater granularity than Google’s COVID-19 Community Mobility Reports

for our focus cities; however, three of our 22 cities lack city-specific traffic trends,

and we relied on country-level data (Table S1). Apple does not provide information

about the representativeness of their mobility data against the overall population. It is

possible that socioeconomic factors or cellphone preferences may lead to the Apple data

being representative of a certain subset of the population in a given city. Political and

cultural differences across and within countries might also lead to different reactions and

willingness to adhere to stay-at-home measures that may not be reflected in mobility

data.

We obtained traffic counts directly from two of the focus cities (Berlin and Milan)

who report their traffic data to C40 Cities and compared these counts with the Apple

dataset. While these different datasets record intrinsically different quantities (number

of passing vehicles at in-situ traffic counters versus anonymized mobile phone location

data), these two datasets have demonstrably similar trends during the pandemic (Figure

S12a-b). Recalculating bias-corrected ∆NO2 with these in-situ traffic counts yields

similar values as those calculated with the Apple dataset (Figure S12c-d).

Neither the Apple dataset or in-situ counts for Milan and Berlin capture

information on changes in vehicle speed. NOx emissions generally increase with vehicle

speed [26], and it is possible that changes in congestion and the types of roads driven on

during the pandemic (e.g., local roads versus highways) impact average vehicle speeds

and therefore NOx emissions.
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City

Share of

passenger

diesel vehicles [%]

Number of in-

situ monitors
Traffic

Passenger vehicle

agea [years]

Athens, Greece 8.1a 4 city-level 16.0

Barcelona, Spain 58.7a 7 city-level 12.7

Berlin, Germany 31.7a 17 city-level 9.6

Budapest, Hungary 31.5a 5 city-level 13.5

Copenhagen, Denmark 30.9a 3 city-level 8.8

Helsinki, Finland 27.9a 3 city-level 12.2

Krakow, Poland 31.6a 3 city-level 14.1

London, United Kingdom 39.0a 126 city-level 8.0

Madrid, Spain 58.7a 24 city-level 12.7

Marseille, France 58.9a 3 city-level 10.2

Milan, Italy 44.2a 5 city-level 11.4

Munich, Germany 31.7a 4 city-level 9.6

Paris, France 58.9a 10 city-level 10.2

Prague, Czechia 35.9a 9 city-level 14.9

Rome, Italy 44.2a 13 city-level 11.4

Rotterdam, Netherlands 14.0a 8 city-level 11.0

Sofia, Bulgaria 43.1c 5 country-level 15.0

Stockholm, Sweden 35.5a 4 city-level 10.0

Vienna, Austria 55.0a 15 city-level 8.3

Vilnius, Lithuania 69.2a 4 country-level 16.8

Warsaw, Poland 31.6a 3 city-level 14.1

Zagreb, Croatia 52.4a 2 country-level 14.6

Auckland, New Zealand 8.3b 7b city-level −
Los Angeles, United States 0.4b 15b city-leveld −
Mexico City, Mexico 0.2b 32b city-level −
Santiago, Chile 7.1b 9b city-level −

Table S1. Focus cities and information about their vehicle fleets, traffic data, and

in-situ monitor networks. Unless otherwise indicated, in-situ monitors are taken from

the European air quality database, AirBase, maintained by the European Environment

Agency. Rows in grey denote cities outside of the European Union included in the

sensitivity analysis.
a Data derived from European Automobile Manufacturers Association.
b Based on data reported by city agencies to C40 Cities.
c Data derived from ICCT.
d City-level traffic data for Los Angeles represent an average over Los Angeles and

Orange counties.
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Family and variables Source

Composition: CO, NO2, O3, PM2.5, SO2 GEOS-CF

Meteorology: Eastward wind, northward wind,

fractional cloud cover, surface pressure, total

precipitation, air temperature, planetary boundary

layer height, specific humidity, relative humidity,

sea level pressure

GEOS-CF

Mobility: Traffic Apple Mobility Trends Reports

Table S2. Input variables used in the XGBoost machine learning algorithm. All

variables from GEOS-CF represent near-surface values (lowest model level; > 985

hPa).

XGBoost Parameter Value

booster gbtree

eta 0.3

gamma 0

max_depth 6

min_child_weight 1

max_delta_step 0

subsample 1

colsample_bytree, colsample_bylevel, colsample_bynode 1

lambda 1

alpha 0

tree_method auto

scale_pos_weight 1

refresh_leaf 1

process_type default

Table S3. XGBoost general and booster parameters used in this study. Values

represent the default used by the open-source XGBoost software library [27].
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Athens Barcelona Berlin

Budapest Copenhagen Helsinki

Krakow London Madrid

Marseille Milan Munich

Paris Prague Rome

Figure S1. Location of in-situ NO2 monitors in focus cities. Bodies of water are

denoted in black, and grey stippling indicates city parks or other green spaces. Map

tiles were created by Stamen Design (https://stamen.com) and include data from

OpenStreetMap.
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Figure S1 (Cont.).
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Feb
2020

Mar Apr May Jun

Athens

Barcelona

Berlin

Budapest

Copenhagen

Helsinki

Krakow

London

Madrid

Marseille

Milan

No measures
Recommended not to leave the house
Required to not leave the house with exceptions for daily exercise, grocery shopping, and essential trips
Required to not leave the house with minimal exceptions (e.g., allowed to leave only once every few days,
or only one person can leave at a time, etc.)

Feb
2020

Mar Apr May Jun

Munich

Paris

Prague

Rome

Rotterdam

Sofia

Stockholm

Vienna

Vilnius

Warsaw

Zagreb

Figure S2. Focus cities’ traffic patterns and stay-at-home measures. Black time series

qualitatively show city- or county-specific traffic volumes from the Apple Mobility

Trends Reports relative to a baseline volume on 13 January 2020. Data for 11-12 May

2020 are not available. Colors indicate national-level stay-at-home recommendations

or requirements for the country containing focus cities. Note that the different stay-

at-home categories may not apply to every region within a country.
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Figure S3. Evaluation metrics measuring the performance of NO2 from GEOS-CF

and the training and testing sets of the bias-corrected business-as-usual NO2 against

observed NO2 for 2019. Violins for GEOS-CF correspond to metrics for each focus city,

while violins for the training and testing sets correspond to metrics from individual

folds of the k-fold cross validation for each city. The median values, first and third

quartiles, and extrema are denoted by the white lines, boxes, and whiskers, respectively,

if space within violins allows. Dashed grey lines indicate the value of each metric for

a model that perfectly matches the observed data.
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Figure S4. Sensitivity of XGBoost-inferred ∆NO2 to training data, illustrated by

training XGBoost on 2018 data and applying to 1 January 2019 to 30 June 2019.

Interpretation follows Figure 2a in the main text. Rome and Helsinki do not have

observations in 2018, so these cities are omitted from this analysis.
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Figure S5. Sensitivity of XGBoost-inferred ∆NO2 to training data, illustrated by

training XGBoost on 1 January to 30 June 2018 and 2019 data and applying to 1

January to 30 June 2020. Interpretation follows Figure 2a in the main text. Rome

and Helsinki do not have observations in 2018, so these cities are omitted from this

analysis.
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Figure S6. Partial dependence plots of predicted observation-model NO2 bias for

input variables. Input variables are discretized into decile bins, and the mean values of

these bins are denoted on the horizontal axis tick labels. Scatter points represent the

mean SHAP values in each decile bin, and the vertical bars show denote the standard

deviation for the SHAP values.
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Figure S7. Same as Figure 2a in the main text but for other focus cities.
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Figure S8. Comparison of ∆NO2 determined by replacing daily traffic volume with

integers corresponding to the day of the week versus ∆NO2 determined with Apple

Mobility Trends Reports. Each point corresponds to a different focus city. The plot’s

legend indicates the form and coefficients of the linear regression used to describe the

relationship between ∆NO2 from the two different data sources, and inset text shows

the correlation coefficient and p-value.
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Figure S12. Comparison of traffic trends and business-as-usual NO2 in Berlin and

Milan using different traffic datasets. (a)-(b) Traffic trends from in-situ traffic counters

and Apple Mobility Trends Reports. (c)-(d) GEOS-CF, observed, and business-as-

usual NO2 concentrations calculated with the different traffic datasets. Text in the
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Figure S13. (a) Mobility restrictions, characterized by the average change in traffic

volumes during lockdowns relative to the baseline volumes, in each city and (b)

proportion of land-use type at in-situ NO2 monitors in each city. Cities are ordered

from smallest to largest diesel shares, and each share is indicated alongside city

names on the horizontal axis. The correlation coefficient and p-value of (a) mobility

restrictions and (b) the number of traffic monitors with diesel shares is shown above

each plot. Land-use types in (b) are designated by the European Environment Agency.
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Figure S14. Interpretation of (a)-(b) follows Figure 3 in the main text, but ∆NO2

was calculated using (a) non-traffic and (b) NO2 monitors. Here, non-traffic monitors

correspond to monitors sited in industrial, background, or unknown environments,

designated by the European Environment Agency. (c) shows the distributions of

∆NO2 for different monitor types. Colored text indicates mean values for each

distribution, and the p-value, assessing whether differences between these distributions

are statistically significant, is determined with the Kolmogorov-Smirnov test statistic.
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