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Abstract. Diesel-powered vehicles emit several times more nitrogen oxides than19

comparable gasoline-powered vehicles, leading to ambient nitrogen dioxide (NO2)20

pollution and adverse health impacts. The COVID-19 pandemic and ensuing changes21

in emissions provide a natural experiment to test whether NO2 reductions have been22

starker in regions of Europe with larger diesel passenger vehicle shares. Here we23

use a semi-empirical approach that combines in-situ NO2 observations from urban24

areas and an atmospheric composition model within a machine learning algorithm to25

estimate business-as-usual NO2 during the first wave of the COVID-19 pandemic in26

2020. These estimates account for the moderating influences of meteorology, chemistry,27

and traffic. Comparing the observed NO2 concentrations against business-as-usual28

estimates indicates that diesel passenger vehicle shares played a major role in the29

magnitude of NO2 reductions. European cities with the five largest shares of diesel30

passenger vehicles experienced NO2 reductions ∼ 2.5 times larger than cities with31

the five smallest diesel shares. Extending our methods to a cohort of non-European32

cities reveals that NO2 reductions in these cities were generally smaller than reductions33

in European cities, which was expected given their small diesel shares. We identify34

potential factors such as the deterioration of engine controls associated with older diesel35

vehicles to explain spread in the relationship between cities’ shares of diesel vehicles36

and changes in NO2 during the pandemic. Our results provide a glimpse of potential37

NO2 reductions that could accompany future deliberate efforts to phase out or remove38

passenger vehicles from cities.39
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1. Introduction43

Ambient nitrogen dioxide (NO2) pollution is a global concern for public health,44

particularly in urban areas, and is linked with decreased lung function, cardiopulmonary45

and respiratory disease, and pediatric asthma, among other adverse health effects46

[1, 2, 3, 4]. Traffic emissions are often the dominant source of urban NO2, followed47

by emissions from industrial sources and energy production and usage [5]. As such,48

NO2 is an effective surrogate for the broad traffic-related mix of pollutants.49

Reductions in urban NO2 during the pandemic (hereafter “∆NO2”) varied greatly50

across the world [e.g., 6, 7, 8, 9]. Direct comparisons of ∆NO2 among cities are51

inherently complicated by different meteorological patterns [10], stay-at-home measures,52

and levels of adherence to these measures in each city. However, even after accounting or53

normalizing for these important moderating factors, differences in ∆NO2 likely remain.54

With all else equal, one cause of these differences is vehicle fuel type. Reductions in55

NO2 have purportedly been larger in regions dominated by diesel vehicles [11]. While56

a large body of literature has documented NO2 changes during the pandemic, a smaller57

portion has explored reasons for intercity differences in NO2 changes. None, to the best58

of our knowledge, has specifically examined the role of different vehicle fuel types in59

causing these intercity differences.60

Diesel-powered passenger vehicles emit substantially greater emissions of nitrogen61

oxides (NOx ≡ NO + NO2) than comparable petrol- (or gasoline-)powered vehicles [12].62

For example, real-world measurements indicate that Euro 6 diesel vehicles emit ten63

times more NOx than Euro 6 gasoline vehicles [13]. Since the late 1990s, European64

nations experienced a “diesel boom,” where diesel passenger vehicles were intentionally65

promoted as an alternative to petrol-powered passenger vehicles on the premise they66

emit less CO2 [14]. However, diesel and petrol vehicles have both produced similar67

real-world CO2 emissions since the early 2000s [15]. The proportion of diesel-powered68

passenger vehicles to the total number of passenger vehicles (henceforth “diesel shares”)69

steadily increased until the Volkswagen emissions scandal was brought to light in 2015.70

Since then, diesel shares of new car registrations have declined in Europe [16]. Diesel71

NOx, including emissions in excess of certification limits, has contributed to high NO272

pollution in Europe [e.g., 17, 18, 19, 20, 21] and adverse health impacts [e.g., 22, 14, 23].73

In several countries outside of Europe such as the United States, Canada, and China,74

diesel shares are much smaller, and petrol is the primary fuel consumed by passenger75

vehicles [e.g., 24].76

In this study, we examine how the COVID-19 pandemic can reveal the fingerprint77

of diesel passenger vehicles on NO2 pollution in urban areas. The pandemic, which78
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largely affected the transportation sector due to stay-at-home measures, provides an79

unprecedented natural experiment that allows us to tease out the relationship between80

urban vehicle fleets and ∆NO2. Additionally, we discuss ways that additional air quality,81

emissions, and traffic data would strengthen future efforts to study clean transit and air82

quality.83
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Figure 1. Process diagram showing the materials and methods used to quantify

influence of diesel passenger vehicle shares on changes in NO2 during COVID-19.

GEOS-CF = GEOS Composition Forecast Modeling System; XGBoost = eXtreme

Gradient Boosting; OxCGRT = Oxford Covid-19 Government Response Tracker;

GAINS = Greenhouse gas-Air pollution INteractions and Synergies.

2. Materials and methods84

2.1. Materials85

We select 22 focus cities spanning 17 European countries based on the availability of86

in-situ NO2 monitors (Text S1, Figure S1), city- or country-level traffic trends during87

the pandemic (Text S2, Figure S2), and country-level diesel shares (Text S2, Table88

S1). Publicly-available data on diesel shares at a subnational level do not exist to our89

knowledge, so we choose only 1-2 cities per country in our analysis (Text S1). Traffic data90

come from Apple Mobility Trends Reports [25] and represent traffic volumes relative91

to baseline volumes. This dataset began in 2020, and we form synthetic traffic data92

for 2019 using day-of-the-week proxies (Text S2, S5). As discussed in Section 1, diesel93

shares represent the proportion of diesel-powered passenger vehicles to the total number94

of passenger vehicles.95

The NASA GEOS Composition Forecast Modeling System [GEOS-CF; 26] provides96

hourly, high-fidelity estimates of meteorology and atmospheric composition at 0.25◦ ×97

0.25◦ (∼ 25 km) horizontal resolution globally (Text S3). The model’s emissions98
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inventories do not account for the impact of COVID-19 on anthropogenic emissions,99

thus representing a counterfactual, business-as-usual scenario for the COVID-19 period100

[7]. We sample the surface-level (lowest model level) meteorological fields and pollutant101

concentrations from GEOS-CF at grid cells colocated with each in-situ NO2 monitor.102

Both observed and modeled NO2 concentrations are obtained for 1 January 2019 to 30103

June 2020.104

We also leverage emissions scenarios from the Greenhouse gas-Air pollution105

INteractions and Synergies (GAINS) model to explore how the contribution of light-duty106

vehicles to total anthropogenic NOx emissions varies across cities (Text S4). Figure 1107

illustrates how these data sources are combined within our methodological framework.108

2.2. Methods109

To isolate the influence of emissions changes on NO2 reductions during COVID-19 for110

each city, we develop bias-corrected, business-as-usual NO2 concentrations from GEOS-111

CF and compare them to observed concentrations. We then aggregate NO2 observations112

and collocated GEOS-CF output to city-averaged daily mean values (Text S5).113

We first bias correct NO2 concentrations simulated with GEOS-CF using eXtreme114

Gradient Boosting (XGBoost) (Text S6). Briefly, XGBoost corrects the bias in GEOS-115

CF NO2 against observed NO2 as a time-varying function of air pollutants, meteorology,116

and traffic (Table S2). We build and test this XGBoost algorithm during our 2019117

training period, with substantially improved model-observation agreement (Figure S3).118

We then apply the XGBoost bias correction algorithm to modeled NO2 concentrations in119

2020 to estimate business-as-usual NO2 from 1 January to 30 June 2020. This approach120

accounts for differences in local meteorology, atmospheric composition, and traffic121

between 2019 and 2020, as these factors influenced NO2 concentration independently122

of fuel type [27]. This approach builds on previous work to estimate business-as-usual123

pollutant concentrations during the pandemic [28, 29, 30, 31, 7, 32].124

We characterize ∆NO2 as125

NO2, observed − NO2, business−as−usual

NO2, business−as−usual

× 100%. (1)126

When calculating ∆NO2 in a particular focus city, we average over all dates where127

stay-at-home measures (Text S2, Figures 1 and S2) are either recommended or required128

through 30 June 2020 and refer to this period as “lockdown”.129

3. Results130

GEOS-CF captures daily NO2 variability in our focus cities (Figure S7), reinforcing131

its ability to aid in understanding lockdown-related NO2 changes. We highlight132

London to further illustrate GEOS-CF’s capabilities and our methods (Figure 2a). The133

temporal correlation (r) between modeled and observed NO2 in 2019 for London is 0.78134

(r = 0.60 averaged over all cities; Figure S3b). Despite the good correlation, there135
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is a negative model bias relative to observations in many of our focus cities (mean136

fractional bias = −0.60 averaged over all cities; Figure S3a). GEOS-CF’s negative bias137

is well-documented, especially in Europe and North America where there are publicly138

available observations [26]. This bias may stem from model resolution; uncertainties in139

atmospheric transport, boundary layer height, vertical mixing, emissions, and chemistry;140

and monitor interference with other nitrogen-containing compounds [33, 34, 7].141

Correcting the bias in modeled NO2 with XGBoost leads to substantially better142

agreement against observations than the native GEOS-CF concentrations, and the143

aforementioned negative model bias is greatly reduced. Figure 2a illustrates the excellent144

agreement between business-as-usual and observed NO2 in 2019 prior to the lockdown.145

In this example for London, the mean fractional bias in 2019 is reduced from −0.41 with146

the native GEOS-CF concentrations to −0.02 with the bias-corrected concentrations,147

and we note similar improvements in other focus cities (Figure S7).148
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Figure 2. Illustration of XGBoost-inferred business-as-usual concentrations and

drivers of these predictions. (a) Observed, GEOS-CF, and business-as-usual NO2

concentrations in London. Time series represent the daily average of all in-situ

monitors or their colocated model grid cells in London. The shaded red band denotes

the 2020 lockdowns in the United Kingdom, and blue shading corresponds to days

where observed NO2 is less than business-as-usual NO2 to highlight the COVID-19

lockdowns. (b) SHAP value distributions for the ten most important meteorology-,

composition-, and traffic-related XGBoost input variables for all focus cities (top) and

London (bottom) are ranked by their median value, here indicated by vertical white

lines. XGBoost input variables are provided by GEOS-CF and Apple Mobility Trends

Reports (Table S2). Boxes show the interquartile range, and whiskers extend to the

10th and 90th percentiles.

We characterize the relative contribution of input variables in generating the149

business-as-usual NO2 concentrations with SHapley Additive exPlanations (SHAP)150

values (Figure 2b, Text S6). The absolute SHAP values illustrate the global importance151

of input variables, and a larger SHAP value for a particular variable means that152

that variable has a more important impact on the bias correction. Assessing feature153

importance via SHAP values indicates that local atmospheric transport and species154
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related to basic ozone (O3) chemistry are the most important variables for inferring155

business-as-usual NO2 concentrations for both London and all focus cities (Figure 2b).156

The partial dependence plots in Figure S6 show how XGBoost’s bias correction is157

affected by individual input variables. This analysis reveals a nonlinear relationship158

between the input variables and the bias correction, and the predicted bias is largest for159

meteorological, traffic, or chemical conditions at anomalously high or low extremes.160

Traffic emerges as one of the most influential variables in estimating business-as-161

usual concentrations (Figure 2b). The relative contribution of traffic in London ranks162

lower than for the aggregation of SHAP values over all focus cities, but the distribution163

has right-skew with a wide range for large SHAP values (Figure 2b). This result indicates164

that intraweek traffic variations in London are one of the most important variables in165

correcting the bias and producing business-as-usual NO2 concentrations for certain days166

in our measuring period and particular folds of the k-fold cross validation.167

Observed NO2 concentrations begin to diverge from business-as-usual concentra-168

tions in London around mid-February 2020, slightly preceding the United Kingdom’s169

declaration of recommended stay-at-home measures (compare Figures 2a and S2). When170

averaged over the lockdowns, ∆NO2 between the observed and business-as-usual con-171

centrations is −28.5% in London. Observed NO2 concentrations exhibit departures from172

business-as-usual concentrations in spring 2020 in other cities as well but with varying173

magnitudes (Figure S7). Contemporaneous studies have found NO2 reductions of sim-174

ilar magnitudes in London and our other focus cities using complementary methods175

[35, 36, 37, 32].176

Our focus cities span a spectrum of pre-lockdown NO2 pollution levels and diesel177

shares ranging from 8.1% in Athens, Greece to 69.2% in Vilnius, Lithuania (Figure 3,178

Table S1). Mean 2019 NO2 in all 22 focus cities exceeded the recently-revised World179

Health Organization annual mean NO2 guideline value of 10 µg m−3 (∼ 5.3 ppbv,180

assuming an ambient temperature of 298.15 K and pressure of 1013.25 hPa). Even181

Helsinki, which had the lowest 2019 NO2 concentration (∼ 8.4 ppbv) of all focus cities,182

exceeded this guideline value by 60% (colors in Figure 3).183

The change in NO2 during the pandemic (∆NO2, Equation 1) averaged across184

cities is −23.8% (standard deviation = 16.0%), and the precise magnitude ranges by185

approximately 60% across cities. We next compare ∆NO2 with cities’ diesel shares and186

see a clear pattern emerge: cities with larger diesel shares tend to have larger ∆NO2,187

while ∆NO2 is smaller in cities with smaller diesel shares (r = −0.50, p = 0.02; Figure188

3). For example, the average change in NO2 (∆NO2) in cities with the top five largest189

diesel shares (∆NO2 = −38.1%) is ∼ 2.5 times larger than the change in cities with the190

five smallest shares (∆NO2 = −15.0%). The slope of the linear regression fit between191

∆NO2 and diesel shares provides a succinct summary of our results (Figure 3). This192

slope indicates that the larger shares of diesel passenger vehicles have stronger impact193

on the ∆NO2 during the pandemic; specifically, ∆NO2 decreased by 5.3% for every 10%194

increase in diesel shares (Figure 3).195

The intercept of the linear regression in Figure 3 suggests a very small change in196
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Figure 3. Association of passenger vehicle diesel share with changes in NO2 (∆NO2)

during the pandemic. Points are colored by annual mean NO2 concentrations in 2019.

Dashed line shows the linear regression of ∆NO2 on diesel shares. Inset text indicates

the slope, intercept, correlation coefficient and p-value of this regression.

NO2 for cities whose shares of diesel passenger vehicles are close to 0%. Even cities197

with these small shares, such as those in North America with mostly gasoline-powered198

passenger vehicles, experienced substantial decreases in NO2. For example, Goldberg199

and colleagues [10] found a median NO2 decrease of ∼ 22% in major North American200

cities during spring 2020 after adjusting for seasonality and meteorology. In all cities,201

other sources of urban NOx beyond diesel passenger vehicles (e.g., heavy-duty vehicles,202

power plants, maritime activity, industry) not accounted for in our experimental design203

contributed to ∆NO2, regardless of the diesel passenger vehicle share.204

We next describe sensitivity analyses that speak to the robustness of our results.205

Testing whether traffic volumes from Apple Mobility Trends Reports can capture206

weekday-weekend differences in traffic patterns affirms the ability of this dataset to207

serve as a proxy for the day of the week and XGBoost to capture these intraweek208

variations (Figure S8). The OxCGRT lockdown dates represent country-level dates for209

stay-at-home measures if at least some region of a given country has the restrictions210

[38]. Responsibility for COVID-related restrictions was often delegated to state or local211

governments; however, to the best of our knowledge, no globally consistent database with212

city-specific lockdown dates exists. Given uncertainties associated with these dates, we213
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recalculate ∆NO2 for a uniform time period extending from 15 March 2020 to 15 June214

2020 and find substantively similar results (compare Figures 3 and S9). We examine215

the extent to which ∆NO2 varied between recommended versus required stay-at-home216

measures shown in Figure S2 and the impacts of restriction type on the diesel share-217

∆NO2 relationship. Again, we observe no substantive changes (compare Figures 3 and218

S10).219

We test whether including a cohort of additional cities outside of Europe (Mexico220

City, Los Angeles, Auckland, and Santiago; Text S1) from the C40 Cities network221

leads to consistent conclusions regarding the relationship between diesel shares and222

∆NO2. C40 Cities is a network of the world’s megacities committed to addressing223

climate change, and the four additional cities included in our study provided data to C40224

(see Acknowledgements) after expressing interest in learning from lockdowns to design225

post-COVID recovery measures that may further support air quality improvements and226

reductions in NO2. These additional cities specifically allow us to test whether our227

findings are generalizable to cities with different cultural and behavioral practices (e.g.,228

reliance on public transit, adherence to COVID-19 containment measures) and lower229

diesel shares compared to the European cohort focused on elsewhere in this study.230

Given the small diesel shares in these cities (cohort-averaged share= 4.0%; Table231

S1), we expect they would experience small to modest NO2 reductions. This is indeed the232

case, and the cohort-averaged ∆NO2 of −14.8% is markedly smaller than the reduction233

in many European cities with larger diesel shares (Figures S9-S10). This cohort of C40234

Cities also demonstrates some of the challenges associated with inferring business-as-235

usual NO2. For example, Los Angeles has one of the smallest diesel shares of all cities236

examined (Table S1) but experienced markedly larger NO2 reductions than other cities237

with small diesel shares. NOx emissions related to the Ports of Los Angeles and Long238

Beach, one of the largest ports in North America, might inflate ∆NO2 compared to239

cities without ports or other large point sources of NOx. The topic of unconsidered240

moderating influences is further discussed in Section 4.241

Despite the strong, statistically significant relationship between diesel shares and242

∆NO2 (Figure 3), ∆NO2 does not increase monotonically as the share of diesel passenger243

vehicles grows. There are several cities with similar diesel shares, yet different ∆NO2,244

and we next explore key factors that could explain the spread among cities’ ∆NO2 given245

their diesel shares.246

One factor to explain the spread in ∆NO2 is vehicle age. NOx emission rates are247

not stable over diesel passenger vehicles’ lifetimes and increase linearly with age [39].248

This increase may result in “effective diesel shares” that are larger than the ones used in249

our study, especially for focus cities with older passenger vehicle fleets (Table S1). With250

all else equal, we hypothesize that cities with older passenger vehicles would experience251

larger ∆NO2 than cities with newer vehicles.252

For brevity, we discuss this role of vehicle age for a few cities: Vienna, Austria;253

Paris, France; and Madrid, Spain. These cities have among the largest, yet very similar,254

diesel shares of all focus cities in our study, but there is a spread of ∼ 40% in ∆NO2255
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Figure 4. (a) The hypothesized association between the contribution of light-duty

vehicle NOx emissions to total NOx emissions and NO2 reductions during the pandemic

illustrated with synthetic data. (b) ∆NO2 versus light-duty vehicle to total NOx

emissions from GAINS (Text S4) where each scatter points represents a focus city.

Points are colored by their diesel shares, which are discretized into tertiles (small ≤
33rd percentile, medium = 33rd − 66th, large ≥ 66th). For each group of diesel shares,

colored lines show the linear regression and colored text the slope (a) and intercept (b)

of this regression. Inset text in the lower left denotes the slope, intercept, correlation

coefficient and p-value for the regression of ∆NO2 on the light-duty NOx contribution

using the full dataset.

among these cities. For the aforementioned three cities with large diesel shares, our256

hypothesis regarding vehicle age is valid: passenger vehicles in France and Spain are 1.9257

and 4.4 years older on average, respectively, than those in Austria (Table S1). Vehicle258

age provides a plausible, evidence-based hypothesis to explain some of the intercity259

spread in our results, although we note it cannot explain all variability. The results of260

previous studies [e.g., 40, 39] imply that future policies to preferentially remove older261

diesel passenger vehicles from cities may have outsized impacts compared to removing262

newer diesel vehicles.263

Another factor to explain variability in intercity ∆NO2 is the contribution of light-264

duty vehicles to overall NOx emissions. On average, road transportation contributes265

47% of total NOx emissions in European cities but ranges from approximately 20% to266

70% depending on the city [5, 41]. We hypothesize that cities with similar diesel shares267

would likely have different ∆NO2 if their light-duty vehicle sectors have different-sized268

contributions to total anthropogenic NOx emissions (Figure 4a). To test this hypothesis,269

we leverage emissions scenarios from GAINS to find the contribution of NOx emissions270

from light-duty vehicles to total NOx emissions for each focus city (Text S4).271

Unsurprisingly, diesel shares are correlated with the contribution of light-duty272

NOx emissions to total NOx emissions (r = 0.57, p < 0.01; not shown), meaning273

that cities with a larger share of diesel passenger vehicles tend to have a larger274

proportion of NOx emissions from light-duty vehicles. ∆NO2 also increases as the overall275
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contribution of light-duty NOx emissions to total NOx emissions grows in all focus cities276

(r = −0.70, p < 0.01; Figure 4b).277

Since our original hypothesis posits that cities with similar diesel shares might278

have different ∆NO2 if their light-duty vehicle sector contributes differently to total279

NOx emissions, we partition cities into groups with similar diesel shares and investigate280

how ∆NO2 varies within these groups. We find that ∆NO2 increases as the light-duty281

NOx emissions contribution increases among cities with similar diesel shares (Figure282

4b). For example, cities with “medium diesel shares” (Figure 4b) have diesel shares283

that range from 31.7% to 44.2%. Among these cities, cities where light-duty vehicles284

contribute a larger proportion to total NOx indeed experienced larger ∆NO2 during the285

pandemic, thus affirming our original hypothesis.286

The analysis in Figure 4 can also shed light on cities with outlying ∆NO2 values287

in Figure 3. In Vilnius, GAINS indicates that NOx emissions from light-duty vehicles288

only constitute 13.6% of total NOx emissions, one of the smallest contributions of all289

our focus cities (Figure 4b). It follows that a small ∆NO2 might be expected in Vilnius290

even given the large diesel share. For simplicity, we have chosen tertiles to group similar291

diesel shares, but we have also tested a larger number of groups (e.g., quartiles, quintiles)292

and found similar results.293

4. Discussion294

Major strengths of our analysis include our semi-empirical approach that leverages295

air quality data from monitoring networks as well as our use of a machine learning296

algorithm, XGBoost, to establish the relationship between NO2 and local meteorology,297

atmospheric composition, and traffic trends. By combining XGBoost with GEOS-298

CF to infer business-as-usual NO2 during the COVID-19 pandemic, we have further299

demonstrated how this methodology can be used for emergent research questions for300

which relying on observations or atmospheric models alone would be challenged by301

moderating influences, incomplete spatial coverage, and inaccuracies.302

Several factors and limitations of our data and methods may impact our results.303

GEOS-CF’s use of 2010 anthropogenic emissions for all following years may under- or304

overestimate NO2, especially in areas undergoing rapid changes in emissions. More up-305

to-date emissions are under development and slated to be included in future versions306

of GEOS-CF [26]. Our framework does not consider intercity differences in the type of307

passenger vehicles (i.e., gasoline versus diesel) that remained parked and off the road308

during the pandemic due to lack of data. The use of national-level diesel shares (Text309

S2) and national-level light-duty vehicle and total NOx emissions (Text S4, Figure 4) is310

a simplification when examining individual cities but an important first step to estimate311

how the passenger vehicle traffic fleet contributes to urban NO2. There have been efforts312

to provide gridded (not national-level) inventories for specific types of vehicles and313

vehicle fuels for regions outside the European Union [e.g. 42, 43, 44]. Future research on314

urban transportation and air quality will benefit from the inclusion of these inventories.315
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While our study incorporated changes in traffic into our machine learning approach,316

the pandemic impacted many forms of urban activity besides on-road traffic. NOx317

emissions from the aviation, rail, and maritime sectors plummeted during COVID-19318

[e.g. 45]. We have not accounted for trends in these activities within XGBoost as we319

are challenged by a lack of city-specific time series data. While these other activities320

can be important contributors to urban NOx emissions, we find a strong relationship321

of passenger vehicle fuel type on ∆NO2, meaning that the impact of fuel type on NO2322

is strong enough to observe through our methodological approach even despite these323

other sectors. Moreover, recent studies point to on-road traffic, particularly passenger324

vehicles, as the primary driver of NO2 reductions during the pandemic [46, 8]. An325

analysis of ∆NO2 against changes in traffic from the Apple Mobility Trends Reports326

in our 22 focus cities reveals a positive, albeit weak, relationship between ∆NO2 and327

changes in traffic (Figure S11). Comparing traffic data from Apple’s dataset against328

in-situ traffic counts and the impact of traffic dataset choice on ∆NO2 further justifies329

our use of the Apple’s dataset in our study (Text S7, Figure S12).330

We investigated whether the location of in-situ NO2 monitors or the stringency331

of mobility restrictions are correlated with diesel shares such that they would bias the332

observed association between diesel shares and ∆NO2 in Figure 3 towards or away from333

the null. We did not detect a statistically significant relationship between diesel shares334

and these factors (Figure S13), indicating they are not a major contributor to the diesel335

share-∆NO2 relationship.336

The number and distribution of in-situ monitors vary from city to city (Figure337

S1), and monitors may be sited in different environments (e.g., traffic, industrial,338

background). Monitor siting could impact our results if monitors are disproportionately339

sited in neighborhoods where ∆NO2 substantially differed from the true city-averaged340

value. For example, Berlin, Germany stands out given the small ∆NO2 during the341

pandemic (Figure 3). Less than half of Berlin’s monitors are located near traffic342

(Figure S13b), and a recent study showed the statistical significance of pandemic-343

related NO2 reductions varied across different environments for NO2 monitors [47]. We344

explored whether ∆NO2 within individual cities varied across traffic and non-traffic NO2345

monitors, expecting to find a larger decrease at traffic sites. Although we did not find346

a significant difference for ∆NO2 calculated with traffic versus non-traffic monitors, the347

magnitude of the diesel share-∆NO2 relationship was nearly double when ∆NO2 was348

estimated using only traffic monitors (9.7% decrease for every 10% increase in diesel349

shares using traffic NO2 monitors compared to the 5.3% decrease in Figure 3 using all350

monitors), and ∆NO2 for different monitors types was suggestive of a difference (Figure351

S14). While non-uniform changes in NO2 within cities are interesting and have been the352

subject of other studies [e.g., 48], the primary goal of our study is to reconcile differences353

among cities’ ∆NO2 in light of their different diesel shares.354



12

5. Conclusion355

Our study demonstrates that diesel shares played a major role in the magnitude of356

∆NO2 experienced by cities during the COVID-19 natural experiment. The magnitude357

of ∆NO2 varies from approximately −3% to −61% across cities, and ∆NO2 is a factor358

of ∼ 2.5 times larger in European focus cities with the top five diesel shares compared359

to cities in the bottom five. The relationship between diesel shares and COVID-related360

NO2 reductions deduced from a sensitivity analysis that considers C40 member cities361

outside of Europe is in reasonable agreement with our results from Europe and suggests362

the generalizability of our findings.363

By leveraging this unique natural experiment, we are able to observe the364

relationship between NO2 and diesel shares. Previous observational and modeling365

studies have documented the impact of diesel fuel on pollution and health, and our366

study is the first to investigate the impact of diesel fuel on NO2 pollution during367

this natural experiment. The relationship between ∆NO2 and diesel shares gives an368

indication of the changes in NO2 that could be expected if cities decrease their diesel369

shares through policy, economic forces (e.g., increased affordability of electric passenger370

vehicles), or social forces (e.g., diesel passenger vehicles viewed unfavorably as a result371

of “Dieselgate”). Our results will also aid in understanding why ∆NO2 varied among372

urban areas given their different diesel shares.373

Our key findings are relevant for present-day and future policies. The temporary374

NO2 reductions during the COVID-19 pandemic could be sustained through long-term375

policies to reduce the number of passenger vehicles in urban areas through, for example,376

policies such as congestion pricing or those that promote active transportation (e.g.,377

cycling, walking). Should these policies be implemented, our results suggest that cities378

with larger diesel shares would experience larger NO2 reductions. Beyond decreasing379

NO2 and the associated public health damages, these types of policies would also slow380

climate change, decrease concentrations of other harmful pollutants such as particulate381

matter and O3, and encourage healthier lifestyles if active forms of transportation replace382

passenger vehicles [e.g., 49]. Focus cities such as Paris and Berlin are poised to ban most383

or all diesel passenger vehicles in the near future [50]. We expect that our results will384

reinforce these efforts in Paris and Berlin and could catalyze other cities to implement385

similar policies.386
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