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Abstract 

The emergence of new aerial vehicles into the airspace as part 

of new initiatives, such as Advanced Air Mobility (AAM), will 

place growing demand for spectrum resources to support 

airspace operations. The traditional approach of using fixed 

channel allocations within standard service volumes will not 

allow for dynamic and efficient distribution of resources based 

on airspace demand; consequently, a new approach to aviation 

spectrum management will be required to meet the anticipated 

needs of airspace users.  The National Aeronautics and Space 

Administration (NASA) is investigating the application of 

advanced concepts to implement a novel spectrum 

management approach that allows for the intelligent utilization 

of aviation spectrum throughout the airspace while 

maintaining the quality of service prescribed by aeronautical 

standards.  This technical investigation evaluates the dynamic 

assignment of resources for both air-ground and air-air 

communication links applicable to both the emerging AAM 

initiative as well as the existing air traffic management system. 

The performance of the proposed spectrum management 

concepts will be evaluated using a custom modeling and 

simulation capability that is currently under development.  The 

implementation of these approaches is anticipated to facilitate 

increased spectrum utilization efficiency and enhanced 

airspace capacity, which will better serve the needs of future 

applications. 

1 Introduction 

 

New airspace concepts, such as AAM, are currently under 

development and will require novel air traffic management 

approaches that employ modern technological advancements 

to enable a more collaborative and inter-networked 

environment.  Critical information exchanges in this future 

environment will require diverse air-ground and air-air 

communications among airspace users [1]. While specific 

communications requirements remain in formulation, it is 

expected that the static use of existing spectrum allocations 

will not meet the anticipated demand.  

To address this challenge, researchers at the NASA Glenn 

Research Center and the University of Louisville are 

investigating approaches to modernize aviation spectrum 

management using advanced techniques in wireless 

communications and artificial intelligence (AI), with the goal 

of improved efficiency of aviation spectrum utilization and 

improved safety of future operations.  Accordingly, this 

research effort is conducted in three inter-related development 

areas.  The first focuses on the development of algorithms to 

predict the demand for communication resources throughout 

the airspace. The second area focuses on the development of 

learning-based resource allocation methods for both air-

ground and air-air communications use cases.  Lastly, the third 

area focuses on the development of a capability to evaluate the 

performance of the integrated prediction and learning-based 

resource allocation functionality via modeling and simulation 

in realistic, operational scenarios.  

The remainder of this paper is organized as follows. Section 2 

describes the prediction methods.  Section 3 discusses 

learning-based resource allocation in air-ground and air-air 

communications, and Section 4 provides an overview of the 

modeling and simulation capability.  Finally, Section 5 

provides concluding remarks.  

2 Demand Prediction 

 

As a key component of the intelligent spectrum management 

concept, the prediction function considers information such as 

convective weather patterns, aircraft traffic flows, and airspace 

restrictions to determine the demand for communications 

resources (e.g., spectrum) throughout the airspace. The 

resulting “prediction products” are then used by the allocation 

module to dynamically assign resources for air and ground 

elements based on the demand. The scope of this effort 

includes investigation of both learning-based and non-

learning-based methods of prediction. However, initial efforts 

have focused on learning-based predictions, and more 

specifically, neural network models that process time-

dependent data, e.g., recurrent neural networks (RNNs).   
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To determine the resource demands at various levels of 

airspace, this research is currently evaluating three types of 

predictions: aircraft trajectory, airspace density, and 

communications demand. Training data for the neural network 

models are derived from historical data captures, including 

weather patterns and aircraft trajectories, which are available 

from various data repositories, including the Sherlock Data 

Warehouse.  In addition to historical data sources, efforts are 

underway to develop custom aircraft tracks and airspace 

structures, such as those envisioned for future aeronautical 

concepts.  

An important aspect of the prediction effort is the 

determination of performance metrics (such as prediction 

accuracy, tolerable latency, and prediction look-ahead 

windows, for example) to meet the service demands of the 

scenarios under consideration. Determining these metrics 

serves to support the analysis and will be captured as the 

prediction and allocation algorithms reach greater maturity. 

The following sections discuss the various prediction methods, 

relevant datasets, model formulations, and research completed 

up to this time. 

2.1.  Flight Trajectory Prediction 

 

Flight trajectory prediction can provide essential knowledge 

supporting resource allocation. Accurate trajectory predictions 

localize an aircraft to the regions of airspace it may traverse, 

providing supplemental knowledge to determine 

communication resource requirements. Aircraft position can 

furthermore determine communication channel metrics such 

as link path loss, which may inform power budgeting and 

resource allocation. 

Trajectory prediction formulations consider an aircraft’s 4D 

coordinates (latitude, longitude, altitude, and time) and its 

deviations from a last-filed flight plan. Flight plan information 

is frequently supplemented with atmospheric data products 

due to the strong correlation between en-route flight reroutes 

and convective weather. Atmospheric data products are 

composed of both direct (e.g., wind vectors, humidity, air 

temperature) and airspace-tailored (e.g., Echo Top, Vertically 

Integrated Liquid) weather data, available through NOAA and 

MIT CIWS/CoSPA databases. Supervised deep learning offers 

an immediate approach to leveraging this data; hybrid-

recurrent neural networks are typically developed, which are 

able to interpret and reduce atmospheric data into lower-

dimensional features and synthesized with flight plan 

information to generate predictions along a sequence of flight 

points [2]. 

This effort has investigated trajectory prediction as a 

sequence-to-sequence problem, mapping complete flight plans 

and supplemental atmospheric data onto complete trajectory 

predictions. Initial research compared atmospheric data 

products and deep learning models using the hybrid-recurrent 

structure in Fig. 1 [3]. Echo Top was found to be a holistically 

accurate weather feature; attention mechanisms offered some 

potential benefit, and were cited for further investigation. 

More recent efforts, however, identify limitations as flight data 

is generalized across the national airspace [4]. Improving 

general accuracy across known and unknown flight routes 

remains a priority for future trajectory work, and may be 

relieved with additional supplemental data. Current models 

may significantly benefit from knowledge of airspace activity 

and restrictions, which heavily impact takeoff and descent. 

This supplemental data may take the form of NOTAMs, 

nearby aircraft position histories, and overall center traffic 

levels, and may require alternate prediction paradigms or 

separate models to effectively predict along each flight phase 

(takeoff, en-route, descent). 

 

Fig 1. General Structure of Hybrid-Recurrent Architecture for 

Trajectory Prediction 

2.2. Airspace Density Prediction 

 

Airspace density (i.e., aircraft count) prediction considers 

airspace demand as aggregate forecasts, which may directly 

support estimates of communication resource requirements. 

Existing research models regions of airspace as a state 

transition matrix between each sector, formulating changes in 

sector density as a conservation-of-flow problem [5]. Airspace 

statistical data and density histories, such as instantaneous 

sector counts and daily sector transition totals available via 

NASA’s Sherlock Data Warehouse, can be combined with 

NOTAMs and convective weather information to train a 

predictive model.  While foundational research forecasts 

sector densities using Linear Dynamic System Models, 

Recurrent Neural Networks and other machine learning 

approaches will be necessary to accommodate airspace 

dynamism and expanded supplemental data. 
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2.3. Communications Demand Prediction 

 

Communications demand prediction considers multiple 

resources (channel access duration, bandwidth, power budget, 

etc.) and forecasts their requirements using trends within the 

airspace. As communication technologies are subject to 

change over the span of this research, forecasting should 

remain agnostic of underlying communication systems. This 

may be achieved by separating prediction work into the 

forecasting of communication events within the airspace and 

subsequent inference of resource requirements.  

The predominant challenge in this area of demand prediction 

is sufficiently representing communication events in terms of 

available data. Though airspace density is an immediate 

representation of demand, it does not account for the airspace 

complexities (such as jet route structure) impacting 

communication needs. Current research represents air-ground 

communications in terms of air traffic controller workload, as 

defined in prior research on airspace sectorization [6] [7]. This 

workload is defined in four categories:  

• Monitoring workload, approximating a sector baseline 

based on its current airspace density and average transit 

time; 

• Coordination workload, representing handoffs between 

airspace sectors and classes; 

• Conflict resolution workload, representing aircraft 

adjustments to maintain minimum separation; and 

• Maneuvering workload, representing aircraft adjustments 

to mitigate external factors such as convective weather. 

Even with Sherlock data available to represent workloads, 

airspace events and workload still are not fully captured. 

Workload distribution varies significantly between sectors due 

to their nonuniform structure, and sector demands are often 

dependent on those of its neighbors. Federated learning 

approaches may provide solutions for these complexities. Data 

balancing techniques within federated learning, such as the 

Astraea framework, may help to train a global model to 

recognize general workload trends [8]. Capturing more sector-

specific relationships and complex data dependencies may be 

possible with federated personalization techniques such as 

knowledge distillation and mixed models [9]. 

3 Learning-based Resource Allocation 

 

Aviation spectrum, along with other communication resources 

such as time and power, must be optimally allocated to air-

ground and air-air communication links to achieve the 

maximum spectrum utilization efficiency. As a result, 

spectrum optimization is usually boiled down to joint resource 

allocation problems.  

In this section, we discuss various learning-based resource 

allocation approaches. First, a learning-based graph coloring 

approach is introduced for channel allocation in air-ground 

communications. Then, we discuss a deep reinforcement 

learning (DRL) based framework for use cases in air-ground 

and air-air communications. 

3.1. Graph Coloring based Resource Allocation 

 

The use of graph coloring in the context of resource allocation 

has been a widely-studied problem for spectrum management 

applications [10] [11] [12] [13] [14], and this investigation 

focuses on the use of a graph coloring approach to address the 

channel assignment problem in AAM scenarios. Graph 

coloring is a method that assigns colors to vertices of a graph 

such that no two vertices linked by an edge share the same 

color, and Fig. 2 provides an example of how aircraft 

proximity can be translated to an intersection graph whose 

vertices and edges are defined by regions of airspace where an 

aircraft may experience detrimental interference. Aircraft that 

are sufficiently separated in space would not present a risk of 

interference and would thus not be joined by an edge in the 

graph representation.   

 

Fig 2. Example areas of potential interference around aircraft 

and translating it into a graph 

The team has chosen to implement a graph convolutional 

neural network inspired by [15] [16]. As an input to the 

network, an adjacency matrix is formed based on the relative 

positioning of aircraft within a region of airspace. Given the 

adjacency matrix as an input, the neural network model returns 

a coloring solution that attempts to satisfy the graph coloring 

problem, or in the absence of a solution, minimizes the number 

of conflicts through an energy-based loss function. 

For this study, a graph G is represented by N x N adjacency 

matrix A describing the relation of nodes and edges in the 

graph. The adjacency matrix serves as the input to the neural 

network. The output of the network is an N x C matrix C that 

contains the set of probabilities that a node N would be 

assigned any color C such that ∑ C𝑛,𝐶𝐶 = 1. Ideally, the 

probability of a single color should approach 1 in a well-

trained network. In this context, reducing the loss to zero 

indicates a coloring solution with no conflicts. However, in 

cases where there may be no valid solution, the network will 

minimize conflicts in accordance with the loss function. 

The graph network implemented in this work utilizes two 

topology adaptive graph convolutional layers from [17], with 

dimensional embedding and hidden layer sizes both set to 60. 

The input layer uses a ReLU activation function, and the 

output uses a Softmax activation to generate the output 
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probabilities for each color. Network training is performed 

using a slightly modified version of the physics-inspired loss 

function from [15]. The loss is calculated as 

𝐿𝑜𝑠𝑠 = ∑ 𝑝𝑖
𝑇

𝐶

𝑖

A 𝑝𝑖  

where pi is a length N column of C, and the probability of 

assigning the ith color to each node in the graph is represented 

by the adjacency matrix A. 

3.2. Deep Reinforcement Learning based Resource 

Allocation 

 

Another method under investigation for intelligent resource 

allocation is the use of Deep Reinforcement Learning (DRL) 

as described in following sub-sections. 

3.2.1. Deep Reinforcement Learning: The dynamic 

resource allocation problem in aeronautical communications 

can be modeled mathematically as a Markov Decision 

Process (MDP), which can be efficiently solved by DRL. By 

combining deep learning and reinforcement learning, DRL 

can automatically train the neural network to make optimal 

decisions. A DRL model includes several essential elements: 

agent, action, state, environment, reward, and policy. 

• Agent: It interacts with the environment by gathering 

information, taking actions, and receiving reward.  

• Action: It is the execution of a decision made by the agent. 

An action set includes a list of discrete/continuous possible 

actions.  

• State: It is the immediate observation of the environment at 

a specific moment. 

• Environment: It is the airspace system including air and 

ground elements, and any other relevant information such as 

available channels and their channel state information. The 

environment transits to a new state after any agent takes an 

action. 

• Reward: It is the feedback of the environment to the agent. 

The reward function is designed to evaluate the state-action 

pair executed in the environment. Depending on the specific 

optimization problem, the reward can be either positive or 

negative.  

• Policy: It is the state-action mapping function (i.e., brain of 

the agent). In DRL, a customized neural network is selected 

as the policy that proactively learns from the trail-and-error 

experiences to maximize the state-action value (Q-value). 

Ideally, the policy achieves the maximized accumulated 

reward after training. 

Fig. 3 illustrates the DRL-based optimization diagram to 

support general air operations. The agent is a resource manager 

(RM) that utilizes the designated policy to make decisions. In 

AAGN/AACN, the environment information includes 

aircraft's geographical locations, channel state information 

(CSI), desired communication QoS, etc. At each step, the agent 

observes the current state of the environment. Based on that, 

the agent employs the policy to make decisions and take 

actions. Then, the environment transits to a new state. After 

that, the agent receives its reward from the updated 

environment. 

 

 

Fig 3. DRL Optimization diagram

3.2.2. Case Study: DRL-based Resource Allocation: 

Generally, aeronautical communication networks can be 

categorized as air-ground communication networks (AGCN) 

and air-air communication networks (AACN). In this Section, 

we first describe our recent works in AGCN and AACN, then 

we will discuss a new problem formulation that integrate both 

networks. 

• AGCN: As in every aviation system, AVs need to maintain 

reliable bidirectional communications with ground control 

stations (GCS) to support aircraft safety-related operations. 

Specifically, communication refers to control non-payload 

communication (CNPC), which includes command and 

control data, air traffic control relay data, and sense and 

avoid data. Losing CNPC can lead to fatal consequences.      
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For AGCN, one typical application is urban air mobility 

(UAM) which is envisioned by NASA and the Federal 

Aviation Administration (FAA). UAM provides a safe and 

fast air transportation paradigm to support cargo and 

passenger mobility in populated areas which can 

significantly reduce traffic congestion and satisfy increasing 

mobility demands.      

Unlike the typical data-driven application where spectrum 

utilization efficiency aims to maximize achievable data rate, 

SUE in UAM application should focus on spectrum 

availability and reliability so that more AVs can provide safe 

transportation services. In [18], the International 

Telecommunications Union (ITU) gives the general SUE 

definition, where 𝑆𝑈𝐸 =
𝑀

𝐵∙𝑆∙𝑇
. The notation M represents 

the communication-aided useful effect, and B, S, and T 

represent the frequency bandwidth, the geometric space, and 

the time, respectively. In UAM applications, the completion 

of delivery is the communication-aided useful effect, and 

SUE should be defined as the completed deliveries per unit 

time divided by the product of the frequency bandwidth and 

the geometric space. 

Given the above SUE definition, our previous work [19] 

introduced the mission completion time as the SUE metric. 

By minimizing the mission completion time, the spectrum 

resources can be used to support other AVs to execute 

delivery tasks which can inherently improve the SUE in 

UAM applications. Specifically, in [19], an air 

transportation system was considered where multiple AVs 

transport passengers/cargo from different sources to 

destinations along pre-defined paths. During the flight, the 

minimum communication QoS must be guaranteed at all 

times to ensure flight safety. The objective is to minimize 

the mission completion time by jointly optimizing AVs' 

velocity and spectrum allocation. To solve the optimization 

problem, we first formulate it as a Markov Decision Process 

(MDP) and then propose a multi-agent DRL algorithm that 

incorporates Value Decomposition Networks (VDN) with 

Dueling Double Deep Q Networks (D3QN). Simulation 

results reveal that the DRL-based algorithm outperforms 

non-learning-based solutions. 

• AACN: AACN is built upon a group of aircraft that are able 

to conduct wireless communication. It allows multiple air-

air (A2A) communication pairs to exchange information at 

the same time. AACN has multiple applications, one of them 

is to support the multi-access edge-computing (MEC). Each 

aircraft is equipped with computing capabilities that is able 

to collect various sensory data and send the data to the end 

users with limited local computing capabilities. To conduct 

different sensing applications, there are various 

communication requirements (e.g., data rate, SINR, packet 

loss rate) and frameworks for demand (e.g., single-hop, 

multi-hop).  

Any two aircraft nodes that are within the communication 

range can establish a direct A2A link, named as single-hop 

communication. If two aircraft are too far away to send 

information to each other directly, other aircraft can 

proactively serve as relays to support the communication. 

This kind of structure is named as multi-hop 

communications. We have been investigated on DRL-based 

resource allocation in single-hop [20], [21]and multi-hop 

A2A communication scenarios [22]. We consider limited 

available resources (including spectrum, power, and relays) 

in model development and training. In the spectrum scarcity 

AACN scenario, a frequency channel may be used by 

multiple A2A links, resulting in co-channel interference. 

In single-hop communications, we consider joint channel 

selection and power control to maximize the weighted sum 

spectral efficiency (WSSE) [20], [21]. We design a 

distributed and dynamic DRL-based algorithm to solve this 

joint optimization problem. Specifically, two policies 

including Deep Q-Network (DQN) and DQN + Deep 

Deterministic Policy Gradient (DDPG) are employed to 

exploit the local information from its neighbours and learn 

to make optimized decisions. DQN can work with discrete 

action space, while DDPG can work with continuous space 

that is suitable for power allocation. The distributive 

structure makes it scalable to large networks, which can be 

widely applied in MEC application.  

In multi-hop communications, packets could be sent from 

different sources and received by different destinations in 

the same network, bringing us a Multiple Sources and 

Multiple Destinations (MSMD) routing problem. Thus, the 

spectrum access and routing decisions are jointly considered 

to guarantee a reliable and efficient A2A communication. In 

paper [22], E2E delay is one of the important indicators to 

evaluate the A2A communication performance. E2E delay 

is the accumulated delay at each hop, which contains 

queuing delay and transmission delay. Queuing delay is the 

wait duration from the time when one packet arrives at a 

node and when it is served. Transmission delay is the 

duration to deliver one packet from one node to another. 

DQN policy is utilized to find an optimal routing and 

channel selection strategy that minimizes the E2E 

communication delay. 

 

Fig 4. RL-based Resource Allocation Use Case 

In this case study, we consider a scenario where two types 

of AVs coexist in the airspace, as shown in Fig. 4. On one 

hand, there are multiple moving AVs that perform UAM 

applications transporting cargo and passengers from sources 

to destinations. During the flight, these AVs need to connect 
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with ground control stations to ensure safety, composing 

AGCN. Their objective is to minimize the mission 

completion time. On the other hand, a swarm of AVs is 

operated in the network for other applications e.g., 

surveillance, sensing, or relay tasks. Within a swarm, 

effective communication among these AVs is required to 

coordinate and achieve the common objective, which 

imposes AACN between AVs. Therefore, finding out the 

best routing strategy to minimize the packet transmission 

delay is their objective. By considering both types of AVs, 

such a use case imposes a hybrid communication network 

that includes both AGCN and AACN.   

Let Q, A, P, and L denote the set of variables for AVs 

trajectories, channel allocation, transmitting power, and 

relay selection. The channel allocation is represented by a 

binary indicator where an,k(t) = 1 if channel k is allocated to 

AV n at time t. Otherwise, an,k(t) = 0. For AACN, we assume 

there is a total of M sources-destination pairs, and L contains 

all the next relay selections for M pairs. For AGCN, we 

assume a set of UAM AVs, denoted by 𝒩 in the system. In 

this hybrid communication network, each AV 

communication QoS should be above a threshold to ensure 

the reliability of communication links. Specifically, we 

consider the signal-to-interference-plus-noise ratio (SINR) 

as the communication QoS metric which is a function of the 

channel allocation AVs' trajectories Q, channel allocation A, 

transmitting power P, and relay selection L.  

For AGCN, Let Tn be the mission completion time of AV n. 

For AACN, let 𝑀 and Dm denote the set of source-

destination pairs and the E2E delay of AV m. Particularly, 

Dm is defined as the summation over each hop delay that 

includes queuing delay and transmission delay. The overall 

SUE maximization problem can be formulated as a joint 

mission completion time and E2E delay minimization 

problem: 

𝑃1: min
𝐏,𝐀,𝐐,𝐋

𝛼 ∑ 𝑇𝑛

𝑛∈𝒩

+ 𝛽 ∑ 𝐷𝑚

𝑚∈𝑀

 

s.t.  𝐶1: 𝛾𝑛(𝑡) ≥ 𝛾𝑞𝑜𝑠, ∀𝑛 ∈ 𝒩  

𝐶2: 𝛾𝑚(𝑡) ≥ 𝛾𝑞𝑜𝑠
′ , ∀𝑚 ∈ 𝑀 

𝐶3: 𝑎𝑛,𝑘(𝑡), 𝑎𝑚,𝑘(𝑡) = {0,1} 

𝐶4: ∑ 𝑎𝑛,𝑘(𝑡)

𝑛∈𝒩

≥ 1, ∀𝑛 ∈ 𝒩 

𝐶5: ∑ 𝑎𝑚,𝑘(𝑡)

𝑚∈𝑀

≥ 1, ∀𝑚 ∈ 𝑀 

𝐶6: 𝑝𝑛(𝑡) ≤ 𝑝𝑚𝑎𝑥 , ∀ 𝑝𝑛 ∈ P 

𝐶7: 𝑝𝑚(𝑡) ≥ 𝑝𝑚𝑎𝑥
′ , ∀𝑝𝑚 ∈ P 

𝐶8: ‖ q𝑛(𝑡) − q𝑛(𝑡 − 1)‖2 ≤ 𝑉, ∀𝑛 ∈ 𝒩 

𝐶9: ‖ q𝑛(𝑡) − q𝑛′(𝑡 − 1)‖2 ≥ 𝑑𝑚𝑖𝑛 , 𝑛 ≠ 𝑛′ 

where α and β represent the weight of two metrics. Notation 

γn(t) represents AV n' SINR at time t and constraints C1 

guarantee their minimum communication QoS requirement 

γqos can be satisfied at any time for all AVs. Similarly, 

constraint C2 guarantees the communication quality of AVs in 

the swarm. Constraint C3 specifies the binary channel 

allocation constraint. Constraints C4 and C5 indicate that each 

AV will have spectrum channels to support its communication. 

Constraints C6 and C7 are the maximum power constraint for 

two types of AV. Constraint C8 is the velocity constraint for 

UAM AV where V is AV's maximum moving velocity. 

Constraint C9 enforces collision avoidance for AVs. Note that 

problem (P1) is a non-convex, multi-stage combinatorial 

optimization problem, and finding the optimal solution via 

conventional optimization techniques suffers from the curse of 

dimensionality. Recently, DRL has drawn significant attention 

to solve such problems. Based on the MDP, DRL utilizes deep 

neural networks to handle the large-scale optimization space, 

which makes it a viable solution for finding the optimal 

solution. 

4 Modeling and Simulation 

 

To evaluate the performance of the integrated prediction and 

learning-based allocation functionality, the team is developing 

a modeling and simulation capability that consists of 

computational tools and airspace environment visualization. 

The following paragraphs provide an overview of the features 

of the airspace modeling toolset. 

4.1. Toolset Architecture 

 

The modeling and simulation toolset implements a modular 

software architecture that allows for integration with external 

elements (e.g., flight simulators, live aircraft data feeds) that 

may be used to assist in the modeling and evaluation of 

airspace scenarios.  The high-level software architecture is 

shown in Fig. 5. 

 

Fig 5. High level overview of the modelling and simulation 

modularization, including connections to external interfaces 

The processing engine evaluates simulation objects and 

updates their status based on pre-defined timesteps or real-time 
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data streams. The properties and locations of the simulation 

objects are updated at each step and then redrawn within the 

visualizer. After, the processing engine waits for the next time 

step and repeats the process.  Data processing at each time 

interval utilizes various software packages and tools. 

Geospatial calculations determine aircraft locations and also 

the length of the communications path between transceivers. 

Additional functionality allows for the determination of link 

budgets, signal-to-interference noise ratios, and link service 

quality. 

Aircraft flight track data imported into the simulation is pre-

processed before being rendered by the visualizer. The 

trajectory calculations include interpolation of aircraft position 

throughout its flight path, determination of the aircraft's 

current location in terms of airspace sector and heading, and 

determination of link budgets and interference information. 

The pre-processed aircraft trajectory data can then be stored in 

a database and later retrieved for simplified processing and 

improved performance in subsequent simulations. 

Live data feeds are processed similarly; although, the 

processing is done live, and the simulation updates after each 

time interval. Interfacing with the X-Plane flight simulator 

software is an example of live data processing where the 

simulation tool receives live updates based on the simulated 

aircraft trajectory, which is then rendered by the visualizer. 

4.2. Toolset Features 

 

The custom software toolset allows a user to create custom 

airspace scenarios to evaluate the performance of advanced 

learning-based methods by integrating with external machine 

learning models. Simulation results are then presented 

graphically, allowing the user to evaluate numerical results or 

observe the scenario playback in the visualizer. Details on 

many of the key features of this software are described below. 

These features allow for rapid development of novel airspace 

scenarios, providing user-friendly interfaces to create the 

necessary components for the evaluation of resource 

management algorithms in an arbitrary airspace configuration. 

4.2.1. Link Analysis: As the processing engine updates 

active objects, the data is further processed by a set of 

communication tools that perform link budget calculations. 

Given a ground-to-aircraft link at a specific frequency, the 

controller determines all possible interfering links and 

calculates the signal-to-interference ratio as an indicator of 

service quality. The intended link (ground-to-air) is compared 

to the aggregation of all interfering co-channel and adjacent 

channel aircraft. 

4.2.2. Visualization: Simulation visualization allows for 

the dynamic display of all objects within a scenario, and 

graphical rendering of the visualizer is built upon the NASA 

WorldWind Software Development Kit [23].  The interface 

allows the user to easily manipulate and observe the 

simulation while in progress, as well as develop custom 

scenarios, including definition of custom airspace volumes, 

ground stations, flight paths, communication system 

parameters, and channel allocation method.  Once the 

simulation is complete, the results are captured as time-series 

data values that can be plotted within the tool for quick 

evaluation or can be exported to a set of formatted data files 

for more detailed analysis in external software packages. 

4.2.3. Custom Airspaces: As a part of simulation scenario 

development, custom airspace configurations can be 

constructed via the graphical placement of a number of 

reconfigurable polygon objects that (in combination) define 

the desired airspace volume geometries or corridor structures. 

Ground station locations are similarly placed, thereby 

creating an association (or link) between an airspace and a 

service volume that define the areas of coverage for the 

customized scenario. These user-defined constructs can be 

stored in a database for future use, and in subsequent 

simulations, the user has the option to either use an archived 

configuration, edit an existing configuration, or create a new 

airspace. 

4.2.4. Flight Track Development: Aircraft objects within 

the simulation are defined via flight tracks, which consist of a 

number of timestamped points in three-dimensional space 

with associated velocity information. The scenario 

development function allows a user to 1) define aircraft 

parameters, such as ascent rate, cruising altitude, and 

velocity, 2) select any number of intermediary waypoints that 

define the trajectory, and 3) complete and generate a full 

flight track from departure point to destination point for use 

in simulation.  Additional options include the ability to 

import existing flight tracks, which can be either user-

defined, generated via an external flight simulator, or from 

actual commercial flight tracks.  Simulated flight data is 

accomplished via an interface to the X-Plane flight 

simulation software. Actual flight data may be 1) historical 

data acquired from repositories such as the Sherlock Data 

Warehouse or 2) live data streams of aircraft tracks from the 

FAA's System-Wide Information Management Flight Data 

Publication Service (SFDPS) [24]. 

4.2.5. Line-of-Sight Evaluation: The line-of-sight (LOS) 

evaluation capability allows a user to select any two points in 

3D space on the visualizer map and determine if there are any 

obstructions between the objects, either due to terrain or 

interfering structures such as buildings. Terrain data is 

included as a part of WorldWind SDK, and the LOS 

evaluation tool uses the highest-available resolution of terrain 

within a particular region. Building data for urban areas is 

obtained via querying the OpenStreetMaps API.  This is 

accomplished via the user selecting a set of rectangular 

regions in space which defines the area of interest that is used 

as a query for any available information on obstructions from 

buildings and other structures. The data returned from the 

API are rendered as simple polygons within the visualizer. 

The LOS capability can be used for a variety of purposes, 

including site planning and radio coverage analysis for 

critical areas. The LOS evaluation can also be executed as 

part of the link analysis function within a full simulation. 
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4.2.6. Convective Weather Modeling: Convective weather 

modeling allows for the rendering of 3D cloud echo top with 

dynamic resolution depending on the level of zoom. 

Historical echo top data can be quickly loaded into the tool 

and displayed at any timestamp throughout simulation 

scenario. Weather data may be included as an airspace 

environment data item that is provided to learning-based 

models to aid in predictions of aircraft trajectories. Future 

development efforts include rendering of weather data from 

the FAA SWIM feed. 

4.2.7. Machine Learning Connectivity: This capability 

allows a user to establish an interface between the toolset and 

external learning-based models created using Python machine 

learning libraries. As part of that exchange, the toolset 

generates a string of data that represents the state of the 

simulation at each time step and transmits that data over a 

TCP socket connection to the receiving Python software. The 

data may then be processed within a series of Python scripts, 

including learning-based resource management models, 

where the resulting resource allocation information is 

returned to the toolset to further evaluation within the 

simulation.  

5 Conclusions 

 

Spectrum depletion is a concern for aviation and will serve as 

an impediment to the modernization of the evolving air 

transportation system.  This research investigates the use of 

advanced concepts to implement an intelligent resource 

allocation capability for enhanced spectrum utilization 

efficiency. This proposed new approach may better meet the 

anticipated spectrum needs of future applications. Follow-on 

efforts will focus on implementation and evaluation of the 

concepts, as well as potential technology infusion 

opportunities. 
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