Technical Reviews

Optical vegetation indices for monitoring terrestrial ecosystems globally

Yelu Zeng, Dalei Hao, Alfredo Huete, Benjamin Dechant, Joe Berry, Jingming Chen, Joanna Joiner, Christian Frankenberg, Ben Bond-Lamberty, Youngryel Ryu, Jingfeng Xiao, Ghassem R. Asrar, Min Chen

 Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA

Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA

School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia

Synthesis Centre for Biodiversity Sciences, German Centre for Integrative Biodiversity Research, Puschstraße 4, 04103 Leipzig, Germany

Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA

Department of Geography and Program in Planning, University of Toronto, Toronto, ON M5S 3G3, Canada

NASA Goddard Space Flight Center, Greenbelt, MD, USA

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA

Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, USA

Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, South Korea

Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA

Universities Space Research Association, Columbia, MD 21046, USA
Key points

- Optical vegetation indices (VIs) derived from space-borne Earth observations are widely used for monitoring terrestrial ecosystems including plant biophysical, biochemical and physiological properties, vegetation dynamics and environmental stresses.
- Sensor and calibration effects, quality assurance and quality control (QA/QC) flags, bidirectional reflectance distribution function (BRDF), atmospheric and topographic effects, and snow/soil background are among important sources of VI-based uncertainties.
- Potential artefacts must be carefully considered to avoid biased interpretations of the underlying ecological processes resulting from the improper use of VIs.
- VIs based on ratios of reflectance such as NDVI can help reduce sensor calibration, BRDF, atmospheric and topographic effects, but could be sensitive to snow/soil background and scale effects.
- NIRv has the biophysical meaning of FPAR times the photon escape ratio (f_{esc}), and is linearly correlated with EVI, EVI2 and DVI on a mathematical-basis, while ratio-based NDVI behaves differently.
- Next generation VIs with greater signal sensitivity and less artefacts, are expected with new hyperspectral/geostationary satellite missions and synergistic integration with other metrics, providing advanced opportunities for studying terrestrial ecosystems.
Abstract

Vegetation indices (VIs) are widely used in studying vegetation dynamics across spatial (local, regional, and global) and temporal (sub-hourly, daily, seasonal, annual, and decadal) scales. However, diverging conclusions have often been reached for the same canopy conditions using different VIs, rendering past and present scientific studies by the ecological community ambiguous. In this review, we summarize the rationale, history and ecological applications of VIs, and provide useful insights on VI inconsistencies due to improper considerations of a variety of factors, such as the use of different VIs, sensors, satellite product versions, atmospheric and sun-target-sensor geometry corrections, compositing algorithms, and use of quality assurance and control (QA/QC) flags. The debate on Amazon forest greening in the dry season is used as an example to illustrate VI inconsistencies. We demonstrate that the photon escape ratio (f_{esc}) from the canopy provides the mathematical- and physical-basis for the intrinsic linkage among several of the most widely used VIs. NIRv, EVI, EVI2 and DVI are strongly linearly correlated with each other while NDVI behaviors differently. Identifying key sensitive wavelengths for target application is the first step towards the optimal use of VIs, followed by an understanding of potential signal contamination sources in the specific ecosystem.
1. Introduction

Vegetation indices (‘VIs’) are simple mathematical combinations or transformations of reflectance in two or more spectral channels to represent vegetation status conditions (Fig. 1), while minimizing the impacts of other contributing factors such as the soil background, atmosphere and sun-target-sensor geometry. As useful and efficient tools, VIs have attracted a large community of users from a wide range of scientific disciplines over the last half century. VIs are also easily obtained at different scales, from the ground with hand-held spectral sensing devices, tower-based and airborne sensors up to satellites, and hence can provide measurements from the fine to coarse resolutions. VIs are highly objective, with no or only minimal assumptions with regard to land cover type and canopy structure. As a result, they have been intensively used in local to global scale studies, and in almost every discipline of Earth science, especially in ecological research.

A number of VIs have been developed since the early 1970s (Table 1). Many of them can be easily calculated from publicly available remote sensing data, while the subtleties in processing and interpretation of results require more experience and theoretical background. With their wide adoption, VIs are increasingly applied to more challenging research questions/experiments to shed light on complex ecological topics such as vegetation response to long-term climate change, short-term disturbances and extreme climate events. The simplicity of VIs, however, can be deceptive as there are many cases of confusion, misinterpretations, and scientific controversies related to their use.

This review aims to inform scientists with the rationale, history, and key features of VIs that hopefully can be helpful for better understanding and using VIs for ecological studies. Although hundreds of VIs have been proposed, there is no necessity to go through all these VIs because many of them were built with similar formulae or principles. Instead, we will reinvestigate a selected subset of the most widely used VIs in this review, with a particular emphasis on clarifying and summarizing their usefulness, relationships, inconsistencies, artefacts and limitations. We also attempt to present recommendations on how to avoid these potential pitfalls to improve their use.
for the wider ecological community. In addition, since most existing VIs are based on reflectance in the optical wavelengths, we mainly focus on the optical VIs in this review, and particularly on those having the potential to be derived by satellite observations and applied globally. We use a few ‘milestone’ VIs as representative examples across our technical analyses, such as the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and the Near-Infrared Reflectance of Vegetation (NIRv), which are among the most widely used VIs in a variety of global-scale ecological studies and can reveal some common features of many VIs.

2. Rationale of VIs

The launch of Earth observing satellites since 1972 ushered a new era for global observation and study of vegetation (Fig. 2). The physical foundation of VIs, as a product of the remotely-sensed spectral reflectance, is built on our understanding of the complex light-vegetation interactions. Essentially, satellite-measured spectral reflectance is a mixed signal of vegetation canopies, their shadows, soils and possibly other components standing on the land surface, and is commonly co-determined by leaf reflectance, the background soil reflectance, canopy structure, and the sun-sensor geometry. The spectral signature of leaf reflectance is well understood. Leaf reflectance is relatively lower in the visible (VIS) domain (400~700 nm) because of the strong absorption of photosynthetic pigments, particularly in the non-green wavelengths due to the absorption of chlorophylls; high leaf reflectance in the near infrared band (NIR; 700~1300 nm) is usually expected due to spongy mesophyll, and lower leaf reflectance happens in the shortwave infrared (SWIR; 1300~2500 nm) due to strong water absorption and, to a less degree, other leaf biochemical traits such as lignin, protein and cellulose content. A typical soil reflectance spectrum monotonically increases with wavelength in the optical domain except the water absorptions in the SWIR band. Canopy structure is a key factor for the canopy reflectance, because it determines how much of the incoming light is reabsorbed, re-scattered and finally escapes from the canopies. Biophysical or structural parameters such as Leaf Area Index (LAI), Leaf Angle Distribution (LAD) and Clumping Index (CI) are commonly used to characterize canopy structure. The sun-sensor
geometry further complicates the canopy reflectance observations, largely due to the fraction of shadows in view because of the varying relative positions of the light source (sun) and the sensor. Furthermore, the atmospheric radiative transfer process is another important factor to consider in practice.

Therefore, VIs have been developed based on the simple rationale that the spectral signals from the vegetation, and more specifically, the vegetation characteristics of interest (for example, vegetation biophysical, biochemical and physiological properties) should be enhanced with properly designed mathematical combinations such as ratios, differences, derivative, or the combinations of the ratios and differences between reflectance from different spectral wavelengths or bands (Fig. 3). This enhancement goes along with reducing, or ideally suppressing background signals from soil and confounding factors related to vegetation characteristics with overlapping spectral features. However, even for a given vegetation characteristic, it is not straightforward to use one single formula that holds under different conditions. This, together with the interest in various different vegetation characteristics as well as increasing availability of more and more and increasingly narrow spectral bands from satellite sensors, is driving the continuing development of VIs.

3. A Brief History of VIs

3.1 VIs for plant biophysical properties

The history of VI developments goes back to the early 1970s (Fig. 2). The first-generation red-NIR ratio- and difference-based VIs, including the Simple ratio (SR), Difference Vegetation Index (DVI) and NDVI14-16 were proposed to quantify vegetation growing condition based on the fact that live green vegetation significantly absorbs solar radiation in red but reflects most of the solar energy in NIR to support photosynthesis while avoiding potential damage from overheating17 (Fig. 1). Further refinements have been introduced to minimize the effects of intervening soil background and atmosphere to better isolate the vegetation contributions, especially for sparse vegetation cover1,18. Examples include an orthogonal-transformation based perpendicular
vegetation index (PVI)19, the soil adjusted vegetation index (SAVI)3, Transformed SAVI
(TSAVI)20 and Modified SAVI (MSAVI)21. Later, Modified Simple Ratio (MSR)22 was formulated based on the evaluation of several two-band VIs (for example, SR, NDVI and SAVI) for the purpose of improving the linear relationship with biophysical parameters and reducing the sensitivity to measurement noise22. Reduced SR (RSR) further increased the sensitivity and correlation to LAI than SR, and reduced the effect of background reflectance by taking the canopy closure and understory contribution of open canopies into account with the SWIR band included23.

The Global Environment Monitoring Index (GEMI) was introduced to reduce the atmospheric effects24. The launch of MODIS onboard NASA’s Terra and Aqua satellites in the early 2000s opened new opportunities for VI developments with more spectral bands in the optical wavelengths. The Atmospherically Resistant Vegetation Index (ARVI) and EVI25 were proposed to minimize the atmospheric effects with an expected blue to red band ‘atmosphere scatter’ signal, enabling correction from the blue and red band relative proportions25,26. As atmospheric correction algorithms improved, the two-band version of EVI (EVI2)27 with the absence of the blue-band was developed in 2008 without blue band while achieving similar performance as compared with EVI27. In 2014, plant phenology index (PPI)28 was derived for estimating plant canopy growth, especially for evergreen forest phenology over high latitudes28. PPI has a nearly linear relationship with green LAI, and soil brightness variations have moderate impact on PPI. More recently, NIR4 and the fluorescence correction vegetation index (FCVI)29 were added to the list because of their ability to reduce soil background effects on the NIR reflectance of vegetation and to better approximate the vegetation’s solar radiation absorption and photosynthesis4,30. NIR4 has received significant attention and application because of its clear physical foundation and strong correlation with vegetation photosynthesis (Fig. 3)4,30. In 2021, the kernel NDVI (kNDVI) was proposed based on the theory of kernel methods as a unifying VI for monitoring the terrestrial carbon dynamics and increasing the sensitivity of NDVI to plant biophysical parameters31.

\section*{3.2 VIs for plant biochemical properties}
Broad-band reflectance smooths the detailed spectral signatures and thus above-mentioned broad-band VIs are primarily designed for detecting vegetation structure and its changes. In parallel, a group of VIs were developed by taking advantage of narrow-band sensor measurements that keep more detailed spectral information. In general, narrow-band VIs are specifically designed to indicate the biochemical and physiological properties such as pigments, water, plant residues and nitrogen, and typically use a combination of strong-absorbing VIS bands and a narrow band located in the red-edge region (670–780nm). Examples include Red Edge Chlorophyll Index (Clired-edge), Red-edge NDVI (NDV Ire) and MERIS Total Chlorophyll Index (MTCI) for indicating chlorophyll content, the Structure Insensitive Pigment Index (SIPI), Normalized Pigments Chlorophyll Ratio Index (NPCI), Plant Senescence Reflectance Index (PSRI) for carotenoid content, and Anthocyanin Reflectance Index (ARI), Anthocyanin Content Index (ACI) and Red/Green Ratio Index (RGR) for anthocyanin content. Using the water absorption bands around 970, 1200, 1450, 1940 and 2500 nm, Normalized Difference Water Index (NDWI), Land Surface Water Index (LSWI), and Normalized Difference Infrared Index (NDII) were designed with a similar formula and exhibit similarly robust performance on indicating vegetation hydrological condition. The Normalized Difference Lignin Index (NDLI) was designed with the 1510 nm lignin absorption feature, and the Normalized Difference Nitrogen Index (NDNI) considered the 1510 nm nitrogen absorption feature.

3.3 VIs for plant physiological properties

Another group of VIs were proposed to detect stress-induced physiological changes in xanthophyll cycle pigments, as indicators of photosynthetic light use efficiency or environmental stresses. Because the reflectance at 531 nm is sensitive to carotenoid pigments and the xanthophyll cycle, the Photochemical Reflectance Index (PRI) was proposed (with a reference wavelength at 570 nm) in 1992 to track changes in diurnal photosynthetic efficiency. The Chlorophyll/Carotenoid Index (CCI) proposed in 2016 is another index for representing the dynamics of the chlorophyll/carotenoid ratio and has the potential to track seasonal variations of canopy photosynthesis at the global scale, because it could be directly obtained from existing...
solar data. PRI, CCI and green chromatic coordinate (GCC) can capture the seasonal variation of carotenoid and xanthophyll cycles over temperate evergreen needleleaf forests that are difficult to detect with broadband VIs such as NDVI and NIR50,51. Red-edge Vegetation Stress Index (RVSI)52 had less negative values for stressed leaves than healthy leaves in grapevine leafroll disease detection over two wine grape cultivars53.

3.4 Satellite sensors for VIs

VIs can be calculated from reflectance measurements by a series of Earth-observing satellite sensors13 (Fig. 2). Landsat 1–3 MultiSpectral Scanner (MSS) since 1972 only had four VIS-NIR bands with about 80-m spatial resolution and half-monthly revisit cycle, while since Landsat 4 was launched in 1982, the spatial resolution in VIS-NIR bands has increased to 30-m. Sensors with similar spatial resolution include SPOT (1986–) and Sentinel-2 (2015–), which have weekly to daily temporal resolution. Sentinel-2 is one of the few sensors with the capability to calculate red-edge VIs for plant pigments. AVHRR, MODIS and VIIRS, launched in 1981, 1999 and 2011, respectively, have the daily temporal coverage, while AVHRR does not have the blue band for EVI. Towards high temporal resolution, geostationary satellites, such as GOES and Himawari both launched in the 1970s, had sub-hourly VI observations. NDVI, SR and RSR have been employed to generate global LAI products from Himawari, AVHRR and MODIS observations with biome-specific LAI-VI relationship54-56, while global leaf chlorophyll content was firstly generated from MERIS observations by physically-based radiative transfer models instead of the chlorophyll-sensitive MTCI, due to the impact of LAI on MTCI57. For very high spatial resolution (<10-m), GeoEye-1, WorldView 2-4, Pleiades, SkySat and PlanetScope are available since 2009 but can only provide VIS-NIR reflectance for vegetation biophysical properties. DESIS and HiSUI on the International Space Station, and as well as Hyperion and PRISMA, provide the hyperspectral observations while they just have monthly revisit cycle on average, which are suitable for plant biochemical and physiological traits mapping instead of capturing rapid temporal changes of vegetation.
4. Ecological applications of VIs

VIs have been successfully applied to many specific ecological research fields. Below we discuss a few prototypical examples.

4.1 Estimating vegetation attributes

An essential attractive feature of VIs is their conceptual simplicity and strong relationships with vegetation biophysical properties. Therefore, using VIs to estimate vegetation biophysical properties such as LAI, fractional vegetation cover, and biomass54,55,58 is one of the most successful application scenarios. Many VIs such as NDVI have been used as robust estimators of LAI and fractional vegetation cover. A few problems of NDVI are well identified, such as the insensitivity to densely vegetated areas and the oversensitivity to the changes of soil brightness due to rainfall and snowfall. The saturation point of EVI is higher than NDVI25,27, leading to more EVI applications in densely vegetated area like tropical forests. In particular, chlorophyll-corrected VIs can minimize the impact of chlorophyll content on LAI estimations. For example, a modified triangular vegetation index (MTVI2) and a modified chlorophyll absorption ratio index (MCARI2) have shown to be the best predictors of green LAI in a systematic evaluation of more than ten VIs (including NDVI, MSR, SAVI, etc.) over various crops59.

For vegetation biochemical properties (Table 1), red-edge VIs have been widely used for estimating leaf/canopy chlorophyll content and carotenoid pigments60, while SWIR-based VIs were often roughly used for leaf/canopy water content, leaf mass per area and (LMA) and nitrogen estimations32. These retrieved plant traits can be directly used to quantify the functional diversity, while the spatial distribution and textural feature of VIs such as MODIS EVI have also been applied in studying the spectral diversity, species richness and habitat heterogeneity61,62.

4.2 Temporal vegetation dynamics

Compared to other VIs, NDVI and EVI are the most widely used ones in practice for detecting and monitoring temporal vegetation dynamics because of their simplicity, robustness and availability, especially for the seasonal (phenology) and long-term trends of structural changes7,63-.
EVI and EVI2 are the primary data source for producing the MODIS vegetation phenology product Collections 5 and 6, respectively. In the recent years, NIRv is gaining popularity for analyses of vegetation changes regarding the ecosystem gross primary production (GPP)\(^6\). PPI and EVI2 performed better than NDVI with Sentinel-2 imagery across Europe when compared to ground-observed phenological stages, especially for evergreen coniferous forest during winter with snow\(^7\). CCI better tracked evergreen forest phenology and the end-of-season changes in deciduous forests compared to structurally-oriented NDVI, EVI and NIRv\(^8\).

Artifacts such as sun-sensor geometry and inter-sensor calibrations usually play a critical role for correctly using and interpreting the results of VI-based temporal vegetation dynamics. During the past decades, considering the inter-sensor consistency and the sun-sensor geometry has been well recognized by the research community although different VIs may subject to such artifacts at different levels of sensitivities as discussed in Section 5.

4.3 Environmental stresses and disturbances

The abrupt temporal changes of VI time-series are also useful for the detection of land cover change, environmental stress and disturbance. EVI has been widely used to monitor and quantify the deforestation and degradation in the Amazon tropical rainforest\(^9\), as well as the responses to drought, heatwave and water stresses\(^10,11,70\). Using PRI, CCI and GCC infers more seasonal physiological changes of vegetation than using structurally-oriented VIs such as NDVI and EVI in dormant temperate forests\(^50,51\). Biochemically-related VIs such as SIPI, NPCI and ARI have also been applied for the detection of pests and diseases in winter wheat\(^71\), and the soil erosion and heavy metal pollution in rice\(^72\), especially when hyperspectral data are available. Forecasting wildfire risks, monitoring fire severity, and characterizing vegetation recovery after fire disturbance is typically achieved by simple VIs such as NDVI, while hyperspectral imaging spectroscopy and light detection and ranging (LiDAR) are encouraged to be used in combination for the assessment of fuel condition and vegetation structure mapping\(^12\). NDVI has also been used for the assessment of ecosystem integrity and land degradation/desertification at different scales, including the resilience of agroecosystems\(^73\).
4.4 Ecosystem carbon and water fluxes

Vegetation dynamics drive changes of surface radiation regime, which co-determine microclimate and land-atmosphere carbon and water fluxes, and thus has been an important application of VIs, in principle by employing VIs as the proxy for vegetation canopy coverage, leaf area and fraction of absorbed solar radiation (FPAR) (Fig. 3). FPAR is usually considered as a function of LAI, and thus the advantages and disadvantages of the VIs for monitoring LAI also apply to the carbon fluxes estimations.

Some notable examples of using VI to estimate carbon fluxes, particularly GPP, include the Carnegie-Ames-Stanford Approach (CASA)\(^74\), MODIS algorithm\(^75\) and EC-LUE model\(^76\) (all using NDVI-derived FPAR); Vegetation Photosynthesis Model (VPM)\(^44\), the modified GPP model in TEM\(^77\), data-driven GPP upscaling\(^78\) (using EVI); simpler statistical upscaling using NIR\(^v\)\(^30,79\), regional forest GPP estimations\(^80\) (using EVI2); satellite-based GPP with explicit parameterization of LUE\(^6,79\) (using NDVI and soil-adjusted NIR\(^v\), SANIR\(^v\)). All these approaches have demonstrated moderate to high success. NIR\(^v\) has received growing attention in recent years because of its explicit physical link to FPAR\(^30,81,82\) as well as a moderate relationship with LUE\(^83\). PRI, CCI and GCC are also found to well track the seasonal GPP dynamics, it is still challenging to establish quantitative relationships between these VIs and LUE for robust GPP estimations. Nevertheless, the inclusion of PRI together with NDVI had shown improvements in estimating boreal forest CO\(_2\) fluxes\(^84\).

VIs have been used as direct indicators of photosynthesis in studies, such as for examining the CO\(_2\) fertilization effects by using AVHRR and MODIS NIR\(^v\)\(^85,86\), the carbon loss in Amazon rainforest degradation and deforestation with MODIS EVI\(^69\), the change velocity and optimum air temperature of productivity across biomes by MODIS NDVI and NIR\(^v\)\(^87\), and the anomalies and recovery of the tropical forest during the strong 2015/2016 El Niño event also with MODIS EVI\(^88,89\). Estimating belowground carbon fluxes from satellite observations has rarely been attempted and is based on indirect correlations between GPP and soil respiration via VIs\(^90\).
Typically, NDVI, EVI and MSAVI were used as scaling factors to extrapolate field-level soil respiration measurements to larger scales\(^{90,91}\).

Another prominent application of VIs is in the estimation of evapotranspiration (ET) with a history of over 30 years\(^{92,93}\). Although ET has been more accurately assessed using land surface temperature (LST), VIs are easier to obtain. The principle is because transpiration through plant leaf stomata generally dominates evaporation. A number of previous review papers have summarized that VIs in remote sensing ET models are powerful indicators of the fraction of vegetation coverage, absorption of solar energy, or surface roughness that are major determinant of ET\(^{94,95}\). Besides, due to the good VI-LST or VI-ET correlations observed at the flux tower sites in a wide variety of ecosystems, VIs have been used for either up-scaling site observation or enhancing/downscaling satellite LST, especially when LST data is unavailable or has a coarse resolution\(^{94,96}\). NDVI, SAVI and EVI are so far the most widely used VIs in a variety of ET estimation models\(^{95-97}\). However, due to NDVI’s sensitivity to soil brightness, the more soil-resistant VIs, such as EVI, EVI2, NIRv and SAVI, are considered as better choices\(^{92,94,96}\).

5. **Artefacts that cause inconsistencies**

VIs can be easily acquired from a variety of satellite sensors, however, inconsistencies in VI-based results reported in literature are common. Some of these inconsistencies are due to the use of different VIs, and a majority others are due to the artefacts of VI products derived from different sensors, satellite product versions, atmospheric and directional correction effects, compositing algorithms, and the application of different levels of quality assurance (QA) and quality control (QC) flags\(^{70}\). A comprehensive understanding of these inconsistencies as well as the limitations and caveats of each VI is critically important for rigorous use of VI and for the correct interpretation of the results from VI-based analyses. In this section, several notable examples of how VIs are not used consistently are discussed and classified by the primary factors for such inconsistencies (Fig. 4).

5.1 **Sensor and calibration effects**
There are inconsistencies in different satellite time-series for the same study area/region. For example, vegetation greenness trends derived from AVHRR and MODIS NDVI time series apparently show trends in opposing directions98. The differences in the central wavelength and range of the spectral response function across sensors can be important contributing factor for such inconsistencies99,100. For example, NDVI obtained from AVHRR, MODIS, and VIIRS show significant differences in values and the level of the differences varies across land cover types, although their orbits and spatio-temporal resolutions are similar9.

Besides, satellites and their sensors often suffer from the harsh space environment, resulting in orbital drift and sensor degradation over time. Although onboard calibration or vicarious calibration are applied to maintain the measuring standards, the remaining limitations can affect the accuracy of the derived VIs and introduce systematic biases especially in long-term trend analyses101,102. Typical examples involve products from AVHRR and MODIS103,104. AVHRR measurements come from a series of satellites, each of which has specific orbital characteristics105,106 which can affect the image acquisition time and sun-target-sensor geometry104. In particular, NDVI values from AVHRR onboard NOAA-11 were found to be significantly higher than those from prior and subsequent AVHRR sensors107. Orbital drift effects were also found in the VIP3 and LTDR4 NDVI data and over the more humid areas for GIMMS-3g NDVI. MODIS-based NDVI exhibited an increasing trend during 2001–2016, while a decreasing trend of the GIMMS-based NDVI was observed especially after 2012, which suggests large discrepancies of global greening108. A significant positive jump in the SPOT-VGT NDVI time series was identified due to the platform/sensor change from VGT-1 to VGT-28. A recent study used AVHRR NIRv as a long-term consistent record to quantify the trends in CO\textsubscript{2} fertilization effect on global vegetation photosynthesis from 1982 to 201585. However, concerns were raised about potential uncertainties in the conclusion partly due to sensor differences86,104.

Another important issue is that different VIs may show varying levels of sensitivity to sensor calibration due to their mathematical formulae. The calibration bias may affect both VIS and NIR bands in a similar way, and thus can at least partly cancel out in ratio-based VIs such as NDVI and
For example, the single-band reflectance calibration uncertainty for MODIS was 2% under normal atmosphere conditions, while the mean NDVI uncertainties due to sensor calibration was only ± 0.01 units and was less than 2% of the dynamic range using field canopy reflectance observations\(^\text{109}\). The cross-sensor difference of NDVI could also be smaller than the difference of surface reflectance. For the comparison among fifteen moderate-resolution sensors including MODIS, VIIRS and AVHRR, each pair of the sensors had a larger \(R^2\) and smaller Root Mean Square Error (RMSE) for NDVI than for the VIS and NIR bands separately\(^\text{9}\). In VIs such as \(\text{NIRv} = \text{NDVI} \times \text{NIR}\), such calibration biases do not cancel out and thus can impact the absolute values of the VI signals as NIR reflectance is multiplied. While this could be problematic for applications that rely on the absolute values of VI, it could also be an issue for the consistency of long-term time-series when there are differences in calibration bias between different sensors, or calibration drift of a given sensor over time. Therefore, differences in vegetation trends and magnitudes for different VIs can be due not only to the inherent characteristics of the VIs but also to their different sensitivities to calibration bias.

5.2 Product versions

VI satellite products are usually produced in different versions (collections) with algorithmic improvements and calibration adjustments. Using different VI product versions may lead to inconsistent interpretation of changes in the vegetation. There still exist inconsistent greening/browning trends between MODIS Collection 5 (C5) and Collection 6 (C6) products\(^\text{102}\). MODIS itself suffers from sensor degradation, which is the largest for the Terra satellite especially in the blue band\(^\text{102,110}\). The degree of degradation decreases with increasing wavelength, and thus there are negative decadal trend artefacts for MODIS Terra products with \(\Delta \text{NDVI} = -0.01\) and \(\Delta \text{EVI} = -0.02\)\(^\text{110}\) when comparing C5 to an enhanced C6 (C6+) version. The percentage of negative MODIS-C5 NDVI trends derived from Terra (17.4%) was nearly three times as large as that derived from Aqua (6.7%) for North America during 2002–2010\(^\text{101}\). Most of the vegetation browning trends revealed by MODIS Terra-C5 VIs were likely caused by sensor degradation, particularly during the period after 2007, and thus previous studies of vegetation trends based on
only Terra-C5 VIs may need to be re-evaluated102. Thus the latest MODIS C6 has sensor
degradation corrected and better consistency between Terra and Aqua measurements and provides
a more reliable record than C5110.

\textbf{5.3 Pre-processing steps}

Standard VI products usually include important data pre-processing and sensor configuration
information, such as the sun-target-sensor geometry and QA/QC, which if not taken into account
appropriately, could introduce critical errors in the subsequent analyses. The relative positions of
the sun, sensor and observing target commonly change over time due to the continuous movement
of Earth, sun, and satellites. Such changes result in the variations of the solar illumination and
sensor viewing angles and have been recognized for decades to affect remotely sensed observations
strongly111-113. This effect can be mathematically described as the bidirectional reflectance
distribution function (BRDF) effect or the sun-target-sensor geometry effect (Fig. 4).

The solar angle is seasonally and latitudinally varying but annually repetitive if a sensor
remains in a stable orbit, and therefore it can influence the VI-based phenology, but not the long-
term trends or interannual variations. For example, Amazon forests have been reported to exhibit
no variations in EVI from wet to dry season, and dry season greening has been attributed to
seasonal solar-angle variations112. Subsequent studies using either the same data114 or the
rigorously BRDF-corrected MAIAC product115 suggested dry-season greening but with smaller
magnitude, which demonstrates the importance of disentangling solar angle-induced seasonal
variations in VI from vegetation-induced variations. A similar case also shows that the BRDF
effect, instead of the vegetation response, drives the satellite NDVI phenology in evergreen sparse
canopy ecosystems in western US with subtle growth dynamics116. Not only MODIS, but also
Landsat 7, Sentinel-2, VIIRS and Proba-V confirmed this effect with the ground-based PhenoCam
observations as the reference. Thus the authors suggest to either restrict the analyses to selected
data with consistent sun-target-sensor geometry, or to rigorously remove the BRDF effect in the
data116. Landsat that only acquires images at $\pm 7.5^\circ$ from nadir has relatively small view angle
effects117, while other satellite sensors such as AVHRR and MODIS usually extend to larger view
angles, which can introduce uncertainties to the downstream products if uncorrected111,113. The impact of the BRDF effect on MODIS NDVI was evaluated in West Africa, and was found to be the highest for medium dense vegetation (NDVI≈0.5–0.6) compared to sparsely canopy (NDVI≈0.3–0.35) or dense vegetation (NDVI≈0.7)113. In Alaska Arctic tundra, the influence of BRDF effect on satellite NDVI-based biomass estimations was up to 33% (excluding extremes) more sensitive than on NDVI111.

A related uncertainty source is the compositing approach, which determines how to extract the highest quality observations over the typically used 8-day, 16-day, or monthly interval. Compositing has gone through major changes between the traditional Maximum Value Compositing (MVC) algorithm, which is still employed in GIMMS-3g datasets, to the modified constrained view angle MVC, or CV-MVC25, used in MODIS VI compositing (MOD13A1 and MYD13A1), to the 16-day rolling compositing based on BRDF retrievals used in MCD43A4 Nadir BRDF-Adjusted Reflectance (NBAR)-VIs118. Note that MOD13A1 and MYD13A1 products with the CV-MVC algorithm aimed to reduce the BRDF effect but still did not theoretically normalize it119, while the MCD43A4 C6 product removed the view angle effects but was set at the local solar noon zenith angle120 which varies seasonally and latitudinally. Compositing approaches vary widely and can lead to inconsistencies in the interpretation of results. For example, in the studies conducted over the Amazon63,70,121 and western US116, selective compositing settings based on study objectives resulted in inconsistent results.

Another source of inconsistency is the atmospheric correction, which was either conducted fully, partially or sometimes not at all conducted for different VI products. MODIS attempted the full correction, while GIMMS attempted at limited correction. NDVI derived from VIIRS observations is based on top-of-atmosphere (TOA) reflectance, while VIIRS EVI is generated based on surface reflectance122. Even when VIs are calculated from atmospherically-corrected reflectance at the surface, they are still subject to uncertainties in atmospheric correction such as cloud masking, residual sub-pixel clouds, incomplete corrections for Rayleigh scattering, ozone, water vapor absorptions, and imperfect aerosol correction123. In the studies regarding the impact of
drought on Amazon forests, where VIs were intensively used, large differences were found in the extent of Amazon greening during the 2005 drought that were attributed to inadequate QA/QC screening for clouds and aerosols effects that are usually accounted for in atmospheric correction process.

5.4 Soil, snow and topographic effects

Most of Earth's terrestrial ecosystems have sparse canopies with appreciable canopy background (soil, litter, snow, water, etc.) signals that can affect satellite-derived VIs. Soil types and soil moisture conditions lead to spatiotemporal variations of soil brightness. In natural ecosystems, the soil layer could be mixed with litter, moss, lichen, or waterbodies; and especially in forest ecosystems, woody stems and branches could contribute to the background noise or bias of VIs. Soil influences are assumed to vary the most in arid regions, while they have the greatest effect in moderately vegetated canopies (LAI ~1 or ~5%) cover). For example, in northern Africa, extensive soil-artefacts in the AVHRR-NDVI signals are seen over reddish soils, while in the Sahel, the NDVI variations were reported due to soil type, moisture and reflectance differences. The first rains can result in an artefact NDVI flush prior to the actual greening cycle, while over-irrigated and freshly ploughed croplands, one can see similar NDVI 'soil artefacts'. Snow and ice with high optical reflectance are among the most important factors that lead to the inconsistency of the VI time-series during winter in temperate regions or, more permanently, in Arctic. There is evidence of bias in the detection of vegetation phenology phase using NDVI at the end of non-growing season, due to presence of snow that causes low NDVI values. In addition to soil and snow, topography also influences VIs. Mountainous regions cover 24% of the total Earth's land surface. Topography, which can cast macro-scale shadows and change the local sun-surface-sensor geometry, has been reported to have important effects on surface reflectance and VIs. Similar to the shadows in view caused by the sun-target-sensor geometry, a topographic shadow is much darker in the red wavelength than in highly scattered NIR wavelength due to the multiple scattering between slopes. Compared to the sun-target-sensor geometry-induced porous and fuzzy canopy shadows, the dark and opaque topographic shadows...
can have larger effects on EVI. The topographic effects on reflectance should be minimized before EVI and other VIs without a band-ratio format (such as NIRv and SAVI) are calculated, while the topographic effects on the ratio-based VIs such as SR and NDVI are usually smaller. The topographic effects are also related to the spatial scale and as the size of the pixel increases, the topographic effects may decrease and even disappear with spatial averaging.

5.5 Scale-mismatch effects

Spatial mismatches between the region-of-interest and the predefined grid cells in the remote sensing-based datasets could be another important source of uncertainty. For example, MODIS pixels have accurate geolocation, yet on average, the offset is up to half a pixel between scenes, which is significant when users rely on single pixel VIs to match with in-situ measurements. Considering that the in-situ measurement is rarely near the centre of a pixel, there is high probability that a single MODIS pixel may not always sample the in-situ measurement area. The sensor point spread function could further distort the matching of gridded satellite data with ground-based data. The emerging high-spatial resolution data (for example, PlanetScope and airborne data, ≤ 3 m) could also lead to difficulties in the interpretation. For example, a pixel could be completely in the shadows of a tree so that VI values could be highly distorted due to the lower illumination than sunlit crown side if the research target is the whole tree canopy. Identifying a suitable remote sensing product at an appropriate spatial scale could be the most effective choice for minimizing such uncertainties.

There is a general lack of studies that use long-term, well-coordinated in-situ networks to measure reflected radiation from vegetation to confirm larger scale greening and browning results. The MODIS EVI results related to the Amazon dry season greening were confirmed with in-situ measurements of GPP from eddy-covariance flux towers. In contrast, the greening trends in the Sahel challenge the mainstream paradigm of irreversible ground-observed land degradation in this region. There is also a debate as to whether the onset of spring phenology has been advancing due to climate warming. The trends in the Start Of growing Season (SOS) for Tibet alpine meadow and steppe were examined using ground-based phenology observations as well as NDVI datasets.
from GIMMS and GIMMS3g, MODIS, SPOT-VEG and SeaWiFs. The results from that study showed large discrepancies in the SOS trends among the ground-based and different NDVI datasets, and between the different phenology retrieval. The study pointed out the NDVI data quality and scale-mismatch between satellite and ground data might be an important reason for these inconsistencies. Similar results were reported by comparing ground-based PhenoCam data with EVI derived from a variety of sensors including Landsat ETM+, MODIS, and DSCOVR-EPIC. At three rural sites and one urban site of deciduous trees in Ireland, AVHRR and MODIS EVI2-derived SOS during 1982–2016 was consistently earlier than in-situ leaf-unfolding across all these sites with the RMSE of 25–52 days and Mean Bias Error (MBE) of −5 to −50 days, while satellite-derived growing-season-length was consistently longer than in-situ data with the RMSE of 65–102 days and MBE of 45 to 96 days. For the period 2001–2014, MODIS EVI2-derived SOS advanced by about 2.36 days from middle to high latitudes of Northern Hemisphere (43.5°N–70.0°N) snow-covered landmass, while delayed by about 0.53 days in lower latitudes (33.0°N–43.5°N); the differences between MODIS EVI2-derived SOS and in-situ SOS at 420 phenology observations from five filed datasets including Pan European Phenology (PEP) project are centralized between −30 days and 30 days, with the coefficient of determination (R^2) of 0.67, RMSE of 12.13 days and bias of −3.99 days.

6. Limitations and intrinsic linkage

6.1 Notable limitations of VIs

In principle, VIs capture a combination of canopy properties and other external contributing factors such as atmospheric conditions and sun-target-sensor geometry that may simultaneously and non-uniquely vary throughout the vegetation growing season. Thus, it might be infeasible to physically couple a VI to a specific plant variable without accounting for changes due to these factors and changing vegetation conditions at the same time. For example, a VI cannot be coupled to leaf biomass, without accounting for simultaneous differences in leaf biochemical constituent differences, non-photosynthetic vegetation (NPV), soil background, atmospheric contamination,
and canopy structural effects, which are also tightly connected to the sun-target-sensor geometry
effects. From the mathematical formula, a large group of ratio-based VIs (e.g., NDVI, SR, PRI,
CCI and CIred-edge), are sensitive to different soil brightness due to the larger variation of the
denominator than the numerator\(^2\), but are insensitive to fractional vegetation cover when the soil
background is dark or in water for mangrove\(^{147}\). For example, a leaf floating in a black water body
would maintain the same NDVI regardless of how large the leaf became (whether that leaf
occupies 1% of the water or 100% of the water, the NDVI is the same, as in Fig. 4).

Impacts of some inherent properties of vegetation, such as the leaf biochemical constituents
and NPV, are usually difficult to separate because of limited understanding of their spatiotemporal
variations. Leaf biochemical constituents, such as chlorophyll, water and dry matter contents,
largely determine the leaf reflectance spectrum and thus fundamentally shape the vegetation
canopy reflectance\(^{148,149}\). Recent studies have demonstrated the strong spatio-temporal variations of
leaf biochemical constituents\(^{57,150}\), which contribute to the important plant diversity but greatly
complicate the interpretations of VIs. NPVs, such as woody stems, branches, and standing litter\(^{151}\)
can mask emerging green vegetation and thus can weaken the correlation between VIs and green
vegetation biophysical properties. Therefore, satellite-derived phenology could be delayed due to
the masking of NPVs, because the standing plant materials from the previous year may occlude the
initial green-up of vegetation\(^{151}\). The limitations of VIs can be at least partially addressed when the
VI formulae are appropriately designed with the principles of radiative transfer in vegetation

canopies (Section S2.2).

6.2 Intrinsic similarities between VIs

Red-NIR VIs, such as NDVI, DVI, EVI, EVI2 and NIRv, are typically among the most
widely-used category. In general, surface reflectance in NIR band is larger than that in the red band.
In addition, canopy NIR reflectance essentially increases with LAI while red reflectance shows the
opposite trend due to strong light absorption at this wavelength. Therefore, NIR typically
dominates the factor NIR/(NIR+Red), which equals NIRv/DVI. It typically falls in a small range of
0.8–1 for vegetated surfaces (LAI>1). Therefore, Eq. 2 in Box 1 suggests that NIRv is well
correlated with DVI in most cases, and NIRv has the biophysical meaning of FPAR times photon escape probability (f_{esc}) (Fig. 3a).

EVI has been reported to be well approximated by EVI2, a variant of EVI without the blue band27. EVI and EVI2 can be derived as the product of DVI and $2.5/(\text{NIR}+6\cdot\text{Red}+7.5\cdot\text{Blue}+1)$ or $2.5/(\text{NIR}+2.4\cdot\text{Red}+1)$ (Eqs. 3-4), respectively27. Note that the number ‘1’ in the denominator is typically much larger than the variability of the remaining term ($\text{NIR}+2.4\cdot\text{Red}$) or ($\text{NIR}+6\cdot\text{Red}+7.5\cdot\text{Blue}$) in response to the changes of LAI. Thus, the factor $1/(\text{NIR}+6\cdot\text{Red}+7.5\cdot\text{Blue}+1)$ (Eq. 3) is typically between 0.7~0.8 in most cases especially when LAI is greater than 1. Similarly, the factor $1/(\text{NIR}+2.4\cdot\text{Red}+1)$ is also almost a constant with small variation between 0.7~0.8 in most cases. This suggests that EVI2 and EVI should have a strong linear correlation with DVI, although with different magnitudes because of the constant coefficient (2.5) used in the numerator.

Thus, DVI is strongly correlated to both EVI and NIRv, and NIRv, DVI, EVI and EVI2 intrinsically have strong linear correlations with one another according to their mathematical definitions and typical range of variation of NIR and VIS reflectance of vegetated surfaces. In contrast, DVI is mathematically the numerator of NDVI, and the denominator ($\text{NIR}+\text{Red}$) can vary significantly with LAI and other vegetation properties. Therefore, a nonlinear relationship is often observed between NDVI and DVI, and thereby also between NDVI and the other indices similar to DVI, such as EVI, EVI2 and NIRv.

NDVI, EVI and DVI can also be more generally described by another well-known VI, the SAVI, and the ‘L’ in the denominator of SAVI (Eq. 7) is the canopy background adjustment term that addresses the nonlinear, differential NIR and red radiative transfer process through a canopy3,25. In case L in SAVI is 0, SAVI is equal to NDVI; if L is 1, SAVI equals to EVI. Note that factors of 6 and 7.5 in the denominator of EVI (Eq. 3), and 2.4 in the denominator of EVI2 (Eq. 4), are for atmosphere self-correction instead of canopy biophysical properties. Third, when L is infinity, SAVI is equal to DVI. The real canopy has an L value generally greater than 0 but less than 10. Details about the evaluation of similarity and difference among these VIs, and their sensitivity to
artefacts such as the impacts of soil background, atmospheric contamination, canopy structural and sun-target-sensor geometry effects are in Section S2.1.

7. **Appropriate use of VIs**

Attractive features of VIs are their conceptual simplicity and strong relationships with target properties of the vegetation and land cover. Because of the diverse types and application scenarios of VIs, it is not possible for a universal recommendation of the best VI. Instead, identifying the target application and corresponding sensitive wavelength and VI is the first step towards the optimal use of VIs. For example, red-NIR VIs such as NDVI and EVI may be the best choices for studying dynamics of vegetation structure, red-edge VIs are more suitable for pigment retrievals, while VIS-based PRI and CCI are more appropriate for the monitoring of physiological changes.

Then, understanding the intrinsic differences, strengths and particularly the limitations of VIs may help to further identify the suitable VIs. For example, NDVI may be the best candidate VI for estimating fractional vegetation cover as it is less impacted by sun-target-sensor geometry than EVI and NIRv, while if the sun-target-sensor geometry effect is properly addressed, NDVI may be less robust in estimating fractional vegetation cover due to the stronger sensitivity to soil brightness changes from rainfall or snowfall\(^2,3\). In addition, VIs are typically saturated in dense vegetated areas; the saturation point of NDVI is usually lower than EVI\(^{25,27}\), suggesting that NDVI may be a less appropriate choice for analysing vegetation variations in dense vegetation canopies, while NDVI is still useful for onset/offset phenology detection. Even though EVI, EVI2, DVI and NIRv show high correlations, the mechanistic link that was established between NIRv and the product of FPAR times \(f_{esc}\) (Fig. 3) makes NIRv an attractive choice for studies related to GPP estimation and SIF\(^{81,83,152,153}\).

Potential artefacts must be carefully taken care of to avoid biased interpretations of the underlying ecological processes resulting from the use of the incorrect data. Due to sensor degradation, the analysis and interpretation of the interannual variations and long-term trends in VIs remained challenging until the inter-calibration of AVHRR with MODIS became feasible after
2000 during the overlapping period. The newer versions of VI products should theoretically be more accurate than the older ones. Spectral response function normalizations are recommended for multi-sensor VI harmonizations. The BRDF correction by the kernel-driven model is recommended especially if the BRDF varies seasonally and latitudinally in the analysis. If uncertainties from sensor calibration, atmospheric, BRDF and topographic effects are a serious issue to be reduced, ratio-based VIs are more recommended than difference-based VIs, while ratio-based VIs could be sensitive to snow/soil background and scale effects. For the spatial aggregation, it is highly recommended to firstly aggregate the single-band reflectance to coarse resolution, and then calculate VIs such as NDVI and EVI, instead of aggregating the high-resolution VIs directly, just to avoid the scaling effect over heterogeneous surfaces due to possible nonlinear formula of VIs.

Identifying dominant variables and potential signal contamination sources in specific ecosystems are also important for the correct use of VIs. For example, for temperate evergreen forests, the structure and chlorophyll in winter may not vary much, while physiologically-associated VIs such as PRI and CCI which are more sensitive to light use efficiency should be more suitable. Tropical rainforest could be more vulnerable to atmosphere and optical signal saturation impacts (EVI is more recommended instead of NDVI), savanna and shrubland with sparse vegetation are more sensitive to soil backgrounds (EVI and NIRv are recommended), Artic region with high latitudes is vulnerable to large solar zenith angle and ice/snow backgrounds (PPI, EVI2 and NIRv with BRDF correction are recommended), while mountainous regions such as the Tibetan Plateau with rugged terrain is vulnerable to not only ice/snow but also topographic and shadowing effects (topographic normalizations including the empirical, semi-empirical and physically-based methods are recommended).

8. Future directions

VIs with the spectral, angular, spatial and temporal information are classic remote sensing products with rich research history. Because of their simplicity and robustness, we envision they
will continue to be heavily used in the foreseeable future. Looking forward, we identified a few research opportunities and challenges below that may advance the use of VIs for the more accurate and timely monitoring of terrestrial ecosystems from space.

8.1 Multi-sensor VI harmonization

Multi-sensor fusion of observations from multiple sensors/satellites can improve the spatio-temporal resolution and continuity as well as the timespan of VIs, such as Sentinel-2 and Landsat-8155, which may greatly enhance their applicability. Ongoing efforts are devoted to developing fusion algorithms156-159 and datasets118,160,161 for producing long-term gap-free VIs at relatively high resolutions. However, land surface heterogeneity162 and BRDF effects117 remain to be major scientific challenges and issues to be resolved for producing fused VI products. The atmospheric correction also deserves greater attention, because even under the same solar angle, VIs differ depending on the fraction of diffuse radiation which differs at the overpassing times of different sensors/satellites. Sensor calibration drift and degradation are also critical challenges for the fusion of VI data from similar sensors on multiple satellites or multiple sensors on different satellites such as AVHRR and MODIS, in producing decadal datasets and analyses103,104.

8.2 Synergistic use with novel metrics

Most VIs are good proxies of vegetation biophysical properties and to a limited extent represent vegetation functioning. Some novel remote sensing indicators, such as Solar-Induced chlorophyll Fluorescence (SIF)163-166, could provide valuable complementary information. SIF captures some of the vegetation physiological information, and thus responds to the onset of environmental conditions and stresses earlier than VIs167. SIF can track the photosynthetic seasonality in evergreen species in cold environments where red-NIR VIs showed no changes168. Besides, SIF is rarely impacted by soil because green vegetation is the only source of SIF.

However, the existing SIF retrievals have poor spatial resolution, infrequent revisiting time, low signal to noise ratio, and a relatively short history of measurements169. New sensors/satellites will continue enhancing the capability for SIF measurement, but complementary VIs such as NIR\textsubscript{v} provide far better spatial and temporal resolutions. Understanding the intrinsic linkage between SIF
and VIs is the key for the synergistic use for scientific applications, and one possible useful
direction is to study the shared characteristics of SIF and VIs. In recent studies, far-red SIF
normalized by Photosynthetically Active Radiation (SIF/PAR) and NIRv has been demonstrated to
share the same fesc in the radiative transfer process\(^\text{81,170}\) (Box 1). Thus, under low-stress conditions
with stable fluorescence yield (\(\Phi_F\)), NIRv and SIF/PAR are expected to be strongly correlated
under the same sun-target-sensor geometry (Fig. S1). NIRv radiance (NDVI×NIR radiance) or
NIRvP (NIRv×PAR) and SIF should be even more strongly related than NIRv and SIF/PAR as the
common radiation factor further enhances the underlying relationship\(^4,82,152\). The similarity between
NIRv and SIF implies that VIs could be used as structural proxies for SIF because they have a
longer data record. For example, MODIS EVI has been used to generate a global SIF product
(GOSIF; 2000-2020) from OCO-2 SIF soundings\(^{171}\). Combining NIRv with SIF during times of the
overlapping data has great potential to isolate the unique physiological responses of SIF as NIRv
can be used to normalize the dominant canopy structure effects\(^{152,172}\).

Microwave vegetation indices derived from different frequency and polarization combinations
are more sensitive to the woody part of the vegetation than NDVI\(^{171}\), and are potential approaches
to derive vegetation optical depth (VOD).\(^{174}\) VOD describes vegetation extinction effects in the
microwave spectrum and is increasingly used for estimating parameters of vegetation water content
and the aboveground biomass\(^{175,176}\). VOD has the advantage of being unaffected by the clouds and
less sensitive to the water in the atmosphere, which is important especially for cloudy and humid
tropical regions such as the Amazon and Congo rainforests\(^{175,177}\). VOD has been reported to have a
saturation point with higher biomass values than NDVI\(^{177}\). Optical VIs with a higher spatial
resolution can contribute to the downscaling of VOD, while VOD can help to improve the
temporal observing frequency over cloudy and humid regions and seasons.

8.3 New remote sensing missions

The widely used red-NIR VIs which are sensitive to canopy structure and chlorophyll content
do not directly contain the LUE information, which can be captured to some degree by several VIs
such as PRI\(^{49}\), CCI\(^5\) and GCC\(^{50,51}\) from emerging hyperspectral or multispectral remote sensing
capabilities. In addition, hyperspectral data with more spectral information can be beneficial for the disentangling of the pure vegetation and soil reflectance contributions in the mixed pixel spectrum, by the newly proposed NIRvH153. The next generation of VIs aim at the reduction of soil/snow/ice background effects, reduced BRDF impact and reduced signal-saturation. Such hyperspectral remote sensing capability has been limited at the global scale and relatively fine spatial resolution. However, these limitations will be addressed with the emerging and forthcoming spaceborne hyperspectral satellite missions such as the HiSUI, PRISMA, EnMap, CHIME, DESIS, GeoCarb and SBG. New opportunities to further improve temporal characteristics of traditional VIs will also be provided by the new-generation geostationary satellites, such as GOES, Himawari and GEO-KOMPSAT, as well as the unique DSCOVR position at the Sun-Earth L1 Lagrange Point. They provide higher observing frequency that support not only the diurnal variations of ecosystem processes178, but also the seasonality of greenness in cloudy and humid regions such as Amazon compared to polar-orbiting satellites179,180.

9. Summary

This review summarizes inherent features of several widely used VIs and some factors contributing to consistencies and inconsistencies among them that may lead to controversies resulting from their inappropriate use in scientific studies and other applications. Factors such as the formulation of VIs, sensor characteristics, product version, compositing algorithms, QA/QC, atmospheric and topographic conditions, and sun-target-sensor geometries all impact VIs and their appropriate use. We further highlight that improper use of QA/QC flags attached to VIs could be an important source of uncertainty and pitfall in their use, and offer a few guidance and recommendations for the appropriate use of VIs. Mathematical analysis suggests that NIRv, EVI, EVI2 and DVI have similar radiative transfer features and are strongly linearly correlated with each other, while NDVI behaves differently as a ratio-based VI and is more impacted by soil background. NIRv, EVI, EVI2 and DVI can reproduce the results of each other in most cases because of their similarity.
Finally, we strongly recommend that future studies using VIs should be conducted with clear focus on interpretation of VIs, and using more than one in-situ dataset for verification when possible, to render greater confidence in their findings and conclusions. It would also be important to provide a detailed documentation of the key processing steps mentioned above to facilitate the interpretation and reproducibility of VI-based results. Ideally, the programming code should also be provided or made available when requested, and where feasible, the final VI dataset should be stored in a publicly accessible repository or cloud storage such as Google Earth Engine for ease of access. In particular, the documentation should include relevant information on the application of QA/QC levels as well as any other processing steps such as spatio-temporal aggregation, additional quality and outlier filtering or other corrections applied to the original data. Providing such detailed technical information on VI products might be a promising strategy as then the documentation would be straightforward to find and also citable via a doi linked to a given dataset that is available for the user community. The technical review and recommendations presented here are intended to further advance the use of VIs in scientific studies and reduce any confusion and inconsistencies due to their improper use, considering the continued record length of existing capabilities, such as MODIS and VIIRS instruments, and emerging new ones, such as HiSUI, PRISMA and EnMap.

References

Sensing of Environment

from hyperspectral

Cheng, Y.

content from equivalent water thickness using satellite imagery. Yilmaz, M. T., Hunt Jr, E. R. & Jackson, T. J. R.

Xiao, X.

Northeastern China, using multi.

Xiao, X., Boles, S., Liu, J., Zhuang, D. & Liu, M. Characterization of forest types in

vegetation liquid water from space. Gao, B.

Gamon, J. & Surfus, J. Assessing leaf pigment content and activity with a

content in autumn

and photobiology nondestructive estimation of anthocyanin content in plant leaves. Gitelson, A. A., Merzlyak, M. N. & Chivkunova, O. B. Optical properties and

Gamon, J. & Surfus, J. Assessing leaf pigment content and activity with a

Gao, B.-C. NDWI—A normalized difference water index for remote sensing of

Xiao, X., Boles, S., Liu, J., Zhuang, D. & Liu, M. Characterization of forest types in

Xiao, X. et al. Satellite-based modeling of gross primary production in an

Cheng, Y.-B., Ustin, S. L., Riaño, D. & Vanderbilt, V. C. Water content estimation

Wang, S., Zhang, Y., Ju, W., Qiu, B. & Zhang, Z. Tracking the seasonal and interannual variations of global gross primary production during last four decades using...

90 Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Science advances 6, eabb4508 (2020).

Matsushita, B., Yang, W., Chen, J., Onda, Y. & Qiu, G. Sensitivity of the vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. *Sensors* **7**, 2636-2651 (2007).

Huete, A. R. et al. Amazon rainforests green - up with sunlight in dry season.

Fig. 1. The vegetation and soil spectrum across wavelengths to design vegetation indices. The spectral response range in the atmospheric window of a few widely used satellites are also included. The colored blocks and vertical lines in the top panel illustrate the spectral band range or band pass for each satellite sensor.
Fig. 2 The timeline of widely used satellites with the capability to derive VIs. The corresponding spatio-temporal resolutions are also included.
Fig. 3 The taxonomy, physical meaning and similarity of VIs. a] The biophysical interpretation and intrinsic linkage of several most widely used VIs in a variety of global-scale ecological studies. b] The taxonomy of VIs from four different dimensions: physics, mathematics, ecology and uncertainties. c] Global spatial correlations of monthly-averaged MODIS NIRv, DVI, EVI, EVI2, SIF, SIF/PAR (PAR-normalized SIF), NDVI and FPAR in August, 2018 and at 0.1° spatial resolution, considered as the peak growing month for most vegetation types. d] Global spatial correlations between MODIS NIRv and other remote sensing VIs during the 2018.03~2019.02 period since the origin of TROPOMI SIF, with the temporal resolution of 4 days and 0.1° spatial resolution. In the box plot, red circle refers to the mean value, boxes represent the interquartile ranges of the 25th (Q25) and 75th (Q75) percentiles, and whiskers cover the ranges of Q25 - 1.5·(Q75 - Q25) and Q75+1.5·(Q75 - Q25). The Rs among NIRv, DVI, EVI and EVI2 were greater than 0.95, while the R between NDVI and other VIs ranged from 0.78 to 0.89. NDVI has a relatively larger R with FPAR, but has a weaker linear correlation with SIF than the other VIs. In the spatial aggregation, the red, NIR and blue reflectance was firstly averagely aggregated to 0.1 degrees, and then the VIs were calculated.
Fig. 4 A sketch map of VIs from satellite observations. Uncertainties come from different sensors and calibration, QA/QC flags and compositing algorithms, atmosphere and BRDF effects, soil/snow background and topography, and scale effects.
Table 1: The widely used optical vegetation indices, spectral ranges and references

<table>
<thead>
<tr>
<th>Spectral space</th>
<th>Name and references</th>
<th>Abbreviation</th>
<th>Equation and derivation</th>
<th>Primary applications, advantages and disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red-NIR</td>
<td>Simple Ratio(^{14})</td>
<td>SR</td>
<td>(NIR/Red)</td>
<td>Structure; Simple but sensitive to the atmospheric correction of the red band</td>
</tr>
<tr>
<td>Red-NIR</td>
<td>Normalized Difference Vegetation Index(^{14-16})</td>
<td>NDVI</td>
<td>((NIR - Red)/(NIR + Red)) = ((SR - 1)/(SR + 1)) = 1 - 2/(SR + 1)</td>
<td>Structure; Simple but sensitive to the soil background variations</td>
</tr>
<tr>
<td>Red-NIR</td>
<td>Modified Simple Ratio(^{22})</td>
<td>MSR</td>
<td>(\frac{NIR/Red - 1}{\sqrt{NIR/Red + 1}})</td>
<td>Structure; More linear relationship with canopy structure parameters</td>
</tr>
<tr>
<td>Red-NIR</td>
<td>Difference Vegetation Index(^{19})</td>
<td>DVI</td>
<td>(NIR - Red)</td>
<td>Structure; Simple but sensitive to the BRDF effect</td>
</tr>
<tr>
<td>Red-NIR</td>
<td>Global Environment Monitoring Index(^{24})</td>
<td>GEMI</td>
<td>(\eta \cdot (1 - 0.25 \cdot \eta) - \frac{Red - 0.125}{1 - Red}) (\eta = \frac{2 \cdot (NIR^2 - Red^2) + 1.5 \cdot NIR + 0.5 \cdot Red}{NIR + Red + 0.5})</td>
<td>Structure; Reduce the atmospheric perturbation effects, while maintain the vegetation information</td>
</tr>
<tr>
<td>Red-NIR</td>
<td>Perpendicular Vegetation Index(^{19})</td>
<td>PVI</td>
<td>(\sqrt{(NIR_{soil} - NIR_{veg})^2 + (Red_{soil} - Red_{veg})^2})</td>
<td>Structure; Minimize the soil background influence but need the slope and intercept of the soil line</td>
</tr>
<tr>
<td>Red-NIR</td>
<td>Soil Adjusted Vegetation Index(^{3})</td>
<td>SAVI</td>
<td>((1 + L) \cdot (NIR - Red)/(NIR + Red + L))</td>
<td>Structure; Minimize the soil background influence but sensitive to the BRDF effect</td>
</tr>
<tr>
<td>Red-NIR</td>
<td>Modified SAVI<sup>21</sup></td>
<td>MSAVI</td>
<td>((2 \cdot NIR + 1 - \sqrt{(2 \cdot NIR + 1)^2 - 8 \cdot (NIR - Red)})/2)</td>
<td>Structure; Further minimize the soil background influence while increase the dynamic range of vegetation signal</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Red-NIR</td>
<td>Transformed SAVI<sup>20</sup></td>
<td>TSAVI</td>
<td>(a \cdot (NIR - a \cdot Red - b)/(a \cdot NIR + Red - a \cdot b))</td>
<td>Structure; Minimize the soil background influence and work well for LAI and APAR estimations</td>
</tr>
<tr>
<td>Red-NIR</td>
<td>Adjusted TSAVI<sup>182</sup></td>
<td>ATSAVI</td>
<td>(a \cdot (NIR - a \cdot Red - b)/(a \cdot NIR + Red - a \cdot b + 0.08 \cdot (1 + a^2)))</td>
<td>Structure; Minimize the soil background influence and work well for LAI and APAR estimations</td>
</tr>
</tbody>
</table>
| VIS-NIR | Atmospherically Resistant Vegetation Index²⁶ | ARVI | \((NIR - RB)/(NIR + RB),
\(RB = Red - \gamma \cdot (Blue - Red)\)\) | Structure; Minimize the atmospheric effect and work better for vegetated surfaces than for soils, but need the blue band |
| VIS-NIR | Soil Adjusted and Atmospherically Resistant Vegetation Index²⁶ | SARVI | \((1 + L) \cdot (NIR - RB)/(NIR + RB + L),
\(RB = Red - \gamma \cdot (Blue - Red)\)\) | Structure; Minimize both the soil and atmospheric effects, but need the blue band |
<p>| VIS-NIR | Enhanced Vegetation Index<sup>25</sup> | EVI | (2.5 \cdot (NIR - Red)/(NIR + 6 \cdot Red - 7.5 \cdot Blue + 1)) | Structure; Minimize both the soil and atmospheric effects, while sensitive to the BRDF effect and need the blue band |
| Red-NIR | two-band EVI without the blue-band<sup>27</sup> | EVI2 | (2.5 \cdot (NIR - Red)/(NIR + 2.4 \cdot Red + 1)) | Structure; Minimize the soil background influence and no need the blue band, while sensitive to the BRDF effect |</p>
<table>
<thead>
<tr>
<th>Red-NIR</th>
<th>Near-Infrared Reflectance of vegetation<sup>4</sup></th>
<th>NIRv</th>
<th>(NDVI \cdot NIR)</th>
<th>Structure; Minimize the soil background influence, while sensitive to the BRDF effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIS-NIR</td>
<td>Hyperspectral (\text{NIR}_v)<sup>153</sup></td>
<td>NIRvH</td>
<td>(\text{NIR} - \text{Red} - k(\lambda_{\text{NIR}} - \lambda_{\text{Red}}))</td>
<td>Structure; Further minimize the soil background influence, while sensitive to the BRDF effect</td>
</tr>
<tr>
<td>VIS-NIR</td>
<td>Fluorescence Correction Vegetation Index<sup>29</sup></td>
<td>FCVI</td>
<td>(\text{NIR} - \text{VIS})</td>
<td>Structure; Minimize the soil background influence, while sensitive to the BRDF effect</td>
</tr>
<tr>
<td>VIS-NIR</td>
<td>Kernel NDVI<sup>31</sup></td>
<td>kNDVI</td>
<td>(\tanh(NDVI^2))</td>
<td>Structure; Higher sensitivity to canopy structural parameters and GPP</td>
</tr>
<tr>
<td>VIS-NIR</td>
<td>Plant Phenology Index<sup>28</sup></td>
<td>PPI</td>
<td>(-K \cdot \ln\left(\frac{M - \text{DVII}}{M - \text{DVII}_5}\right))</td>
<td>Structure; Linearly related to green LAI, less severely impacted by snow than NDVI and EVI, and work well for phenology at high latitudes, while need the soil DVI</td>
</tr>
<tr>
<td>VIS-NIR</td>
<td>Triangular Vegetation Index<sup>183</sup></td>
<td>TVI</td>
<td>(0.5 \cdot [120 \cdot (R_{750} - R_{550}) - 200 \cdot (R_{670} - R_{550})])</td>
<td>Structure; Biochemical: chlorophyll; Describe the radiation absorbed by the pigments</td>
</tr>
<tr>
<td>VIS-NIR</td>
<td>Modified Triangular Vegetation Index<sup>159</sup></td>
<td>MTVI1</td>
<td>(1.2 \cdot [1.2 \cdot (R_{800} - R_{550}) - 2.5 \cdot (R_{670} - R_{550})])</td>
<td>Structure; Insensitive to pigment changes, and better for LAI estimations than TVI</td>
</tr>
<tr>
<td>VIS-NIR</td>
<td>Modified Triangular Vegetation Index<sup>259</sup></td>
<td>MTVI2</td>
<td>[\frac{1.5 \cdot [1.2 \cdot (R_{800} - R_{550}) - 2.5 \cdot (R_{670} - R_{550})]}{\sqrt{\left(2 \cdot R_{800} + 1\right)^2 - \left(6 \cdot R_{800} - 5 \cdot \sqrt{R_{670}} - 0.1\right)^2}}]</td>
<td>Structure; Minimize both the soil background and chlorophyll effects, while sensitive to LAI and thus a good LAI predictor</td>
</tr>
<tr>
<td>VIS-NIR</td>
<td>Modified Chlorophyll Absorption Ratio Index 1⁵⁹</td>
<td>MCARI1</td>
<td>Structure: Less sensitive to chlorophyll variations than MCARI, while sensitive to LAI changes</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>VIS-NIR</td>
<td>Modified Chlorophyll Absorption Ratio Index 2⁵⁹</td>
<td>MCARI2</td>
<td>Structure: Minimize both the soil background and chlorophyll effects, while sensitive to LAI and thus a good LAI predictor</td>
<td></td>
</tr>
<tr>
<td>VIS-NIR-MIR</td>
<td>MIR corrected NDVI¹⁸⁴</td>
<td>NDVIc</td>
<td>Structure: Considered the canopy closure and understory contribution in LAI estimations by leaf water absorption of open canopies</td>
<td></td>
</tr>
<tr>
<td>VIS-NIR-SWIR</td>
<td>Reduced SR²³</td>
<td>RSR</td>
<td>Structure: Increased the sensitivity and correlation to LAI than SR in boreal forests, while reduced the effect of background reflectance</td>
<td></td>
</tr>
<tr>
<td>Green-Red</td>
<td>Normalized Difference Greenness Index¹⁸⁵</td>
<td>NDGI</td>
<td>Structure: Work well for identifying and mapping vegetation in inundated regions, no need the blue or NIR bands, and can work at PhenoCam imageries</td>
<td></td>
</tr>
<tr>
<td>Green-NIR</td>
<td>Green Chlorophyll Vegetation Index¹⁸⁶</td>
<td>GCVI</td>
<td>Structure: Biochemical: chlorophyll; Depend on both LAI and chlorophyll concentration, and close relationship with LAI and green leaf biomass</td>
<td></td>
</tr>
<tr>
<td>Green-NIR</td>
<td>Green Difference Vegetation Index¹⁸⁷</td>
<td>GDVI</td>
<td>Biochemical: chlorophyll; Work well for predicting the late-season nitrogen requirement for corn</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{MCARI1} = 1.2 \cdot [2.5 \cdot (R_{880} - R_{670}) - 1.3 \cdot (R_{880} - R_{550})] \\
\text{MCARI2} = 1.5 \cdot \left[2.5 \cdot (R_{880} - R_{670}) - 1.3 \cdot (R_{880} - R_{550})\right] \\
\left/ \sqrt{(2 \cdot R_{880} + 1)^2 - (6 \cdot R_{880} - 5 \cdot \sqrt{R_{670}}) - 0.1}\right.
\]

\[
\text{NDVIc} = \text{NDVI} \cdot \left(1 - \frac{\text{MIR} - \text{MIR}_{\text{min}}}{\text{MIR}_{\text{max}} - \text{MIR}_{\text{min}}}\right)
\]

\[
\text{RSR} = \text{SR} \cdot \left(1 - \frac{\text{SWIR}_{\text{max}} - \text{SWIR}_{\text{min}}}{\text{SWIR}_{\text{max}} - \text{SWIR}_{\text{min}}}\right)
\]

\[
\text{NDGI} = \frac{(\text{Green} - \text{Red})}{(\text{Green} + \text{Red})}
\]

\[
\text{GCVI} = \frac{\text{NIR}}{\text{Green}} - 1
\]

\[
\text{GDVI} = \text{NIR} - \text{Green}
\]
<table>
<thead>
<tr>
<th>Green-NIR</th>
<th>Green Normalized Difference Vegetation Index 188</th>
<th>GNDVI</th>
<th>$(NIR - \text{Green})/(NIR + \text{Green})$</th>
<th>Biochemical: chlorophyll; More sensitive to chlorophyll concentration than NDVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red edge-NIR</td>
<td>Red Edge Chlorophyll Index 33</td>
<td>CIred-edge</td>
<td>$NIR/Re - 1$</td>
<td>Biochemical: chlorophyll; Linear relationship between the chlorophyll content in maize and soybean leaves with CIred-edge</td>
</tr>
<tr>
<td>Red edge-NIR</td>
<td>Red-edge NDVI 14</td>
<td>NDVI$_{re}$</td>
<td>$(NIR - RE)/(NIR + RE)$</td>
<td>Biochemical: chlorophyll; Directly proportional to chlorophyll and serve as indicators of leaf senescence</td>
</tr>
<tr>
<td>Red edge-NIR</td>
<td>MERIS Total Chlorophyll Index 35</td>
<td>MTCI</td>
<td>$((R_{750} - R_{710})/(R_{710} - R_{680}))$</td>
<td>Biochemical: chlorophyll; Correlate strongly with red-edge position and is sensitive to high values of chlorophyll content.</td>
</tr>
<tr>
<td>Red-Red edge</td>
<td>Chlorophyll Absorption Ratio Index 189,190</td>
<td>CARI</td>
<td>$(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550})$</td>
<td>Biochemical: chlorophyll; Minimize the effect of nonphotosynthetic materials in the FPAR estimations</td>
</tr>
<tr>
<td>Red-Red edge</td>
<td>Modified Chlorophyll Absorption in Reflectance Index 190</td>
<td>MCARI</td>
<td>$\left[\frac{(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550})}{(R_{700}/R_{670})}\right]$</td>
<td>Biochemical: chlorophyll; Sensitive to leaf chlorophyll concentrations</td>
</tr>
<tr>
<td>Red-Red edge</td>
<td>Transformed Chlorophyll Absorption in Reflectance Index 191</td>
<td>TCARI</td>
<td>$3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})]$</td>
<td>Biochemical: chlorophyll; Sensitive to chlorophyll over a wide range of variations, and is more sensitive to chlorophyll than MCARI</td>
</tr>
<tr>
<td>VIS-NIR</td>
<td>Pigment Specific Normalized Difference<sup>192</sup></td>
<td>PSND</td>
<td>((R_{800} - R_{675})/((R_{800} + R_{675})\text{ for Chl}_a);)</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>VIS-NIR</td>
<td>Pigment Specific Simple Ratio<sup>192</sup></td>
<td>PSSR</td>
<td>((R_{800}/R_{675})\text{ for Chl}_a;)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>((R_{800}/R_{650})\text{ for Chl}_b;)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>((R_{800}/R_{500})\text{ for Car};)</td>
<td></td>
</tr>
<tr>
<td>VIS-Red edge</td>
<td>Carotenoid Reflectance Index<sup>193</sup></td>
<td>CRI</td>
<td>(1/R_{510} - 1/R_{550};)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1/R_{510} - 1/R_{700};)</td>
<td></td>
</tr>
<tr>
<td>VIS-Red edge</td>
<td>Plant Senescence Reflectance Index<sup>38</sup></td>
<td>PSRI</td>
<td>((R_{678} - R_{500})/R_{750};)</td>
<td></td>
</tr>
<tr>
<td>VIS</td>
<td>Normalized Pigments Chlorophyll Ratio Index<sup>37</sup></td>
<td>NPCI</td>
<td>((R_{680} - R_{430})/((R_{680} + R_{430})\text{ for Car};)</td>
<td></td>
</tr>
<tr>
<td>VIS-NIR</td>
<td>Structure Insensitive Pigment Index<sup>36</sup></td>
<td>SIPI</td>
<td>((R_{800} - R_{445})/((R_{800} - R_{680})\text{ for Car};)</td>
<td></td>
</tr>
<tr>
<td>Green-Red edge</td>
<td>Anthocyanin Reflectance Index<sup>39</sup></td>
<td>ARI</td>
<td>(1/R_{550} - 1/R_{700};)</td>
<td></td>
</tr>
</tbody>
</table>

Biochemical: chlorophyll, carotenoid; Strong relation with chlorophyll, while poor relation with carotenoid.

Biochemical: chlorophyll, carotenoid; Strong relation with chlorophyll, while poor relation with carotenoid.

Biochemical: carotenoid; Remove the chlorophyll effect from the reflectance in the green edge range, and is sufficient to estimate the carotenoid content in plant leaves.

Biochemical: carotenoid, chlorophyll; Sensitive to the Car/Chl ratio, and can be used as a quantitative measure of leaf senescence/fruit ripening process.

Biochemical: carotenoid, chlorophyll; Vary with the ratio of total pigments/Chl, indicative of plant phenology status.

Biochemical: carotenoid, chlorophyll; a; Physiological; Minimize the confounding effects of the leaf surface and mesophyll structure, and provide the best semi-empirical estimation of the ratio of Car/Chla.

Biochemical: anthocyanin; An accurate estimation of anthocyanin accumulation.
VIS-NIR	Modified Anthocyanin Reflectance Index	MARI	\(\left(1/R_{550} - 1/R_{700}\right) \cdot \text{NIR} \)	Biochemical: anthocyanin; The best fit function with the Anthocyanin content, and yield accurate assessment
VIS	Red/Green Ratio Index	RGRI	\(\text{Red/Green} \)	Biochemical: anthocyanin; Strongly related to pigment estimated by destructive sampling and spectrophotometric quantification
Green-NIR	Anthocyanin Content Index	ACI	\(a_{\text{Green}}/a_{\text{NIR}} \)	Biochemical: anthocyanin; Linear relationship with total extractable anthocyanin content
Green-NIR	Modified Anthocyanin Content Index	MACI	\(\text{NIR/Green} \)	Biochemical: anthocyanin, chlorophyll; Depends on three variables: chlorophyll, anthocyanin, and leaf thickness, and when the three vary independently, MACI becomes insensitive to anthocyanin.
NIR-SWIR	Normalized Difference Water Index	NDWI	\(\frac{\text{NIR}_{860} - \text{SWIR}_{1240}}{\text{NIR}_{860} + \text{SWIR}_{1240}} \)	Biochemical: water content; Sensitive to vegetation water content changes, less sensitive to atmospheric effects than NDVI, while not completely remove the soil background reflectance effect as NDVI
NIR-SWIR	Land Surface Water Index	LSWI	\(\frac{R_{788-899} - R_{1580-1790}}{R_{788-899} + R_{1580-1790}} \)	Biochemical: water content; A useful indicator for water content of evergreen needleleaf forest, useful for improving classification of cropland and forests, and improve the GPP estimations in the VPM model

1. VIS-NIR: Visible-Near Infrared
2. VIS: Visible
3. Green-NIR: Green-Near Infrared
4. NIR-SWIR: Near Infrared-Swift Infrared
5. MACI: Modified Anthocyanin Content Index
6. ACI: Anthocyanin Content Index
7. RGRI: Red/Green Ratio Index
8. MARI: Modified Anthocyanin Reflectance Index
9. NDWI: Normalized Difference Water Index
10. LSWI: Land Surface Water Index
11. VIS, NIR, SWIR, SWIR: Different spectral regions in the electromagnetic spectrum.
<table>
<thead>
<tr>
<th>NIR-SWIR</th>
<th>Normalized Difference Infrared Index<sup>45</sup></th>
<th>NDII</th>
<th>(\frac{R_{850} - R_{1650}}{R_{850} + R_{1650}})</th>
<th>Biochemical: water content; Related to canopy water content, linearly related to Equivalent Water Thickness (EWT) for corn, soybean and woodland</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIR-SWIR</td>
<td>Water Index<sup>106</sup></td>
<td>WI</td>
<td>(\frac{R_{900}}{R_{970}})</td>
<td>Biochemical: water content; Correlate with plant water concentration, and useful in evaluation of wild fire risk and drought</td>
</tr>
<tr>
<td>SWIR</td>
<td>Normalized Difference Lignin Index<sup>47</sup></td>
<td>NDLI</td>
<td>(\frac{[\log(1/R_{1754}) - \log(1/R_{1680})]}{[\log(1/R_{1754}) + \log(1/R_{1680})]})</td>
<td>Biochemical: lignin; Significantly correlate to foliar lignin concentration in green canopies, while unable to assess foliar or bulk canopy lignin in senescing vegetation</td>
</tr>
<tr>
<td>SWIR</td>
<td>Cellulose Absorption Index<sup>197</sup></td>
<td>CAI</td>
<td>(100 \cdot \left[0.5 \cdot (R_{2019} + R_{2296}) - R_{2109}\right])</td>
<td>Biochemical: cellulose; Positive for all crop residues, while all soils have negative values, and thus can discriminate crop residues from soil under dry and moist conditions</td>
</tr>
<tr>
<td>SWIR</td>
<td>Lignin Cellulose Absorption Index<sup>198</sup></td>
<td>LCA</td>
<td>(100 \cdot [(R_{2185-2225} - R_{2145-2185}) + (R_{2185-2225} - R_{2205-2365})])</td>
<td>Biochemical: lignin, cellulose; Linearly relate to crop residue cover with the (R^2) higher than eight VIs in the evaluation</td>
</tr>
<tr>
<td>SWIR</td>
<td>Normalized Difference Nitrogen Index<sup>47</sup></td>
<td>NDNI</td>
<td>(\frac{[\log(1/R_{1510}) - \log(1/R_{1680})]}{[\log(1/R_{1510}) + \log(1/R_{1680})]})</td>
<td>Biochemical: nitrogen; Significantly correlate to foliar nitrogen concentration in green canopies, while unable to assess foliar or bulk canopy nitrogen in senescing vegetation</td>
</tr>
<tr>
<td>Waveband</td>
<td>Index Description</td>
<td>Formula</td>
<td>Physiological/Biochemical</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>---------</td>
<td>---------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>VIS</td>
<td>Photochemical Reflectance Index</td>
<td>$(R_{531} - R_{570})/((R_{531} - R_{570})$</td>
<td>Physiological; Well track the diurnal changes of photosynthetic activity, but need to reduce complications associated with diurnal sun angle changes</td>
<td></td>
</tr>
<tr>
<td>VIS</td>
<td>Chlorophyll Carotenoid Index</td>
<td>$\frac{Band_{11} - Band_{1}}{Band_{11} + Band_{1}}$</td>
<td>Physiological; Well track the diurnal changes of photosynthetic activity, but need to reduce complications associated with diurnal sun angle changes, can be acquired at the global scale with MODIS data compared to PRI</td>
<td></td>
</tr>
<tr>
<td>VIS</td>
<td>Green Chromatic Coordinate</td>
<td>$\frac{Green}{(Red + Green + Blue)}$</td>
<td>Physiological; Well track the seasonality of daily GPP and phenology for evergreen conifers at multiple spatial scales, and can be acquired at the global scale with MODIS data compared to PRI</td>
<td></td>
</tr>
<tr>
<td>Red edge</td>
<td>Red-edge Vegetation Stress Index</td>
<td>$(R_{714} + R_{752})/2 - R_{733}$</td>
<td>Physiological; Useful in the detection of stressed leaves in grapevine leafroll disease</td>
<td></td>
</tr>
<tr>
<td>VIS</td>
<td>Enhanced Bloom Index</td>
<td>$\frac{Red + Green + Blue}{Green} \cdot \frac{Red + Blue + e}{(Red - Blue + e)}$</td>
<td>Physiological; Well track the diurnal changes of photosynthetic activity, but need to reduce complications associated with diurnal sun angle changes, can be captured using RGB imagery from ground to satellites</td>
<td></td>
</tr>
</tbody>
</table>
Box 1: Physical clarification of a few VIs and SIF on their linkages and differences

DVI is defined as the difference between the NIR and Red bands\(^{19}\): \[DVI = NIR - Red \quad (1) \]

Here we demonstrate the linkage between NIRv and other VIs such as DVI, EVI and EVI2, by using DVI as the bridge among them. By definition, NIRv can be derived as the product of DVI and \(\frac{NIR}{NIR+Red}\)^{4}.

\[NIRv = NDVI \cdot NIR = \frac{NIR-Red}{NIR+Red} \cdot NIR = DVI \cdot \frac{NIR}{NIR+Red} \sim DVI \quad (2) \]

\[EVI = 2.5 \cdot \frac{NIR-Red}{NIR+6 \cdot Red-7.5 \cdot Blue+1} = DVI \cdot \frac{2.5}{NIR+6 \cdot Red-7.5 \cdot Blue+1} \sim DVI \quad (3) \]

\[EVI2 = 2.5 \cdot \frac{NIR-Red}{NIR+2.4 \cdot Red+1} = DVI \cdot \frac{2.5}{NIR+2.4 \cdot Red+1} \sim DVI \quad (4) \]

Below we show the linkage and difference between NDVI, SR and SAVI. Note when \(L \) in SAVI is 0, SAVI is equal to NDVI.

\[NDVI = \frac{NIR-Red}{NIR+Red} = \frac{SR-1}{SR+1} = 1 - \frac{2}{SR+1} \quad (5) \]

\[SR = NIR/Red \quad (6) \]

\[SAVI = (1 + L) \cdot \frac{NIR-Red}{NIR+Red+L} \quad (7) \]

Based on spectral invariants theory, NIRv and SIF/PAR can be modelled in similar formula\(^{81}\):

\[NIRv = FPAR \cdot \omega \cdot f_{esc} \quad (8) \]
\[SIF/PAR = FPAR \cdot \Phi_F \cdot f_{esc} \quad (9) \]

where \(f_{esc} \) is the photon escape probability from the canopy, \(\omega \) is the leaf single scattering albedo in the NIR band, which is close to 1 in the NIR band, and \(\Phi_F \) is the fluorescence yield. Rearranging Eqs. 8 and 9 gives

\[NIRv: (SIF/PAR) = \omega \cdot \Phi_F \quad (10) \]
Glossary

AVHRR: Advanced Very High Resolution Radiometer

CHIME: Copernicus Hyperspectral Imaging Mission for the Environment

DESI: DLR Earth Sensing Imaging Spectrometer

DSCOVR: Deep Space Climate Observatory

EnMap: Environmental Monitoring and Analysis Program

EPIC: Earth Polychromatic Imaging Camera

ETM+: Enhanced Thematic Mapper Plus

FLEX: FLuorescence EXplorer

GIMMS-3g: Global Inventory Modeling and Mapping Studies-3rd generation

GOES: Geostationary Operational Environmental Satellite

HiSUI: Hyper-spectral Imager SUIte

LTDR4: Long Term Data Record version 4

MAIAC: Multi-Angle Implementation of Atmospheric Correction

MERIS: MEdium Resolution Imaging Spectrometer

MODIS: MODe rate resolution Imaging Spectroradiometer

MSG: Meteosat Second Generation

PACE: Plankton, Aerosol, Cloud, ocean Ecosystem

PRISMA: PRercuratore IperSpettrale della Missione Applicativa

SBG: Surface Biology and Geology

SEVIRI: Spinning Enhanced Visible and Infrared Imager

SPOT-VGT: Systeme Pour l'Observation de la Terre VEGETATION

TEMPO: Tropospheric Emissions: Monitoring of Pollution

VIIRS: Visible Infrared Imaging Radiometer Suite
VIP3: Vegetation Index and Phenology version 3

Acknowledgements

This research was supported by the National Aeronautics and Space Administration (NASA) through Remote Sensing Theory and Arctic Boreal Vulnerability Experiment (ABoVE) grants 80NSSC21K0568 and NNH18ZDA001N granted to Min Chen. J. X. was supported by National Science Foundation (NSF) (Macrosystem Biology & NEON-Enabled Science program: DEB-2017870). Y. R. was supported by National Research Foundation of Korea (NRF-2019R1A2C2084626). The authors thank Grayson Badgley for the fruitful discussions on vegetation indices. The TROPOMI far-red daily SIF dataset was acquired from ftp://fluo.gps.caltech.edu/data/tropomi provided by Philipp Köhler. The authors acknowledge the insightful comments and suggestions from the editors and three anonymous reviewers.

Author contributions

Y. Z., D. H., A. H., J. B., G. A. and M. C. wrote the synopsis and the initial draft of the manuscript. B. D., J. C., J. J., C. F., B. L., Y. R. and J. X. reviewed and edited the manuscript before submission. All authors made substantial contributions to the improvement of manuscript.

Competing interests

The authors declare no competing interests.