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1. Dataset and methods 3 

 4 

1.1 Airborne datasets 5 

The canopy reflectance for full-spectrum (i.e., 350~2500 nm with the spectral resolution of 1 nm) was 6 

acquired in the NASA HyspIRI Airborne Campaign1,2. The reflectance was measured over managed 7 

agricultural fields in the Imperial Valley, Central Valley, and other vegetation such as 8 

chaparral/shrubland, savanna in Sierra mountain forests in California. There were in total 156 9 

observations measured during spring (March and April) and early summer (June) in 2013 and 2014, 10 

and these observations were atmospherically corrected to obtain surface reflectance1. The reflectance 11 

at 469nm, 648nm and 858nm that fall in the central wavelength of Moderate Resolution Imaging 12 

Spectroradiometer (MODIS) surface reflectance in the blue, red and NIR bands was used. 13 

 14 

1.2 Satellite datasets 15 

The daily MODIS MCD43A4 V6 Nadir Bidirectional Reflectance Distribution Function (BRDF)-16 

Adjusted Reflectance (NBAR) data3; the 4-day MCD15A3H V6 level-4, Combined Fraction of 17 

Photosynthetically Active Radiation (FPAR) and Leaf Area Index (LAI) data4; and the yearly 18 

MCD12Q1 V6 Land Cover Type5 datasets were used. All MODIS datasets with 500 m spatial 19 

resolution were obtained from the Google Earth Engine (GEE) platform6. Only snow-free MODIS 20 

NBAR and FPAR data with good Quality Assurance (QA) flags were used. The International 21 

Geosphere-Biosphere Programme (IGBP) classification layer in the MCD12Q1 data was used to 22 

calculate the proportions of each land cover type within a given pixel. The TROPOMI far-red daily 23 

SIF dataset with a spatial resolution of 7 km × 3.5 km at nadir7 from 24 

ftp://fluo.gps.caltech.edu/data/tropomi, and DSCOVR/EPIC-derived daily PAR data with 0.1° × 0.1° 25 

spatial resolution were used8,9. The SIF/PAR ratio can be used to normalize SIF by solar incident 26 

irradiance and to be comparable with VIs. The time period of 2018.03-2019.02 was consistent with 27 

the TROPOMI SIF dataset, which started in March, 2018. The data were averagely aggregated to 4-28 

days, and the spatial resolution was aggregated to 0.1°. In the spatial aggregation, the red, NIR and 29 

blue reflectance was firstly averagely aggregated to 0.1 degrees, and then the VIs were calculated. All 30 

pixels with the proportion of non-vegetation types (i.e., snow/ice, water, barren and urban) larger than 31 

50% were excluded in the analysis. 32 

 33 

1.3 Radiative transfer model simulations 34 

The comparison between different VIs was first carried out based on the Soil Canopy Observation, 35 

Photochemistry and Energy fluxes (SCOPE) v1.70 model10 simulations at different canopy structure, 36 

http://fluo.gps.caltech.edu/data/tropomi


sun-sensor geometry, soil background and leaf spectral properties. NIRBS represents the NIR 37 

reflectance of vegetation with a black soil background. Leaf area index: [0.5, 1, 3, 5]; leaf angle 38 

distribution: spherical, erectophile, planophile; leaf chlorophyll content (μg cm-2): [40, 60, 80]; solar 39 

zenith angle: [20°, 30°, 40°, 50°, 60°]; view zenith angle: [0°, 10°, 20°, 30°, 40°, 50°, 60°]; soil 40 

spectra: four soil spectrum. The broadband incoming shortwave radiation (0.4-2.5 um) was set at 600 41 

W m-2 for each simulation, and thus the VIs and SIF are still comparable although they have different 42 

units. Default values for SCOPE v1.70 were used for all other parameters, e.g., Vcmax=60 μmol m-2 43 

s-1. In accordance with the satellite and airborne data, the simulated reflectance at 469 nm, 648 nm and 44 

858 nm as the blue, red and NIR bands was used to calculate the vegetation indices: NIRv, DVI, EVI 45 

and EVI2. The SIF at 760nm was also simulated using the SCOPE model. Then the soil background 46 

was replaced with zero reflectance to calculate the NIRBS. 47 

To evaluate the sensitivity of the vegetation indices to different atmosphere conditions, the Second 48 

Simulation of a Satellite Signal in the Solar Spectrum (6S) model11 was used to convert the top-of-49 

canopy reflectance from the SCOPE v1.70 model to the top-of-atmosphere reflectance, for visibility 50 

levels of 5 km and 100 km, respectively. 51 

2. Similarity and sensitivity of VIs 52 

Below we discuss the intrinsic features of several widely-used VIs at the global scale, including 53 

NDVI, EVI, EVI2 and NIRv, with an emphasis on their response to the artefacts such as the impacts 54 

of soil background, atmospheric contamination, canopy structural and sun-target-sensor geometry 55 

effects. 56 

2.1 Similarity and difference among VIs 57 

Canopy radiative transfer models and airborne data confirm strong linear correlations between 58 

NIRv, DVI, EVI and EVI2 (Figs. S1 and S2). All of them can be good proxies of pure vegetation NIR 59 

reflectance, an ideal metric for retrieving vegetation attributes and can be represented by NIR surface 60 

reflectance with a black soil background (NIRBS)12, which is considered as a robust indicator of the 61 

fraction of absorbed photosynthetically active radiation (FPAR). NIRv is currently the best 62 

approximation of NIRBS considering the physical representation and its magnitude. Satellite-based 63 

data also confirm that these four widely used VIs show consistent spatio-temporal correlations (Fig. 3; 64 

Figs. S3 and S4), with high correlation coefficients (>0.9 in most regions especially over dense 65 

canopies at the global scale). Such relationships are also supported by several existing studies13,14. 66 

Therefore, we could use any of the four VIs for spatio-temporal analyses over densely vegetated areas 67 

with strong confidence because they are functionally equivalent and would theoretically yield similar 68 

results, while NDVI behaves differently. 69 



2.2 Sensitivity of these VIs 70 

Resistance of VIs to soil and atmospheric impacts varies. SAVI and EVI have been intentionally 71 

designed to reduce the influence of soil background based on the soil spectrum line, with a shift of the 72 

origin of the reflectance spectra in the red-NIR space to account for the soil-vegetation interactions
15,16

, 73 

and thus are relatively insensitive to effects of background soils. By contrast, NDVI is more sensitive 74 

to soil than SAVI, especially at low fractional vegetation cover15,17. NDVI can be expressed as 75 

DVI/(NIR+Red). Since DVI is less sensitive to the soil brightness than the single band reflectance, 76 

brighter soil may mostly increase the denominator and thus reduce NDVI, while darker soil may 77 

mostly decrease the denominator and increase NDVI18. Therefore, wet soil with lower reflectance 78 

usually leads to a higher NDVI17. Similarly, NIRv partially reduces the soil impacts because of the 79 

opposite response of NDVI and NIR to the changes of soil brightness, and for example, smaller (or 80 

larger) NDVI and larger (or smaller) NIR are expected with brighter (or darker) soil.  81 

By design, EVI achieved considerable improvements for minimizing atmospheric effects19 82 

compared to NDVI20. In fact, EVI is one of the few indices that are resistant to both changing 83 

atmospheric conditions (according to a comparison with TOA reflectance data) and soil background 84 

(Fig. S5)16. Other VIs without a blue band are less robust than EVI under different atmospheric 85 

conditions (Fig. S5), although they perform similarly as EVI if atmospheric effects are minimal or 86 

properly corrected. However, the atmospherically corrected blue reflectance is usually noisier than 87 

that in red and NIR bands due to effects of aerosols, sub-pixel clouds or sub-pixel fractional snow 88 

cover21, which may bring additional uncertainty to practical EVI-based analyses (Fig. S3). 89 

The formula of NDVI can be reorganized as a monotonously increasing function of SR (Eq. 5)22. 90 

As leaf multiple scattering is much stronger in the NIR band than in the red band, the SR of shaded 91 

leaves is relatively larger than that of sunlit leaves, as is the case for NDVI. Nevertheless, the 92 

magnitudes of NIR and red reflectance and their differences (DVI) are expected to be smaller in 93 

shaded leaves than in sunlit leaves. Therefore, DVI is typically smaller with more canopy shadows in 94 

view, while NDVI is the opposite. Radiative transfer model simulations also show that EVI, EVI2, 95 

NIRv, and DVI have similar hemispheric distributions with view angle, while NDVI is different (Fig. 96 

S6). EVI is the largest in the direction where the sun and view angle coincide (hotspot), and the 97 

smallest in the forward scattering direction (dark-spot23). In contrast, NDVI gradually changes from 98 

its minimum at the hotspot angle to the maximum value at dark-spot (Fig. S6). However, the variation 99 

of NDVI due to different view geometries simulated over a homogeneous canopy, of LAI=3, is only 100 

about 10% of its nadir value, which is relatively small compared to 30% for EVI and NIRv (Fig. S6).  101 

Therefore, NDVI has been found to be less sensitive to the sun-target-sensor geometry than EVI 102 

and NIRv (Fig. S6), and as well as the single-band red and NIR reflectance24-26. These differences in 103 

sensitivities to view geometries can be understood on the basis of mechanistic reasoning: as the shape 104 

of BRDF is more or less similar across adjacent spectral bands (all have hotspot although not the same 105 



sharp), the ratio of spectral bands can reduce the sun-target-sensor geometry effects on remote sensing 106 

measurements27. Therefore, ratio-based VIs such as NDVI, SR and MSR are slightly less sensitive to 107 

such artefacts than other VIs such as DVI, EVI, EVI2 and NIRv, although such artefacts are still not 108 

negligible as indicated by Eqs. 8 and 9. This has been reported in studies such as the large impacts of 109 

the sensor view angle changes in AVHRR datasets in global greening/browning studies24,28. PRI, CCI 110 

and a few other red-edge VIs are also ratio-based VIs and therefore have similar characteristics as 111 

NDVI regarding the sensitivity to view geometry29-31, while we recommend all the VIs to be angular-112 

corrected by the kernel-driven BRDF model32 especially in the applications of time-series analysis or 113 

the images with different acquisition times and platforms. The degree of robustness to the artefacts 114 

due to soil, sun-target-sensor geometry, and atmospheric aerosol impacts of several widely used VIs 115 

are summarized in Table 1.  116 

 117 

 118 

Fig. S1 The comparison among different VIs and SIF based on the SOPE model simulations. 119 

The simulation was conducted using a wide range of canopy structure, sun-sensor geometry, soil 120 

background and leaf spectral properties. Except for NDVI and FPAR, all the other remote sensing 121 

indices: NIRBS, NIRv, DVI, EVI, EVI2 and SIF under no stress conditions, were well correlated with 122 

each other, with the correlation coefficient (R) greater than 0.97. NIRBS represents the NIR reflectance 123 

of vegetation with a black soil background (no soil contribution, or soil reflectance is zero), and can 124 

serve as the reference to evaluate the performance of different VIs. There are slight nonlinearities 125 



between EVI, EVI2 and NIRBS, NIRv, DVI, as EVI and EVI2 values are smaller for dense vegetation 126 

conditions. EVI and DVI are larger than NIRBS for small values, while NIRv was the closest to the 127 

origin of coordinates when compared to NIRBS, and the slope of NIRv versus NIRBS was the closest to 128 

1. NIRBS can be best approximated by NIRv with the highest R value, which is important for the 129 

photon escape ratio fesc calculation. Only NDVI had a different trend than NIRv, EVI and DVI, when 130 

compared to NIRBS. 131 

 132 

Fig. S2 The comparison between different VIs with DVI and NIRv from NASA HyspIRI 133 

Airborne Campaign. The study area is over managed agricultural fields and Sierra mountain forests 134 

in California. NIRv, DVI, EVI and EVI2 were well correlated with each other, with the coefficient of 135 

determination (R2) greater than 0.97, although EVI and EVI2 show slight nonlinearity with DVI and 136 

NIRv for dense vegetation canopies. NDVI and NIRv have weaker linear relationships and show 137 

some nonlinearity, although the R2 of the linear regression is 0.82 for the airborne datasets. 138 



 139 

 140 

Fig. S3 Spatially-explicit temporal correlations between MODIS NIRv and other remote sensing 141 

measures. The dataset is during March 2018 to February 2019, with the temporal resolution of 4 days 142 

and 0.1° spatial resolution. The R between NIRv and DVI, EVI and EVI2 could be close to 1, in most 143 

places in the world (Fig. S3b-d). Among DVI, EVI and EVI2, the R between DVI and NIRv was the 144 

highest (Fig. 3b), followed by that between EVI2 and NIRv, with some exceptions in the 145 

arid/semiarid regions in central Australia. The R for EVI and NIRv was relatively smaller than that of 146 

DVI and EVI2 at high latitudes, possibly due to the noise in the blue band. The desirable effects of 147 

blue band on EVI is diminished over snow/ice, at the annual scale, as opposed to the growing season. 148 

This could be due to snow/ice contamination in more than 50% vegetated pixels. Global average R 149 

between NIRv and NDVI was about 0.87, but could be low (<0.3) over South American and 150 

Southeast Asian tropical rainforests as well as central Australian drylands. Global average R between 151 

NIRv and SIF was around 0.63, with the highest values (>0.8) primarily for places that were 152 

dominated by croplands or woody savannas. The R between NIRv and FPAR was relatively larger in 153 

the Northern Hemisphere than in the Southern Hemisphere, except for the forested area in low 154 

latitudes such as South China and Southeast Asia. 155 



 156 

 157 

 158 

Fig. S4 Global spatial correlations between monthly-averaged MODIS NIRv and other remote 159 

sensing measures. The dataset was aggregated to different spatial resolutions (0.1° to 0.2° and 0.5°) 160 

in August, 2018 (panel a), during 2018.03-2019.02 period, upscaled to different temporal scales (4-, 161 

8- and 16-day) and at 0.1°  spatial resolution (panel b). Red circle refers to the mean value, boxes 162 

represent the interquartile ranges of the 25th (Q25) and 75th (Q75) percentiles, and whiskers cover the 163 

ranges of Q25 -1.5·(Q75 - Q25) and Q75+1.5·(Q75 - Q25). At 0.1° resolution, the spatial correlation 164 

(indicated by R) between NIRv and DVI, EVI or EVI2 was very high (R≈1), but relatively lower for 165 

NDVI, SIF, SIF/PAR and FPAR (R=0.84, 0.86, 0.85, and 0.72, respectively), respectively. R values 166 

for all indices increased with an increase in length of spatial window, except that R values for DVI, 167 

EVI and EVI2 were already very high. The temporal variation of 4-, 8- and 16-day DVI and EVI2 168 

were highly correlated with NIRv (R≈1 almost everywhere). Spatial correlation between NIRv and 169 

EVI were also high across different temporal scales: all the periods had R>0.94.  170 

 171 

 172 

 173 

 174 



 175 

Fig. S5 Sensitivity analysis of different VIs and spectral bands. The dataset is at the top of 176 

atmosphere, under different atmospheric conditions (5-km visibility vs. 100-km visibility) and soil 177 

background (dark vs. bright). The atmospheric model type is mid-latitude summer, and the standard 178 

aerosol model is continental. Based on model simulations with Cab=60 μg cm-2; spherical leaf 179 

inclination angle distribution; solar zenith angle=30°; nadir view; the LAI ranges from 0.5 to 7.0 with 180 

the step of 0.5. The canopy parameters are the same as Fig. S1. The top-of-atmosphere (TOA) NIRv, 181 

DVI and EVI2, with only the Red and NIR bands, have similar sensitivity to atmospheric conditions 182 

and soil background. For the same LAI, the atmospheric visibility has a larger impact on these VIs 183 

than soil background. The NDVI for TOA observations was sensitive to the atmospheric conditions, 184 

and shows sensitivities to soil background only when LAI is small, i.e., less than 1. The bright soil 185 

and dark soil have two different spectra shapes, and thus the bright soil with a steep slope of the 186 

reflectance spectrum happens to have a larger NDVI than the dark soil, while the bright soil usually 187 

has a smaller NDVI than the dark soil if the slope of the spectrum at the red edge is the same or flatter 188 

(Eq. 5). This means bright soil may not necessarily have a smaller NDVI than dark soil, and the slope 189 

of the spectrum at the red edge needs to be considered. EVI stands out to be the least impacted VI to 190 

either the atmospheric or soil background at all LAIs, with the introduction of the blue band into its 191 

formula. The coefficients of 6 and 7.5 in the denominator of EVI in Eq. 3 are for the aerosol effects, 192 

which uses the blue band to correct for the aerosol influences in the red band. Therefore EVI is 193 

recommended for use under imperfect atmospheric correction conditions.  194 

 195 



 196 

Fig. S6 The angular distribution of different VIs and SIF simulated by the SCOPE v1.70 model. 197 

The simulation dataset was set for LAI=3; Cab=60 μg cm-2; spherical leaf inclination angle 198 

distribution; solar zenith angle=30°; the view zenith angle ranges from 0° to 70°. Except for NDVI, all 199 

the other four VIs and SIF have extremely similar hemispheric distributions with view angle. The 200 

maximum values are located in the hotspot direction where the sun and view angle coincide, while the 201 

values were the smallest in the forward scattering direction (dark-spot23) (Fig. S6a-c,e,f). In contrast, 202 

NDVI reached the minimum value for the hotspot, and the maximum value for the dark-spot (Fig. 203 

S6d). NDVI gradually became larger when the view angle was departing from the hotspot direction 204 

(more shadows) while the other VIs and SIF showed the opposite trends, except for large view zenith 205 

angles. This means NDVI responds differently to changes in the viewing geometry, and the shadows 206 

in view, from the other VIs and SIF. The variation of NDVI due to different view geometries was 207 

about 10% of its nadir value, while the variations of other indices were about 30% of their nadir 208 

values, suggesting that NDVI is less sensitive to the view geometry and the shadows in view than the 209 

other indices. 210 
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