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Abstract 16 
Halocarbons contained in equipment such as air conditioners, fire extinguishers, and foams 17 
continue to be emitted after production has ceased.  These ‘banks’ within equipment and 18 
applications are thus potential sources of future emissions, and must be carefully accounted for 19 
in order to evaluate nascent production versus banked emissions.  Here, we build on a 20 
probabilistic Bayesian model, previously developed to quantify CFC-11, 12 and 113 banks and 21 
their emissions.  We extend this model to a suite of the major banked chemicals regulated under 22 
the Montreal Protocol (HCFC-22, HCFC-141b, and HCFC-142b, halon-1211, and halon-1301, 23 
and CFC-114 and CFC-115) along with CFC-11, 12 and 113 in order to quantify a fuller range of 24 
ozone-depleting substance banks by chemical and equipment type.  We show that if atmospheric 25 
lifetime and prior assumptions are accurate, banks are very likely larger than previous 26 
international assessments suggest, and that total production has been very likely higher than 27 
reported. We identify that banks of greatest climate-relevance, as determined by global warming 28 
potential weighting, are largely concentrated in CFC-11 foams and CFC-12 and HCFC-22 non-29 
hermetic refrigeration.  Halons, CFC-11, and 12 banks dominate the banks weighted by ozone 30 
depletion potential. Thus, we identify and quantify the uncertainties in substantial banks whose 31 
future emissions will contribute to future global warming and delay ozone hole recovery if left 32 
unrecovered.  33 
 34 
1. Introduction 35 
 36 
The Montreal Protocol regulates the production of ozone-depleting substances (ODPs), and its 37 
implementation has avoided a world with catastrophic stratospheric ozone depletion (Newman et 38 
al., 2009).  Globally, there has been a near-cessation of chlorofluorocarbon (CFC) and halon 39 
production since 2010, and global production of the replacement hydrochlorofluorocarbons 40 
(HCFCs), are scheduled to be phased-out by 2030.  Despite production phase-out, these 41 
chemicals persist in old equipment produced prior to phase-out, such as refrigeration, air 42 
conditioners, foams, and fire extinguishers.  These reservoirs of materials (termed ‘banks’) 43 
continue to be sources of emissions (e.g., WMO, 2018).  Previously published estimates of bank 44 
sizes and bank emissions vary widely due to different estimation techniques that incorporate 45 
incomplete or imprecise information (TEAP, 2009; WMO, 2003).  This uncertainty obscures 46 
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ongoing emissions attribution and undermines international efforts to evaluate global compliance 47 
with the Montreal Protocol.  In earlier work, Lickley et al. (2020, 2021) developed a Bayesian 48 
probabilistic banks model for CFCs that incorporates the widest range of constraints to date 49 
(Lickley et al., 2020, 2021).  Here, we extend this model to the suite of major chemicals 50 
regulated by the Protocol that are subject to banking.   51 

 Previously published assessments typically rely on one of three modeling approaches to 52 
estimate bank sizes and to then estimate emissions associated with these banks.  In the “top-53 
down” approach  (e.g. WMO, 2003), banks are estimated as the cumulative difference between 54 
reported production and observationally-derived emissions.  However, by taking the cumulative 55 
sum of a small difference between two large values, small biases in emissions or reported 56 
production estimates can propagate into large biases in bank estimates (Velders & Daniel, 2014).  57 
Some type of bias is thus expected since total production has very likely been less than reported 58 
production both due to under-reporting of production (e.g. Gamlen et al., 1986; Montzka et al., 59 
2018) and due to the exclusion of point of production losses in reported production values.  60 
Further, emissions estimates rely on observed concentrations along with global lifetime 61 
estimates, which have large uncertainties associated with them (SPARC, 2013).  62 

The second approach relies on a “bottom-up” accounting method (Ashford et al., 2004; 63 
IPCC/TEAP, 2006), where the inventory of sales by equipment type are carefully tallied along 64 
with estimated release rates by application use. The bottom-up approach also relies on sales data 65 
from surveys of various equipment types and products as well as estimates of their respective 66 
leakage rates (SROC, 2005). These are all subject to uncertainties, which contributes to 67 
uncertainties in bottom-up bank estimates as well.  A limitation of the bottom-up method is that 68 
observed atmospheric concentrations are used only as a qualitative check and are not explicitly 69 
accounted for in the analysis. Another important limitation is that data used in the bottom-up 70 
accounting method are unobserved but rather rely on estimated processes along with reported 71 
data, such as production or sales of equipment, thus bias in reporting could propagate into large 72 
biases in bank estimates.  73 

The third approach, and the one used in more recent ozone assessments (WMO, 2011, 2014, 74 
2018) uses a hybrid approach to calculate banks.  Bottom-up banks estimated for 2008 are used 75 
as the starting point of the calculations. These banks are taken from SROC (2006) and represent 76 
interpolated values from the 2002 and 2015 estimates. The banks are then brought forward to the 77 
present time by adding the cumulate reported production and subtracting the cumulative 78 
observationally-derived emission from 2008 through the present. This approach is consistent 79 
with 2008 bottom-up bank estimates by design, however, as time between 2008 and the present 80 
has grown, the cumulative errors associated with the top-down approach have become larger. 81 

The modeling approach applied in the present study relies on Bayesian inference of 82 
banks(Lickley et al., 2020, 2021) where banks are estimated using an approach called Bayesian 83 
parameter estimation.  In this approach a simulation model of the bottom-up method is 84 
developed, where prior distributions of input parameters are constructed from previously 85 
published values, accounting for large uncertainties in production and bank release rates.  The 86 
simulation model simultaneously models banks, emissions, and atmospheric concentrations.  87 
Parameters in the simulation model are then conditioned (or updated) on observed concentrations 88 
by applying Bayes’ theorem.  The final result is a posterior distribution of banks by chemical and 89 
equipment type, along with an updated estimate of production and release rates for each 90 
equipment type.  This approach incorporates data and assumptions from both the bottom-up and 91 
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top-down approaches, providing a simulation model consistent with the bottom-up accounting 92 
approach while also being consistent with observed concentrations within their uncertainties.  93 

The remainder of the paper includes the following:  Section 2 presents the Bayesian modeling 94 
approach along with data used in the analysis.  Section 3 provides a summary of the results of 95 
our analysis for each of the chemicals considered here.  Finally, Section 4 provides a discussion 96 
of our primary findings and limitations of the analysis.  97 

 98 
2. Methods 99 
 100 
The Bayesian modeling approach from Lickley et al. (2020, 2021) draws on a Bayesian analysis 101 
approach called Bayesian melding, designed by Poole & Raftery (2000), that allows us to apply 102 
inference to a deterministic simulation model.  We employ a version of this method that we 103 
henceforth refer to as Bayesian Parameter Estimation (BPE), which allows for input parameter 104 
uncertainty (Bates et al., 2003; Hong et al., 2005).  The model flow is implemented as follows; 105 
first we develop a deterministic simulation model, representing the “bottom-up” accounting 106 
method that simultaneously simulates banks, emissions, and mole fractions for each chemical 107 
and equipment type.  In this analysis, the chemicals considered include CFC-11, 12, 113, 114, 108 
and 115, HCFC-22, 141b, and 142b, and halon-1201, and 1311.  Prior distributions for each of 109 
the input parameters are based on previously published estimates.  We then specify the 110 
likelihood function as a function of the difference between observed and simulated mole 111 
fractions.  Finally, we estimate posterior distributions of both the input and output parameters by 112 
implementing Bayes’ Rule using a sampling procedure.  Each of the steps of the BPE are 113 
described in more detail below.   114 
 115 
2.1 Simulation Model    116 
The simulation model is comprised of equations (1) – (5) which simultaneously models banks, 117 
emissions, and mole fractions for each chemical by equipment type for all years with available 118 
data up until 2019.  Starting dates differ by chemical, see the Supplement for details. The 119 
simulation model is specified as follows;  120 
 121 
𝐵𝐵 𝑗𝑗,𝑡𝑡+1 = �1 − 𝑅𝑅𝐹𝐹𝑗𝑗,𝑡𝑡� × 𝐵𝐵𝑗𝑗,𝑡𝑡 + (1 − 𝐷𝐷𝐸𝐸𝑗𝑗,𝑡𝑡) × 𝑃𝑃𝑗𝑗,𝑡𝑡       (1) 122 
 123 
where 𝐵𝐵 𝑗𝑗,𝑡𝑡,  is banks and 𝑃𝑃𝑗𝑗,𝑡𝑡 is production of equipment category, j, in year, t.  𝑅𝑅𝐹𝐹𝑗𝑗,𝑡𝑡 reflects the 124 
fraction of the bank released and 𝐷𝐷𝐸𝐸𝑗𝑗,𝑡𝑡 reflects the fraction of production that is directly emitted 125 
in equipment category, j, year, t. These same parameters are used to simulate emissions, 𝐸𝐸𝑗𝑗,𝑡𝑡:  126 
 127 
𝐸𝐸𝑗𝑗,𝑡𝑡+1 = 𝑅𝑅𝐹𝐹𝑗𝑗,𝑡𝑡 × 𝐵𝐵𝑗𝑗,𝑡𝑡 + 𝐷𝐷𝐸𝐸𝑗𝑗,𝑡𝑡 × 𝑃𝑃𝑗𝑗,𝑡𝑡          (2) 128 

 129 
Total banks, 𝐵𝐵Total,𝑡𝑡,  and total emissions, 𝐸𝐸Total,𝑡𝑡, are then estimated as the sum across all N 130 
equipment categories;  131 
 132 
𝐵𝐵Total,𝑡𝑡 = ∑ 𝐵𝐵𝑗𝑗,𝑡𝑡

𝑁𝑁
𝑗𝑗=1            (3) 133 

 134 
𝐸𝐸Total,𝑡𝑡 = ∑ 𝐸𝐸𝑗𝑗,𝑡𝑡

𝑁𝑁
𝑗𝑗=1           (4) 135 

 136 
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For chemicals where feedstock usage is reported, an additional term in eq (4) is included that 137 
accounts for feedstock emissions.  Emissions are then used to simulate atmospheric mole 138 
fractions, 𝑀𝑀𝐹𝐹𝑡𝑡, along with an assumed atmospheric lifetime, 𝜏𝜏𝑡𝑡, taken as the SPARC (2013) 139 
multi-model time-varying mean;  140 

 141 
𝑀𝑀𝐹𝐹𝑡𝑡+1 = exp �−1

𝜏𝜏𝑡𝑡
� × 𝑀𝑀𝐹𝐹𝑡𝑡 + 𝐴𝐴 × 𝐸𝐸Total,𝑡𝑡        (5) 142 

 143 
where A is a constant that converts units of emissions by mass to units of mole fractions, and 144 
also takes into account a factor of 1.07 that accounts for the discrepancy between surface mole 145 
fraction concentrations to global mean values. 146 
 147 
 148 
2.2 Prior Distributions 149 
The input parameters in the simulation model described above require initial values to be 150 
assigned, along with their probability distributions.  These prior distributions (‘priors’) are 151 
developed to estimate mole fractions, emissions, and banks for CFC-11, 12, 113, 114, and 115, 152 
HCFC-22, 141b, and 142b, and halon-1201, and 1311.  Categories of bank equipment are 153 
defined by the categorization provided by AFEAS (2001), which varies by compound (shown in 154 
Table 1).  For halons, there is a single category of bank (fire extinguishers).   155 

AFEAS data reports global annual production up to 2001 categorized by equipment type, 156 
which is generally categorized into short, medium and long-term banks.  We use AFEAS data 157 
and categorization to develop our production priors and adopt the WMO (2003) correction where 158 
AFEAS production values are used up until 1989 and then scaled to match UNEP global 159 
production values for all years following 1989.  After AFEAS data ends, we assume the relative 160 
production in each category remains constant for all years following 2001. Uncertainty in 161 
production priors is assumed to follow a multivariate log-normal distribution, where temporal 162 
correlation in production reporting bias is estimated in the BPE.  Prior distributions differ by 163 
chemical and are developed to be wide enough for atmospheric mole fraction priors to contain 164 
observations.  See the Supplement for details on production priors for each chemical.   165 

The emissions function by bank equipment type can be characterized by the fraction of 166 
production that is directly emitted during the year of production (DE) and the fraction of the 167 
bank that is emitted in each subsequent year.  Prior estimates for emissions functions come from 168 
previously reported data and differ by chemical and equipment type (see the Supplement).  169 
Broadly speaking, it has been estimated that chemicals contained in short-term banks are fully 170 
emitted within the first two years after production, medium-term banks lose about 10 – 20% of 171 
their material each year, and long-term banks can lose as little as 2% of their material each year 172 
(Ashford et al., 2004).  We use previously published estimates to develop emissions function 173 
priors specific to each chemical and bank type along with wide uncertainties, as specified in the 174 
Supplement.  175 

Amounts of halocarbons used for feedstock production are available annually 176 
(UNEP/TEAP, 2021). A prior mean leakage rate of 2% was assumed during production, which 177 
reflects a medium value between different facilities (MCTOC, 2019). 178 

    179 
Table 1: Application type of halocarbon banks by chemical 180 
Chemical Short Bank Medium Bank Long Bank 
CFC-11 Aerosols  Non-hermetic refrigeration Closed-cell foam 
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Open-cell foam 
CFC-12 Aerosols  

Open-cell foam 
Non-hermetic refrigeration Refrigeration 

CFC-113 solvents  Heat pump 
CFC-114   Heat pump 
CFC-115 Propellant  Air conditioning 
HCFC-22 Open-cell foam Non-hermetic refrigeration Foam 
HCFC-141b Open-cell foam Non-hermetic refrigeration Foam 
HCFC-142b  Non-hermetic refrigeration Foam 
Halon-1211  Fire extinguishers  
Halon-1301  Fire extinguishers  

 181 
 182 
2.3 Likelihood function 183 
For each chemical, the likelihood function is a multivariate normal likelihood function of the 184 
difference between modeled and observed mole fractions;  185 
 186 
𝑃𝑃(𝐷𝐷𝑡𝑡1, …𝐷𝐷𝑡𝑡𝑁𝑁|𝜽𝜽) = 1

(2𝜋𝜋)
𝑁𝑁
2�|𝑆𝑆|

exp �− 1
2
Δ𝑇𝑇𝑆𝑆−1Δ�       (6) 187 

 188 
Where 𝐷𝐷𝑡𝑡1, …𝐷𝐷𝑡𝑡𝑁𝑁 is yearly globally-averaged observed mole fractions for all years where 189 
observations are available and 𝜽𝜽 represents that vector of input and output parameters from the 190 
simulation model.  Δ is an N x 1 vector of the difference between yearly observed and modeled 191 
mole fractions and is assumed to have a mean zero, and covariance function 𝑆𝑆.   𝑆𝑆 therefore 192 
represents the sum of uncertainties between observed and modeled mole fractions.  While there 193 
are published estimates of uncertainties in observed mole fractions, we do not know the 194 
uncertainties in modeled mole fractions.  Therefore, we estimate 𝑆𝑆 separately for each chemical, 195 
as is done in (Lickley et al., 2020).  The off-diagonals in the covariance function incorporate a 196 
correlation term, 𝜌𝜌𝑆𝑆, which accounts for our assumption that there is high autocorrelation in the 197 
bias between modeled and observed mole fractions.  Correlation terms for each chemical are 198 
reported in the Supplement along with prior estimates of the uncertainty parameters used for 199 
diagonal elements in 𝑆𝑆.  Each column and row in 𝑆𝑆 is therefore populated as;  200 
 201 

𝑆𝑆𝑖𝑖,𝑗𝑗 = 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌𝑆𝑆
|𝑖𝑖−𝑗𝑗| 202 

where 𝜎𝜎𝑖𝑖  and 𝜎𝜎𝑗𝑗  represent the sum of the uncertainties in observed and modeled mole fractions at 203 
time 𝑖𝑖 and 𝑗𝑗, resepectively, and are inferred in the BPE, whereas 𝜌𝜌𝑆𝑆 is prescribed.  204 
 205 
Observations come from the Advanced Global Atmospheric Gas Experiment (AGAGE; 206 
https://agage.mit.edu) data set (Prinn et al., 2000; Prinn et al., 2018), with the exception of CFC-207 
11 and 12 which, following Lickley et al. (2021), come from the AGAGE and the National 208 
Oceanographic and Atmospheric Administration’s (NOAA) merged data sets (Engel et al., 209 
2019).  Data are aggregated into annual global mean mole fractions. The time frame of 210 
availability of observations differs by chemical (see the Supplement).   211 
 212 
2.4 Posterior Distributions 213 

https://agage.mit.edu/
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Following Bayes’ Rule, we specify our posterior distribution as;  214 
 215 
𝑃𝑃(𝜽𝜽|𝐷𝐷𝑡𝑡1, … ,𝐷𝐷𝑡𝑡𝑁𝑁) = 𝑃𝑃(𝜽𝜽)𝑃𝑃(𝐷𝐷𝑡𝑡1,…𝐷𝐷𝑡𝑡𝑁𝑁|𝜽𝜽)

𝑃𝑃(𝐷𝐷𝑡𝑡1,…𝐷𝐷𝑡𝑡𝑁𝑁)          (7) 216 

 217 
Where 𝑃𝑃(𝜽𝜽) represents the joint prior distribution of the input and output parameters described 218 
in the simulation model in Section 2.1.    219 
 220 
The analytical form of the posterior distribution is intractable. Thus, we estimate the posterior 221 
using a sampling procedure (the sampling importance resampling (SIR) method) to estimate the 222 
marginal posterior distributions (Bates et al., 2003; Hong et al., 2005; Rubin, 1988).  To 223 
implement SIR we draw 1,000,000 samples from the priors, run the simulation model, and then 224 
resample from the priors 100,000 times using an importance ratio, which is proportional to the 225 
likelihood function.  These sample sizes were chosen such that multiple iterations of the model 226 
produce consistent results.   227 
 228 
3. Results 229 
Figure 1 shows observed globally averaged mole fractions compared to BPE estimated mole 230 
fractions for each chemical. Figure 2 shows BPE estimated and observationally-derived 231 
emissions, assuming the SPARC time-varying multi-model mean lifetime for each species.  232 
Posterior estimates agree well with observations for the majority of time periods and chemicals.  233 
Note, however, that BPE estimates from Lickley et al. (2021) match observed and 234 
observationally-derived estimates more closely for CFC-11 than they do in the present analysis.  235 
We attribute this difference in consistency to atmospheric lifetimes being assumed in the present 236 
analysis, whereas they were inferred in Lickley et al. (2021), which found inferred lifetimes to be 237 
somewhat shorter than the SPARC multi-model mean values.  Shorter lifetimes would allow 238 
modeled mole fractions to decline more quickly following 1990, better matching observations. A 239 
notable discrepancy occurs for CFC-115, where modeled mole fractions are increasing 240 
throughout the entire simulation period, whereas observed mole fractions from 2000 onwards are 241 
relatively constant.  This discrepancy could be explained by the large uncertainties in 242 
atmospheric lifetimes of CFC-115 (Vollmer et al., 2018), if atmospheric lifetimes are in fact 243 
substantially shorter than the SPARC multi-model mean. 244 
 245 
Figure 3 provides a comparison of BPE bank estimates alongside previously published bank 246 
estimates.  BPE bank estimates are generally higher than other published values.  This can be 247 
explained by production uncertainties that are accounted for in the present analysis.  Our analysis 248 
suggests that production has very likely been underreported for nearly all chemicals.  Table 2 249 
provides a summary of our estimated bias in cumulative reported production throughout the 250 
simulation period for each chemical type.  With the exception of CFC-113 and CFC-115, we find 251 
our inferred cumulative production to be significantly higher than reported production (at the 1-252 
sigma level), with our median estimate suggesting that production was as little as 9% higher than 253 
reported for CFC-12 and as high as 50% higher than reported for Halon-1211.  We would expect 254 
any consistent bias in reported production to be a bias low, since consistent undercounting of 255 
production is more plausible than overcounting production.  The exception for this would be the 256 
base year, which reduction targets are made with reference to.  In this instance, we would expect 257 
overreporting for this year to be more likely.  Another possible explanation for the discrepancy in 258 
production estimates is that total reported chemical production under the UNEP does not account 259 
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for leakage during chemical manufacturing, but rather only leakage that occurs during the 260 
application of the chemical.  To our knowledge, this potential leakage during chemical 261 
manufacturing has not been well-documented or previously quantified.  262 
 263 
 264 
Table 2: Estimated bias in cumulative reported production.  Values indicate the percent 265 
difference between inferred cumulative production from the onset of production to 2019 relative 266 
to reported production, for all uses except for feedstock production.  Positive values indicate the 267 
percent by which inferred production is higher than reported.  268 

Chemical Name CFC-11 CFC-12 CFC-113 CFC-114 CFC-115 
Median inferred bias 
(16th , 84th percentile) 

12% 
(9%, 13%) 

9% 
(7%, 11%) 

-1% 
(-3%, 0%) 

11% 
(9%, 13%) 

-1% 
(-2%, 5%) 

Chemical Name HCFC-22 HCFC-141b HCFC-142b Halon-1211 Halon-1301 
Median inferred bias 
(16th , 84th percentile) 

10% 
6%, 13%) 

12% 
(6%, 19%) 

22% 
(17%, 28%) 

50% 
(41%, 59%) 

24% 
(18%, 32%) 

 269 
 270 
Figure 4 shows the breakdown of emissions by equipment type over time.  For CFCs, emissions 271 
from short-term banks tend to peak around 1990, as spray applications were banned earlier than 272 
other applications, after which emissions from medium and long-term banks become more 273 
dominant emission sources.  This is to be expected as the phase-out of production after 1990 274 
would lead to more CFC emissions from existing banks rather than new, short-lived equipment.  275 
For HCFC-22, most of the emission throughout the entire time period is from medium banks, 276 
which is largely non-hermetic refrigeration.  Long banks (i.e. foams) dominate emissions for 277 
HCFC-141b, and for HCFC-142b, where both foams and non-hermetic refrigeration are 278 
prominent emission sources throughout the simulation period.  Estimated feedstock emissions 279 
averaged over 2010 – 2019 are shown in Table 3.  HCFC-22 is the largest source of feedstock 280 
emissions by mass, but CFC-113 feedstock emissions are estimated to be larger when weighted 281 
by GWP100 and ODP.   282 
 283 
Table 3: Estimated feedstock emissions averaged from 2010 – 2019 from the Bayesian analysis.  284 
Emissions are weighted by mass, global warming potential (GWP100) relative to CO2 over a 285 
100-year time horizon for a CO2 concentration of 391ppm, and by ozone depletion potential 286 
(ODP) relative to CFC-11 (WMO, 2018).   287 
Feedstock Emissions CFC-113 HCFC-22 HCFC-142b 
By mass 3.4 Gg/yr 9.3 Gg/yr 2.1 Gg/yr 
By GWP100 20, 838 Gg/yr 16,591 Gg/yr 4,302Gg/yr 
By ODP 2.8 Gg/yr 0.3 Gg/yr 0.1 Gg/yr 

 288 
Figure 5 shows the relative quantity of banked materials by chemical type.  Banks are weighted 289 
by mass (Figure 5a), by global warming potential (GWP100; Figure 5b), and by ozone depleting 290 
potential (ODP; Figure 5c).  Our best estimate is that the sum of the HCFCs currently comprise 291 
about 77% of banks by mass.  However, in terms of climate impacts, CFC-11, 12 and HCFC-22 292 
are the largest banked materials weighted by GWP100, accounting for 36%, 14%, and 36% of 293 
current banks, respectively.  When banks are weighted by ODP, CFC-11 and 12 represent 46% 294 
and halons also represent 46% of current banked chemicals.  295 
 296 
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Figure 6 shows the composition of banks by chemical type.  This, together with Figure 5, 297 
provides insight into the most prominent banked sources of halocarbons with regards to 298 
GWP100 and ODP.  In terms of GWP100, CFC-11 banks largely reside in foams, whereas CFC-299 
12 and HCFC-22 are largely in non-hermetic refrigeration; the latter may be more readily 300 
recoverable.  In terms of ODP, CFC-11 foams and CFC-12 non-hermetic refrigeration remain 301 
important, along with halons which are all contained in fire extinguishers, a recoverable 302 
reservoir.   303 
 304 
 305 
4. Discussion and Conclusions  306 
This analysis suggests that if lifetime assumptions are correct, published bank estimates using 307 
either the top-down or bottom-up methods were likely underestimating bank sizes for all banked 308 
chemicals due to underreporting of production (see Table 2).  The Bayesian approach used in this 309 
analysis does not assume production is known, but rather jointly infers production along with the 310 
other parameters in the simulation model, providing probabilistic estimates of historical 311 
production values.  Previously published bank estimates (Ashford et al., 2004; TEAP, 2009; 312 
WMO, 2003) do not infer production, but rather assume it is known, or consider different 313 
scenarios.  We argue that production assumptions have been biased low due to underreporting of 314 
total production and potentially unaccounted for leakage during chemical manufacturing and 315 
thus have led to published bank estimates that were also biased low.   316 
 317 
Discrepancies between observed mole fractions and BPE-derived mole fractions are notable for 318 
the suite of chemicals considered here.  While the majority fall within the 90% confidence 319 
interval throughout most of the time periods, the trends in concentrations between observations 320 
and inferred mole fractions do not always agree.  This discrepancy could be related to our 321 
partitioning of production type following 2003 (i.e. after AFEAS data ends).  Another important 322 
limitation in this analysis is in the treatment of atmospheric lifetimes, which could also explain 323 
some of these discrepancies.  The present analysis assumes atmospheric lifetimes are known and 324 
equal to the SPARC (2013) time varying multi-model mean lifetimes.  However, previous work 325 
has indicated potential biases in SPARC lifetimes, for example for CFCs (Lickley et al., 2021). 326 
The potential bias in atmospheric lifetimes would result in biased bank estimates in the present 327 
manuscript and requires further analysis.  328 
 329 
This modeling approach makes no assumptions about end-of-life emissions.  Certain bank 330 
estimates assume that applications are dismantled at the end of their lifetime, which would both 331 
contribute to decreased banks and increased emissions at fixed years after production (e.g. TEAP 332 
progress report, 2021).  We do not make this assumption as we believe it would be more realistic 333 
for dismantling of equipment to occur over a range of years after production, which would 334 
effectively be captured by our bank release fraction estimate.  We do, however, test the 335 
sensitivity of our bank estimate to end-of-life (EOL) emissions occurring in a single year after 336 
production.  This we term the EOL scenario and test the sensitivity of banks for CFC-11, CFC-337 
12 and HCFC-22, the three largest banks by global warming potential.  The modeling approach 338 
is described in the SM and results are shown in Figure SM1.  Perhaps unexpectedly, CFC-11 339 
posterior bank estimates are ~25% higher in 2020 in the EOL scenario relative to the scenario 340 
described in the main text.  However, banks in the EOL scenario are decreasing faster than those 341 
described in the main text.  The larger bank size is due to posterior bank release fractions being ~ 342 
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2% for the EOL scenario relative to 3% for the scenario described in the main text.  The faster 343 
depletion of the banks in 2020 can be explained by the addition of the EOL decommissioning 344 
parameter. These larger bank estimates reflect the consistency of the Bayesian modeling 345 
approach where all parameters are jointly inferred.  Including an additional process in the model 346 
requires that multiple parameters be updated to be consistent with observations.  For CFC-12, the 347 
EOL scenario produces significantly smaller banks from about 1990 onwards, however, the 348 
emissions profile has an artificial dip in emissions relative to observationally-derived emissions, 349 
suggesting a set year for decommissioning is not a realistic modeling assumption.  For HCFC-22 350 
banks are not substantially different between the two scenarios.  351 
 352 
There are important discrepancies between CFC-113 feedstock emissions inferred here and those 353 
estimated in the previous analysis (Lickley et al., 2020).  In Lickley et al. (2020), feedstock 354 
emissions were assumed to be the difference between observationally-derived emissions and 355 
inferred bank emissions.  In the present analysis, prior distributions of feedstock production and 356 
leakage rates are developed and feedstock emissions are then inferred.  In the present analysis, 357 
observationally-derived CFC-113 emissions are higher than total BPE inferred emissions at the 358 
1-sigma level from 2010 onwards.  This suggests that either observationally-derived emissions 359 
are too high, or our BPE estimates are too low.  In Lickley et al. (2021), we find that atmospheric 360 
lifetimes of CFC-113 are very likely lower than the SPARC multi-model time varying mean, 361 
used in the present analysis.  This would imply that the observationally-derived emissions shown 362 
in Figure 2 are biased low, suggesting an even larger discrepancy between BPE inferred total 363 
emissions and observationally derived emissions.  Therefore, it seems plausible that the 364 
discrepancy is due to prior feedstock emissions estimates being biased low due to larger leakage, 365 
or CFC-113 is being produced for a use that is not allowed under the Montreal Protocol.   366 
 367 
Finally, some important details about production and destruction were not fully accounted for in 368 
this analysis.  For one, feedstock priors were only included for CFC-113, HCFC-22, and HCFC-369 
142b, which could be limiting our assessment of the sources of emissions for other chemicals.  370 
However, published feedstock values for other chemicals are not available and leakage rates in 371 
feedstock applications may be uncertain.  In addition, we do not account for non-dispersive 372 
production in our analysis, namely the production of chemicals as by-products.  It is possible, for 373 
example, that some of the discrepancies in CFC-115 emissions could be explained by non-374 
dispersive emissions as identified by (Vollmer et al., 2018).   Further, we do not consider end-of-375 
life destruction of equipment as there are no published records, to our knowledge, of these 376 
processes.  Finally, we were not able to account for a more detailed breakdown in production by 377 
equipment type than what has been published by AFEAS, which discretizes production into, at 378 
most, four categories of equipment, and does not provide data beyond 2003.  Without publicly 379 
available details of these processes, modeling of banks and emissions will continue to be limited.  380 
 381 
Code Availability: All analyses were done in MATLAB. All code used in this work is available 382 
at https://github.com/meglickley/HalocarbonBanks 383 
 384 
Data Availability: The datasets generated and/or analyzed during the current study are available 385 
at https://github.com/meglickley/HalocarbonBanks 386 
 387 

https://github.com/meglickley/HalocarbonBanks
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 486 
 487 

 488 
Figure 1: Modeled mole fractions versus observed mole fractions.  Red lines indicate the 489 
posterior median mole fraction estimate from the Bayesian analysis (BPE), with shaded regions 490 
indicating the 90% confidence interval.  Blue line indicates globally-averaged observed mole 491 
fractions.  492 
 493 
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 494 
Figure 2: Modeled emissions versus observationally-derived emissions. Red lines indicate the 495 
posterior median emissions estimate from the Bayesian analysis (BPE), with shaded regions 496 
indicating the 90% confidence interval.  Blue line indicates observationally-derived emissions 497 
assuming the SPARC multi-model mean time-varying lifetimes.  498 
 499 
 500 

 501 
Figure 3: Magnitudes of Bank estimates.  The red line indicates the median posterior estimate of 502 
Banks from the Bayesian analysis, with shading indicating the 90% confidence interval.  503 
Previously published bank estimates are provided for comparison from TEAP (2009), WMO 504 
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(2007), and WMO (2018), along with the hybrid approach updated to current estimated starting 505 
values.  506 
   507 

 508 
Figure 4: Emissions by Source.  Emissions estimates by various equipment types, summarized 509 
in Table 1, are shown here along with estimated emissions from feedstock usage.  Lines indicate 510 
the median estimate, with the shaded region indicating the 90% confidence interval.  Halons are 511 
not included in this figure as 100% of halon emissions come from the same application and are 512 
thus identical to Figure 2 halon totals.   513 

 514 
Figure 5:  Total banks by mass, global warming potential (GWP100; WMO, 2018) and ozone 515 
depleting potential (ODP; WMO, 2018).  Bank estimates reported in the above figures are the 516 
median estimates from the Bayesian analysis.   517 
 518 
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 519 
Figure 6: Bank size by equipment type. Bank estimates reported in the above figures are the 520 
median estimates from the Bayesian analysis.  In the above legends, cc refers to closed-cell 521 
foams, non-h ref. refers to non-hermetic refrigeration, ref. refers to refrigeration, and A/C refers 522 
to air conditioning.  523 
 524 


